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Exercise 1. Let λ ∈ R. We have

‖λϕ‖m,k = max {|Dα(λϕ)| : |α| ≤ k, x ∈ Ω \Km}
= |λ|max {|Dα(ϕ)| : |α| ≤ k, x ∈ Ω \Km}
= |λ|‖ϕ‖m,k .

Moreover, for every ϕ1, ϕ2 ∈ C∞c (Ω)

‖ϕ1 + ϕ2‖m,k = max {|Dα(ϕ1 + ϕ2)| : |α| ≤ k, x ∈ Ω \Km}
≤ max {|Dα(ϕ1)|+ |Dα(ϕ2)| : |α| ≤ k, x ∈ Ω \Km}
≤ ‖ϕ1‖m,k + ‖ϕ2‖m,k .

Exercise 2. Equivalently, we show that

Dϕ,ε,m = D(Ω) ∩
{
ψ : ‖ψ − ϕ‖ε,m = supn∈N

(
1

εn
sup|α|≤mn

‖Dαϕ‖L∞(Ω\Kn)

)
< 1

}
is a basis generating a topology on D(Ω). We need to show that the sets Dϕ,ε,m cover the whole
space C∞c (Ω) and that for every element in the intersection of two sets of the basis, there exists
an another set of the basis containing that element and such that it is itself contained in the
intersection.

By choosing εn =, mn = 0 for all n ∈ N we get that⋃
ϕ∈C∞

c (Ω)

{
ψ ∈ C∞c (Ω) : ‖ϕ− ψ‖L∞(Ω) < 1

}
= C∞c (Ω).

Let now Dϕ,ε,m and Dϕ̃,ε̃,m̃ be two elements of the basis with a nonempty intersection (otherwise
it is trivial). Let γ ∈ Dϕ,ε,m ∩Dϕ̃,ε̃,m̃. Since ∀n ∈ N ‖ϕ− γ‖ε,m < ε and ‖ϕ̃− γ‖ε,m < 1, then
for every n ∈ N there exist εn, ε̃n > 0 such that

‖ϕ− γ‖mn,n := sup|α|≤mn
‖Dα(ϕ− γ)‖L∞(Ω\Kn) < εn − ε(n)

‖ϕ̃− γ‖m̃n,n = sup|α|≤m̃n
‖Dα(ϕ̃− γ)‖L∞(Ω\Kn) < ε̃n − ε̃(n),

for all n ∈ N. We now choose Mn = max(mn, m̃n) and En = min(εn, ε̃n). If ψ ∈ Dγ,E,M then

‖ϕ− ψ‖mn,n ≤ ‖ϕ− γ‖mn,n + ‖γ − ψ‖mn,n

< εn − ε(n) + ‖γ − ψ‖mn,n

< εn
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and analogously
‖ϕ̃− ψ‖mn,n < ε̃n

This shows that Dγ,E,M ⊂ Dϕ,ε,m ∩Dϕ̃,ε̃,m̃, where E = {En}n and M = {Mn}n

Exercise 3. Suppose that ∃K ⊂ Ω such that sptϕn ⊂ K and ϕn → ϕ uniformly, together with
all of its derivatives. Choose ε and m arbitrarily and let Dϕ,ε,m be an element of the basis given
in the previous exercise. Since Km ↑ Ω, then there exists M ∈ N such that (Ω \Km) ∩K = ∅
for all m > M . We define

m = max
n≤M

mn,

ε = min
n≤M

εn.

Since ϕn → ϕ uniformly (together with all of its derivatives), there exists N ∈ N such that for
all n > N

‖ϕn − ϕ‖Cm(Ω) < ε.

This implies that ∀n > N , ϕn ∈ Dϕ,ε,m. Note that one should also check that for any other set
Dψ,ε,m containing ϕ, then the sequence is definitively contained in Dψ,ε,m. However, this is an
easy consequence of the fact that in exercise 4 we proved that those sets form a basis for the
topology. Indeed we proved the existence of a set Dϕ,ε,m ⊂ Dψ,ε,m ∩Dϕ,ε,m and from the previ-
ous computations we conclude that for some N > 0, the sequence ϕn ∈ Dϕ,ε,m, for every n > N .

We first prove the existence of the compact set K such that sptϕn ⊂ K, for all n ∈ N. If by
contradiction there is no KM containing all the supports of ϕn, then the set

Σ =
{
j ∈ N : ∃nj and n(j) : ‖ϕnj

− ϕ‖j,n(j) := sup|α|≤j ‖Dα(ϕ− ϕnj
)‖L∞(Ω\Kn(j)) > 0

}
contains countably many integers. We can thus define

εj = 1, if j ∈ N \ Σ

εj =
‖ϕnj

− ϕ‖j,n(j)

2
, if j ∈ Σ.

Then we deduce that ϕnj
/∈ Dϕ,ε,m for all j ∈ Σ, where mj = j for all j ∈ N, which means that

there are infinitely many elements of the sequence that are not contained in Dϕ,ε,m. This is of
course in contradiction with the assumption that the sequence was topologically converging to
ϕ. Fix a multi-index α such that |α| = j, a real number ε > 0 and choose

mn = j εn =
ε

M
,

∀n ∈ N. By hypothesis there exists n = n(ε) ∈ N such that

‖ϕn − ϕ‖ε,m <
ε

M
∀n > n,

from which we conclude that

‖Dαϕn −Dαϕ‖L∞(Ω) ≤
M−1∑
m=0

‖ϕn − ϕ‖ε,m <
ε

M
M = ε .

where the first inequality follows from the definition of ‖ · ‖ε,m with ε0 and m0.
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Exercise 4. Suppose that Ω is a bounded domain. Thus ∂Ω 6= ∅. Since T does not have
compact support in Ω, there exists a sequence of points xk accumulating on ∂Ω and a sequence
εk > 0 such that Bεk(xk) ⊂ Ω and

〈T, ψk〉 > 0, for some ψk ∈ C∞c (Bεk(xk)).

We define ϕk = k ψk

〈T,ψk〉
. Since sptϕk ⊂ sptψk ⊂ Bεk(xk), we have that ϕk → 0 in E(Ω), but

〈T, ψk〉 = k →∞.

In the case Ω unbounded the points xk could also diverge to infinity, but the proof still runs in
very same way.

Exercise 5. Let ϕ ∈ D(R). We compute〈
d2

dt2
[
(H(t)−H(t− 2)) (t2 − t− 2)

]
, ϕ

〉
=

∫
R

(H(t)−H(t− 2)) (t2 − t− 2)ϕ′′(t) dt

=

∫ ∞
0

(t2 − t− 2)ϕ′′(t) dt−
∫ ∞

2

(t2 − t− 2)ϕ′′(t) dt

= 2ϕ′(0)−
∫ ∞

0

(2t− 1)ϕ′(t) dt+

∫ ∞
2

(t2 − t− 2)ϕ′(t) dt

= 2ϕ′(0)− ϕ(0)− 3ϕ(2) + 2

∫
R
(H(t)−H(t− 2))ϕ(t) dt,

from which we deduce that

d2

dt2
[
(H(t)−H(t− 2)) (t2 − t− 2)

]
= −2δ′0 − δ0 − 3δ2 + 2(H(t)−H(t− 2)).

We denote g(t) = 1−cos(2πt)
t

and consequently g′(t) = 2πt sin(2πt)−1+cos(2πt)
t

. Note that g(k) = 0
for any k ∈ Z and let us compute g′. For every t 6= 0 it holds

g′(t) =
2πt sin(2πt)− (1− cos(2πt))

t2
.

So for every k ∈ Z\{0} we have g′(k) = 0 and, recalling limt→0
1−cos t
t2

= 1
2
, we obtain g′(0) = 2π2.

Therefore for all ϕ ∈ D(R) we compute〈
g(t)

∑
k∈Z

δ′k, ϕ

〉
=
∑
k∈Z

〈δ′k, gϕ〉 = −
∑
k∈Z

(g′(k)ϕ(k) + g(k)ϕ′(k)) = −g′(0)ϕ(0) = −2π2ϕ(0).

Thus g(t)
∑

k∈Z δ
′
k = −2π2δ.
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