
Introduction

Opening remarks

Slides of the presentation: These summarise the following paragraphs and the content of the
course in a short presentation. 

Constructing suitable approximations to model the world around us sits at the heart of all
sciences. As the above famous quote implies, modelling a scientific problem inevitable comes
with the introduction of errors. Even the most accurate models of physics, e.g. the standard
model of particle physics or relativistic quantum mechanics have their limitations. Moreover
these models are typically too involved to be applied to all but the simplest systems. In particular
for "real" systems of macroscopic size additional approximations. Typically this not only involves
the selection of more approximate, thus simpler, physical models, but also employing
numerical instead of an analytical techniques for solving the underlying equations.

Which physical effects can be neglected and which numerical techniques are most appropriate is
often application-specific and many alternatives exist. Understanding the dominant sources of
error in a simulation is thus a crucial component in understanding whether each respective
approximation choice has been appropriate and –- most importantly –- which of them needs to
be refined in order to improve the result.

The goal of this lecture is to discuss mathematical techniques which aid with the estimation of
error in scientific simulations. Within the lecture we will distinguish various forms of error and
consider (some) of them in separate discussions throughout the semester. For example we will
distinguish the model error, i.e. the error introduced the selected physical model compared to
the ground truth, as well as the numerical error, i.e. all additional error from the numerical
procedure employed for solving the chosen physical model. Of particular focus in the lecture will
be understanding the various aspects of the numerical error, that is in particular the errors due to
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the chosen discretisation basis, the algorithms to solve the numerical problem as well as the
chosen floating-point arithmetic.

Looking back into the history of scientific modelling a number of incidents with hundreds of
millions of dollars of damage could have been prevented if better numerical error control
measures would have been implemented. One example is the sinking of the Sleipner A oil rig
platform due to an insufficient finite element discretisation. A second example is the self-
destruction of an Ariane 5 rocket in its test flight due to an error in the performed floating-point
arithmetic. In this lecture we will discuss techniques how such errors could have been prevented.
Some guiding questions for our lecture are:

What can go wrong in a simulation?
How can we detect this and what can we do about it?
If we know errors how can this be used to make simulations faster and more reliable?

Eigenvalue problems in scientific modelling
Eigenvalue problems occur naturally in many domains of science. In physics and engineering
problems they are frequently related to vibrations, e.g. bridges or buildings can swing under
wind load. A famous example is the Tacoma narrows bridge, which collapsed in 1940 just half a
year after its opening due to strong winds bringing the bridge into strong vibrations. Similarly
the London millennium foot bridge had to be closed due to its strong wobbeling by the passing
pedestrians.

In my own field, atomistic modelling, the underlying workhorse theory is the Schrödinger
equation. In quantum mechanics the eigenpairs (states) of an operator describing the physical
system under study form the key quantity of interest in simulations.

Moreover, as we will discuss in the next examples in more detail, there is a natural connections
from solving partial differential equations~(PDE) to eigenvalue problems involving the PDE
operator.

Another natural connection arises when analysing the convergence of iterative numerical
schemes, such as multidimensional fixed-point problems, iterative schemes like Newton or the
conjugate-gradient algorithm. The convergence of CG, for example, is related to the condition
number of the underlying linear system, which in turn are related to singular values of the
system matrix –- an Quantity, which can be obtained by solving an eigenvalue problem.
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https://en.wikipedia.org/wiki/Ariane_5
https://en.wikipedia.org/wiki/Ariane_5


The connection between linear and eigenvalue
problems : the heat equation
Let  with a Lipshitz (smooth) boundary. We seek  such that

Where the initial conditions  are of appropriate regularity.

To solve this problem, we perform separation of variables

We will see later that this postulate is justified.

To start, let's just consider one term of the sum, i.e. .

From the heat equation

Assuming that  and  are non-zero, we can divide

The left only depends on , and the right only on . As a result, we need

for some .

Consider the time-dependant part ( )



Separately, consider the space-dependant part ( )

which is the Dirchlet-Laplace eigenvalue problem !

One can show that the operator  with homogeneous Dirichlet boundary conditions has
a sequence of eigenvalues  and orthonormal eigenfunctions

, i.e.

with

These form a complete basis of , the relevant Hilbert space for this problem.

This justifies the ansatz

we made before, where  are now eigenfunctions of the Laplace operator.

To fully translate the problem to the eigenfunction setting, we need to consider the initial
condition 

On the one hand, in the eigenbasis,

On the other hand,

which yields



Taking , we obtain

Since  is a basis, we deduce  and finally obtain

We observe the following :

The solution decays to  as .
The decay rate depends on .

More importantly for this course, this shows that eigenvalue problems, which we will focus on,
are key in understanding linear problems, even though they might seem unrelated at a first
glance. One of these linear problems of particular relevance is solving Schrödinger equation,
which we treat in the next section.

The Schrödinger equation and quantum
mechanics
At the microscopic level, the physics and chemistry of materials is governed by the interaction of
electrons and nuclei. At this scale, the regime of quantum mechanics applies.

In quantum mechanics the state of a system is described the complex-valued square-integrable
wave function , where  corresponds to the degrees of freedom (e.g.
position or spin) of the particles (e.g. electrons) in the system.

For simplicity, take , i.e. one particle in 3D. Part of the meaning of  appears through its
modulus squared. Indeed, for all ,  corresponds to the probability distribution of
finding the particle at position  at time .

Further information appears through its Fourier transform, as  corresponds to the
probability distribution of finding the particle at momentum  at time , where the Fourier
transform is given by



For those already familiar with quantum mechanics, note that we set .

In analogy to classical mechanics, one may obtain the dynamics of the particle by investigating
its total energy (considering the mass of the particle to be 1).

The total energy is given by

where  is the potential inducing the particle dynamics.

From the Fourier identity , we can develop the first term into

where we used Parceval's theorem to go from the third to the fourth line.

With this we obtain,

Where we used integration by parts to go from the first to the second line.
In this, the Hamiltonian



gives the total energy of the system when applied to the wavefunction , where
 is the kinetic energy operator

 is the potential energy, applied point-wise in real space.

The dynamics of the system are now given by the time-dependant Schrödinger equation (TDSE)

In general, solving this equation is quite complicated. However, since it is linear, we know that
superpositions of multiple solutions are also a solution. This motivates a separation of variables
similar to the heat equation.

Inserting  into the TDSE yields

For the time-dependence we obtain the ODE

The space dependence yields the time-independent Schrödinger equation (TISE)

As before, if we are able to find (orthonormal) eigenpairs , then the TDSE can be
solved as

with .
Of key importance in quantum mechanics in particular is the computation of the eigenpair
corresponding to the smallest eigenvalue of , called the ground state.
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