
Exercise 1
(a) Following our setup u = v+ td we note (using the orthogonality of v and d and the fact that they
are of unit norm)

⟨u|u⟩ = ⟨v + td|v + td⟩
= ⟨v|v⟩+ t⟨v|d⟩+ t⟨d|v⟩+ t2⟨d|d⟩
= 1 + t2

Therefore
1

⟨u|u⟩
= 1− t2 +O(t4).

On the other hand

⟨u|Au⟩ = λ+ t⟨v|Ad⟩+ t⟨d|Av⟩+ t2⟨d|Ad⟩
= λ+ t2⟨d|Ad⟩,

such that overall

RA(u) = (1− t2)(λ+ t2⟨d|Ad⟩) +O(t4) = λ+ t2(⟨d|Ad⟩ − λ) +O(t4)

(b)
λ−RA(u) = ε2 (⟨d|Ad⟩ − λ) +O(t4)

(c)
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Exercise 2
(a) For all x, y ∈ Cn we have

0 = ⟨(x+ y), S(x+ y)⟩
= ⟨x, Sx⟩+ ⟨x, Sy⟩+ ⟨y, Sx⟩+ ⟨y, Sy⟩
= ⟨x, Sy⟩+ ⟨y, Sx⟩.

(b) Note that ∀x ∈ Cn

⟨x, (A−AH)y⟩ = ⟨(A−AH)y, x⟩

= ⟨y, (A−AH)Hx⟩

= −⟨y, (A−AH)x⟩.

(c) First note ∀x ∈ Cn

⟨x,Ax⟩ = ⟨x,Ax⟩ = ⟨Ax, x⟩ = ⟨x,AHx⟩

From this we deduce ⟨x, (A − AH)x⟩ = 0 for all x ∈ Cn. Employing (a) we obtain for arbitrary
x, y ∈ Cn

0 = ⟨x, (A−AH)y⟩+ ⟨y, (A−AH)x⟩ ∀x, y ∈ Cn.

This gives us

⟨y, (A−AH)x⟩ = −⟨x, (A−AH)y⟩
= ⟨y, (A−AH)x⟩.

where we have used property (a) in the first and property (b) in the second step. This shows that

⟨y, (A−AH)x⟩ ∈ R ∀x, y ∈ Cn.

This gives us the freedom to also replace y → iy and observe

⟨iy, (A−AH)x⟩ = i⟨y, (A−AH)x⟩ ∈ R ∀x, y ∈ Cn.

We deduce that
⟨y, (A−AH)x⟩ = 0 ∀x, y ∈ Cn.

From this we conclude
⟨x,Ay⟩ = ⟨x,AHy⟩ ∀x, y ∈ Cn

or A = AH is Hermitian.

(d)
Let A be a matrix such that RA(x) is real everywhere. Since RA(x) = ⟨x,Ax⟩/⟨x, x⟩ and ⟨x, x⟩ ∈ R,

we must have ⟨x,Ax⟩ ∈ R and thus by (c) A must be Hermitian.
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Exercise 3
(a)

For any diagonal matrix D = diag(d1, d2, . . . , dn) we have

∥D∥F =

n∑
i=1

|di|2

∥D∥p = max
v∈Cn,∥v∥p=1

p

√√√√ n∑
i=1

|di|p|vi|p = max
i=1,...,n

|di|

Since this shows that for a diagonal matrix the Frobenius norm does not agree with any of the
matrix norms induced by a p-norm, it cannot be associated to any of the vector p norms.

(b)
For any matrix A we can consider the matrix AHA which is Hermitian (and positive semidefinite)

and thus has an eigendecomposition with nonnegative eigenvalues µi

AHA =

n∑
i=1

µiuiu
H
i .

Let µmax denote the largest eigenvalue. We then have

∥A∥22 = µmax ≤
∑
i

µi = tr(AHA) = ∥A∥2F

For the case that we have a Hermitian matrix B, it has n real eigenvalues that we can order as

λ1 ≤ λ2 ≤ . . . ≤ λn.

Starting from the Courant-Fisher corollary and using above argument we thus get

RB(x) ≤ max
0 ̸=x∈Cn

RB(x) = λn = max
i

λi ≤ max
i

|λi| = ∥B∥2 ≤ ∥B∥F

as desired.
(c)

It is a crude bound since we have the sequence from (b)

RB(x) ≤ λn ≤ ∥B∥2 ≤ ∥B∥F ,

and each of these three inequalities can easily have a large gap:

• RB(x) ≪ λn: For example, when the minimum eigenvalue of B is much smaller than the maxi-
mum eigenvalue (and corresponding directions x are considered)

• λn ≪ ∥B∥2: This happens only if the largest eigenvalue is negative (i.e. the full spectrum is
negative and B is negative definite) and the right hand side discards the sign. (Otherwise, for
λn ≥ 0 we have equality λn = ∥B∥2)

• ∥B∥2 ≪ ∥B∥F : Whenever there are multiple eigenvalues that have large absolute value. Let us
denote λmaxabs = maxi |λi| and we get

∥B∥22 = λ2
maxabs ≪ λ2

maxabs +
∑

λi ̸=λmaxabs

λ2
i = ∥B∥2F .

As an aside, from the same argument we also see an upper bound ∥B∥F ≤
√
n∥B∥2 which is also

true for any matrix, not necessarily Hermitian (e.g. by an analogous proof using singular values).
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