Sheet 2 solution sketch

begin
using Plots
using LinearAlgebra

end

begin
D = 20.0
w = 2.25
x0 = 0.0

end;

Exercisel

(a) Clearly
exp (‘@ (w—mo)) ~1- = (@ a) + O((a - m))
such that
Mg) = Y -z 2 x — o)
v (“")‘D(m(0)) 1 0((@ — z0)")
_ %w2(m — 20)2 + O((z — z0)*)

as desired.
(b)

Use a standard Gaussian integral.

oi(a) = [L o (-42°).

phinorm (generic function with 1 method)
phinorm(x) = (w/m)*(1/4) % exp(-w % x*2 / 2)

The normalised function is

Exercise 2

fd_laplacian (generic function with 1 method)

function fd_laplacian(N, a; T=Floaté64)
h = 2a / T(N+1)
diagonal = -2ones(T, N) ./ h*2
side_diagonal = ones(T, N-1) ./ hA2
SymTridiagonal(diagonal, side_diagonal)
end

coordinates (generic function with 1 method)

function coordinates(N, a; T=Float64)

x = range(-T(a), T(a), length=N+2)

x[2:end-1] # Discard endpoints with Dirichlet condition
end

Vho (generic function with 1 method)
Vho(x) = 0.5 % w2 % (x-x0)72

begin
a=>5
N = 1000
end;
(@)
5_
HO
phi
4 |
3_
2_
1_
1 1 1
-4 -2 0 2 4
let
c = coordinates(N, a)
p = plot(c, Vho.(c), label="HO", ylims=(-Inf, 5))
p = plot!(p, c, phinorm.(c), label="phi")

end

(b)

begin
Hho = -0.5 % fd_laplacian(N, a) + Diagonal(Vho. (coordinates(N, a)))
A, X = eigen(Hho)

end;

(o)

Eho (generic function with 1 method)
Eho(n) = (n + 0.5) * w

We note (using the Trapezoidal rule and Dirichlet boundary conditions)

[@)z~ [fe)da~ 3" fleh

i=1

discretized_12_norm (generic function with 1 method)

function discretized_12_norm(fx, a)
Approximate LA2([-a, a]) norm of f discretized on a uniform grid of N points
within the the interval [-a, a].
N = length(fx)
h =2a / (N+1)
sqrt(sum(abs2, fx) % h) # = norm(x) % sqrt(h)
end

properly_normalise (generic function with 1 method)

function properly_normalise(fx)
Properly normalise the numerical eigenfunctions as discrete
representations of LA2(R) functions
L2norm = discretized_12_norm(fx, a)
fx ./ L2norm
end

(error_) = 1.57889e-5, error_X1 = 1.03294e-5)

let
error_) = abs(A[1] - Eho(0))

X1 = properly_normalise(X[:, 1])
error_X1 = discretized_12_norm(X1 - phinorm. (coordinates(N, a)), a)

(5 error_A, error_X1)
end

(d)

Vm (generic function with 1 method)

begin
Hm = -0.5 % fd_laplacian(N, a) + Diagonal(Vm. (coordinates(N, a)))
Am, Xm = eigen(Hm)

end;

https://en.wikipedia.org/wiki/Trapezoidal_rule

begin

w / (4D)
n =20

=
]

println("Numerical deviation: ", abs(am[1] - A[1]))
println("Analytical deviation: ", w % x * (n + 0.5)"2)

end
HO
Morse
0.8 -
0.6
0.4 r
0.2
0.0
1 1 1 1
-4 -2 0 2
let
X1 = properly_normalise(X[:, 1])
Xml = properly_normalise(Xm[:, 1])

end

¢ = coordinates(N, a)
plot(c, X1, label="HO")
plot!(c, Xm1, label="Morse")

Exercise 3

inverse_power_method (generic function with 1 method)

function inverse_power_method(A; u=randn(eltype(A), size(A, 2)),
tol=1e-6, maxiter=500)
norm_Au = NaN
Afac = factorize(A) # Factorise A to make A \ x more economical
for i in 1:maxiter
u_prev = u
u = Afac \ u
normalize! (u)
norm_Au = norm(u - u_prev)
norm_Au < tol & break
end
M = dot(u, A, u)
norm_Au > tol & @warn "Inverse power not converged $norm_Au"
(5 M, u)
end

(a) We saw before, that the error in the I2(R™)-norm used by our linear algebra and the error in
the L2 (R)-norm that we target are related by a factor of v'h. Therefore we need

9.995003746877732e-6
begin
h =2a / (N+1)
tol = sqrt(h) % le-4
end

harmonic_hamiltonian (generic function with 1 method)

function harmonic_hamiltonian(N, a; T=Float64)
-0.5 % fd_laplacian(N, a; T) + Diagonal(Vho. (coordinates(N, a; T)))
end

(error_) = 1.57889e-5, error_x1 = 1.03309e-5)

let
Test that I did not mess up
T = Float64
H = harmonic_hamiltonian(N, a; T)
Apow, Xpow = inverse_power_method(H)
error_) = abs(Apow - Eho(0))

X1 = properly_normalise(Xpow)

phivalues = phinorm. (coordinates(N, a))

signfix = sign(X1[1] ./ phivalues[1])

error_X1 = discretized_12_norm(X1 .- signfix .x% phivalues, a)

(5 error_A, error_X1)
end

Float32 or Float64 makes negligible difference here

(b)

We are looking at the following sequence of ground-state energy approximations:
no: the analytical energy of the Morse

u1: the analytical energy of the HO

u2: the min eigval of the discretized HO matrix (e.g. eigen + high accuracy)

u3: the min eigval of the HO with power method finite iterations

14: the min eigval of the HO with power method and Float32

And decompose the total error (assuming these are all the relevant errors) as
po — pig = (po — pi1) + (1 — p2) + (B2 — p3) + (ps — pa)

po = 1.1091796875

uo = let
n=20
X =w /4D
W*x (n+0.5) -wxxx* (n+ 0.5)"2

end

M4 = 1.1249841413149477

p4 = inverse_power_method(harmonic_hamiltonian(N, a; T=Float32)).p

total_error = -0.015804453814947772
total_error = po0 - p4

begin
pyl = Eho(0)

TODO MFH: use BigFloat with eigen for this !
H_exact = harmonic_hamiltonian(N, a; T=Float64)
pu2 = eigen(H_exact).values[1]

p3 = inverse_power_method(H_exact).p
end;

model_error = -0.015820312500000044
model_error = py0 - pi

discretization_error = 1.5788936367000517e-5
discretization_error = pl - p2

algorithm_error = 4.1742165279856636e-12
algorithm_error = p2 - pu3

arithmetic_error = 6.97445110553474e-8
arithmetic_error = p3 - p4

And we verify the triangle inequality of our error estimate:

(0.0158045, 0.0158362)

abs(total_error), abs(model_error) + abs(discretization_error) +
abs(algorithm_error) + abs(arithmetic_error)

true

abs(total_error) < abs(model_error) + abs(discretization_error) +
abs(algorithm_error) + abs(arithmetic_error)

(o)

estimate_abs_errors (generic function with 2 methods)

function estimate_abs_errors(N, tol=1e-3)
H_exact = harmonic_hamiltonian(N, a; T=Float64)
M2 = eigen(H_exact).values[1]

U3 = inverse_power_method(H_exact; tol).p

H_float32 = harmonic_hamiltonian(N, a; T=Float32)
p4 = inverse_power_method(H_float32; tol).p

Dict(
:discretization_error=>abs(pyl - p2),
:algorithm_error=>abs(p2 - p3),
:arithmetic_error=>abs(p3 - p4),
:total_error=>abs(yl - p4),

)

end

100
—— model_error
— discretization_error
107! — algorithm_error
——— arithmetic_error
[10_2 B
(@)
-
—
()
o 103 F
E 10
©
=
o 10°F
Ry
()
107
1078 |
| | | | |

0 500 1000 1500 2000
discretization parameter N

We see that for this problem a meager N=50 points and a high tolerance=1e-2 already undercut the
model error.

Appendix on BigFloat. Option 1: using BigFloat to converge the algorithm+arithmethic error even
further and isolate the discretization error

using GenericLinearAlgebra

H_exact_big =

1000x1000 SymTridiagonal{BigFloat, Vector{BigFloat}}:

10083.0 -5010.0

-5010.0 10082.8 -5010.0
. -5010.0 10082.5 -5010.0
. . -5010.0 10082.3 -5010.0
. . . -5010.0 10082.0
. . . . -5010.0
. -5010.0 . . .
. 10082.3 -5010.0 . .
. -5010.0 10082.5 -5010.0 .
. -5010.0 10082.8 -5010.0
. -5010.0 10083.0

H_exact_big = harmonic_hamiltonian(N, a; T=BigFloat)

res =
(u = 1.12498, u = [1.25945e-14, 2.53446e-14, 3.84066e-14, 5.19393e-14, 6.61059e-14, 8.107

>
res = inverse_power_method(H_exact_big, tol=1e-50, maxiter=1000)

1.124984211059132462453195445877965871929002239077418316826698227268292429092615
res.p

1.578894086753754680455412203412807099776092258168317330177273170757090738498622e-05

abs(pl - res.y) # The isolated discretization error approximated with BigFloat and
high-precision power_method

Option 2 (not recommended): BigFloat + GenericLinearAlgebra.jl. Caution: N=100 still doable in
seconds, but high N might become impractical for this example.

eigen(H_exact_big) # TODO how long does this take?

(0.00155301, 0.00153722)

let

100

harmonic_hamiltonian(N, a; T=BigFloat)
eigen(H).values[1]

bs(pl - p), abs(p - p2)

N
H
y
a

end

