
Sheet 2 solution sketch

Exercise 1
(a) Clearly

such that

as desired.

(b)

Use a standard Gaussian integral.

The normalised function is

phinorm (generic function with 1 method)

begin
using Plots
using LinearAlgebra

end

1
2
3
4

begin
D = 20.0
ω = 2.25
x0 = 0.0

end;

1
2
3
4
5

phinorm(x) = (ω/π)^(1/4) * exp(-ω * x^2 / 2)1

Exercise 2

fd_laplacian (generic function with 1 method)

coordinates (generic function with 1 method)

Vho (generic function with 1 method)

(a)

function fd_laplacian(N, a; T=Float64)
h = 2a / T(N+1)
diagonal = -2ones(T, N) ./ h^2
side_diagonal = ones(T, N-1) ./ h^2
SymTridiagonal(diagonal, side_diagonal)

end

1
2
3
4
5
6

function coordinates(N, a; T=Float64)
x = range(-T(a), T(a), length=N+2)
x[2:end-1] # Discard endpoints with Dirichlet condition

end

1
2
3
4

Vho(x) = 0.5 * ω^2 * (x-x0)^21

begin
a = 5
N = 1000

end;

1
2
3
4

let
c = coordinates(N, a)
p = plot(c, Vho.(c), label="HO", ylims=(-Inf, 5))
p = plot!(p, c, phinorm.(c), label="phi")

end

1
2
3
4
5

(b)

(c)

Eho (generic function with 1 method)

We note (using the Trapezoidal rule and Dirichlet boundary conditions)

discretized_l2_norm (generic function with 1 method)

properly_normalise (generic function with 1 method)

(error_λ = 1.57889e-5, error_X1 = 1.03294e-5)

(d)

Vm (generic function with 1 method)

begin
Hho = -0.5 * fd_laplacian(N, a) + Diagonal(Vho.(coordinates(N, a)))
λ, X = eigen(Hho)

end;

1
2
3
4

Eho(n) = (n + 0.5) * ω1

function discretized_l2_norm(fx, a)
Approximate L^2([-a, a]) norm of f discretized on a uniform grid of N points
within the the interval [-a, a].
N = length(fx)
h = 2a / (N+1)
sqrt(sum(abs2, fx) * h) # = norm(x) * sqrt(h)

end

1
2
3
4
5
6
7

function properly_normalise(fx)
Properly normalise the numerical eigenfunctions as discrete
representations of L^2(R) functions
L2norm = discretized_l2_norm(fx, a)
fx ./ L2norm

end

1
2
3
4
5
6

let
error_λ = abs(λ[1] - Eho(0))

X1 = properly_normalise(X[:, 1])
error_X1 = discretized_l2_norm(X1 - phinorm.(coordinates(N, a)), a)

(; error_λ, error_X1)
end

1
2
3
4
5
6
7
8

begin
Hm = -0.5 * fd_laplacian(N, a) + Diagonal(Vm.(coordinates(N, a)))
λm, Xm = eigen(Hm)

end;

1
2
3
4

https://en.wikipedia.org/wiki/Trapezoidal_rule

 Numerical deviation: 0.015819724588810535Numerical deviation: 0.015819724588810535
Analytical deviation: 0.0158203125Analytical deviation: 0.0158203125

begin
χ = ω / (4D)
n = 0

println("Numerical deviation: ", abs(λm[1] - λ[1]))
println("Analytical deviation: ", ω * χ * (n + 0.5)^2)

end

1
2
3
4
5
6
7

let
X1 = properly_normalise(X[:, 1])
Xm1 = properly_normalise(Xm[:, 1])

c = coordinates(N, a)
plot(c, X1, label="HO")
plot!(c, Xm1, label="Morse")

end

1
2
3
4
5
6
7
8

Exercise 3

inverse_power_method (generic function with 1 method)

(a) We saw before, that the error in the -norm used by our linear algebra and the error in
the -norm that we target are related by a factor of . Therefore we need

9.995003746877732e-6

harmonic_hamiltonian (generic function with 1 method)

(error_λ = 1.57889e-5, error_X1 = 1.03309e-5)

Float32 or Float64 makes negligible difference here

function inverse_power_method(A; u=randn(eltype(A), size(A, 2)),
 tol=1e-6, maxiter=500)

norm_Δu = NaN
Afac = factorize(A) # Factorise A to make A \ x more economical
for i in 1:maxiter

u_prev = u
u = Afac \ u
normalize!(u)
norm_Δu = norm(u - u_prev)
norm_Δu < tol && break

end
μ = dot(u, A, u)
norm_Δu ≥ tol && @warn "Inverse power not converged $norm_Δu"
(; μ, u)

end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Enter cell code...1

begin
h = 2a / (N+1)
tol = sqrt(h) * 1e-4

end

1
2
3
4

function harmonic_hamiltonian(N, a; T=Float64)
-0.5 * fd_laplacian(N, a; T) + Diagonal(Vho.(coordinates(N, a; T)))

end

1
2
3

let
Test that I did not mess up
T = Float64
H = harmonic_hamiltonian(N, a; T)
λpow, Xpow = inverse_power_method(H)
error_λ = abs(λpow - Eho(0))

X1 = properly_normalise(Xpow)
phivalues = phinorm.(coordinates(N, a))
signfix = sign(X1[1] ./ phivalues[1])
error_X1 = discretized_l2_norm(X1 .- signfix .* phivalues, a)

(; error_λ, error_X1)
end

1
2
3
4
5
6
7
8
9
10
11
12
13
14

(b)

We are looking at the following sequence of ground-state energy approximations:

μ0: the analytical energy of the Morse

μ1: the analytical energy of the HO

μ2: the min eigval of the discretized HO matrix (e.g. eigen + high accuracy)

μ3: the min eigval of the HO with power method finite iterations

μ4: the min eigval of the HO with power method and Float32

And decompose the total error (assuming these are all the relevant errors) as

μ0 1.1091796875 =

μ4 1.1249841413149477 =

total_error -0.015804453814947772 =

model_error -0.015820312500000044 =

discretization_error 1.5788936367000517e-5 =

algorithm_error 4.1742165279856636e-12 =

μ0 = let
n = 0
χ = ω / 4D
ω * (n + 0.5) - ω * χ * (n + 0.5)^2

end

1
2
3
4
5

μ4 = inverse_power_method(harmonic_hamiltonian(N, a; T=Float32)).μ1

total_error = μ0 - μ41

begin
μ1 = Eho(0)

TODO MFH: use BigFloat with eigen for this !
H_exact = harmonic_hamiltonian(N, a; T=Float64)
μ2 = eigen(H_exact).values[1]

μ3 = inverse_power_method(H_exact).μ
end;

1
2
3
4
5
6
7
8
9

model_error = μ0 - μ11

discretization_error = μ1 - μ21

algorithm_error = μ2 - μ31

arithmetic_error 6.97445110553474e-8 =

And we verify the triangle inequality of our error estimate:

(0.0158045, 0.0158362)

true

(c)

estimate_abs_errors (generic function with 2 methods)

arithmetic_error = μ3 - μ41

abs(total_error), abs(model_error) + abs(discretization_error) +
abs(algorithm_error) + abs(arithmetic_error)

1

abs(total_error) ≤ abs(model_error) + abs(discretization_error) +
abs(algorithm_error) + abs(arithmetic_error)

1

function estimate_abs_errors(N, tol=1e-3)
H_exact = harmonic_hamiltonian(N, a; T=Float64)
μ2 = eigen(H_exact).values[1]

μ3 = inverse_power_method(H_exact; tol).μ

H_float32 = harmonic_hamiltonian(N, a; T=Float32)
μ4 = inverse_power_method(H_float32; tol).μ

Dict(
:discretization_error=>abs(μ1 - μ2),
:algorithm_error=>abs(μ2 - μ3),
:arithmetic_error=>abs(μ3 - μ4),
:total_error=>abs(μ1 - μ4),

)
end

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

We see that for this problem a meager N=50 points and a high tolerance=1e-2 already undercut the
model error.

Appendix on BigFloat. Option 1: using BigFloat to converge the algorithm+arithmethic error even
further and isolate the discretization error

H_exact_big
1000×1000 SymTridiagonal{BigFloat, Vector{BigFloat}}:
 10083.0 -5010.0 ⋅ ⋅ ⋅ … ⋅ ⋅ ⋅ ⋅
 -5010.0 10082.8 -5010.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ -5010.0 10082.5 -5010.0 ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ -5010.0 10082.3 -5010.0 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ -5010.0 10082.0 ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ -5010.0 … ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋮ ⋱
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ … -5010.0 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ 10082.3 -5010.0 ⋅ ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ -5010.0 10082.5 -5010.0 ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -5010.0 10082.8 -5010.0
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -5010.0 10083.0

 =

res

(μ = 1.12498, u = [1.25945e-14, 2.53446e-14, 3.84066e-14, 5.19393e-14, 6.61059e-14, 8.107
 =

1.124984211059132462453195445877965871929002239077418316826698227268292429092615

using GenericLinearAlgebra1

H_exact_big = harmonic_hamiltonian(N, a; T=BigFloat)1

res = inverse_power_method(H_exact_big, tol=1e-50, maxiter=1000)1

res.μ1

1.578894086753754680455412203412807099776092258168317330177273170757090738498622e-05

Option 2 (not recommended): BigFloat + GenericLinearAlgebra.jl. Caution: N=100 still doable in
seconds, but high N might become impractical for this example.

(0.00155301, 0.00153722)

abs(μ1 - res.μ) # The isolated discretization error approximated with BigFloat and
high-precision power_method

1

eigen(H_exact_big) # TODO how long does this take?1

let
N = 100
H = harmonic_hamiltonian(N, a; T=BigFloat)
μ = eigen(H).values[1]
abs(μ1 - μ), abs(μ - μ2)

end

1
2
3
4
5
6

