

Sheet 2 solution sketch

```
1 begin
2     using Plots
3     using LinearAlgebra
4 end
```

```
1 begin
2     D = 20.0
3     ω = 2.25
4     x₀ = 0.0
5 end;
```

Exercise 1

(a) Clearly

$$\exp\left(-\frac{\omega}{\sqrt{2D}}(x - x_0)\right) = 1 - \frac{\omega}{\sqrt{2D}}(x - x_0) + O((x - x_0)^2)$$

such that

$$\begin{aligned} V^M(x) &= D\left(\frac{\omega}{\sqrt{2D}}(x - x_0)\right)^2 + O((x - x_0)^4) \\ &= \frac{1}{2}\omega^2(x - x_0)^2 + O((x - x_0)^4) \end{aligned}$$

as desired.

(b)

Use a standard Gaussian integral.

The normalised function is

$$\varphi_0^H(x) = \sqrt[4]{\frac{\omega}{\pi}} \exp\left(-\frac{\omega x^2}{2}\right).$$

phinorm (generic function with 1 method)

```
1 phinorm(x) = (ω/π)^(1/4) * exp(-ω * x^2 / 2)
```

Exercise 2

fd_laplacian (generic function with 1 method)

```
1 function fd_laplacian(N, a; T=Float64)
2     h = 2a / T(N+1)
3     diagonal = -2ones(T, N) ./ h^2
4     side_diagonal = ones(T, N-1) ./ h^2
5     SymTridiagonal(diagonal, side_diagonal)
6 end
```

coordinates (generic function with 1 method)

```
1 function coordinates(N, a; T=Float64)
2     x = range(-T(a), T(a), length=N+2)
3     x[2:end-1] # Discard endpoints with Dirichlet condition
4 end
```

Vho (generic function with 1 method)

```
1 Vho(x) = 0.5 * w^2 * (x-x0)^2
```

```
1 begin
2     a = 5
3     N = 1000
4 end;
```

(a)



```
1 let
2     c = coordinates(N, a)
3     p = plot(c, Vho.(c), label="HO", ylims=(-Inf, 5))
4     p = plot!(p, c, phinorm.(c), label="phi")
5 end
```

(b)

```
1 begin
2     Hho = -0.5 * fd_laplacian(N, a) + Diagonal(Vho.(coordinates(N, a)))
3     λ, X = eigen(Hho)
4 end;
```

(c)

Eho (generic function with 1 method)

```
1 Eho(n) = (n + 0.5) * ω
```

We note (using the Trapezoidal rule and Dirichlet boundary conditions)

$$\int_{\mathbb{R}} f(x) dx \approx \int_{\Omega} f(x) dx \approx \sum_{i=1}^N f(x_i)h$$

discretized_l2_norm (generic function with 1 method)

```
1 function discretized_l2_norm(fx, a)
2     # Approximate  $L^2([-a, a])$  norm of f discretized on a uniform grid of N points
3     # within the the interval [-a, a].
4     N = length(fx)
5     h = 2a / (N+1)
6     sqrt(sum(abs2, fx) * h) # = norm(x) * sqrt(h)
7 end
```

properly_normalise (generic function with 1 method)

```
1 function properly_normalise(fx)
2     # Properly normalise the numerical eigenfunctions as discrete
3     # representations of  $L^2(\mathbb{R})$  functions
4     L2norm = discretized_l2_norm(fx, a)
5     fx ./ L2norm
6 end
```

(error_λ = 1.57889e-5, error_X1 = 1.03294e-5)

```
1 let
2     error_λ = abs(λ[1] - Eho(0))
3
4     X1 = properly_normalise(X[:, 1])
5     error_X1 = discretized_l2_norm(X1 - phinorm.(coordinates(N, a)), a)
6
7     (; error_λ, error_X1)
8 end
```

(d)

Vm (generic function with 1 method)

```
1 begin
2     Hm = -0.5 * fd_laplacian(N, a) + Diagonal(Vm.(coordinates(N, a)))
3     λm, Xm = eigen(Hm)
4 end;
```

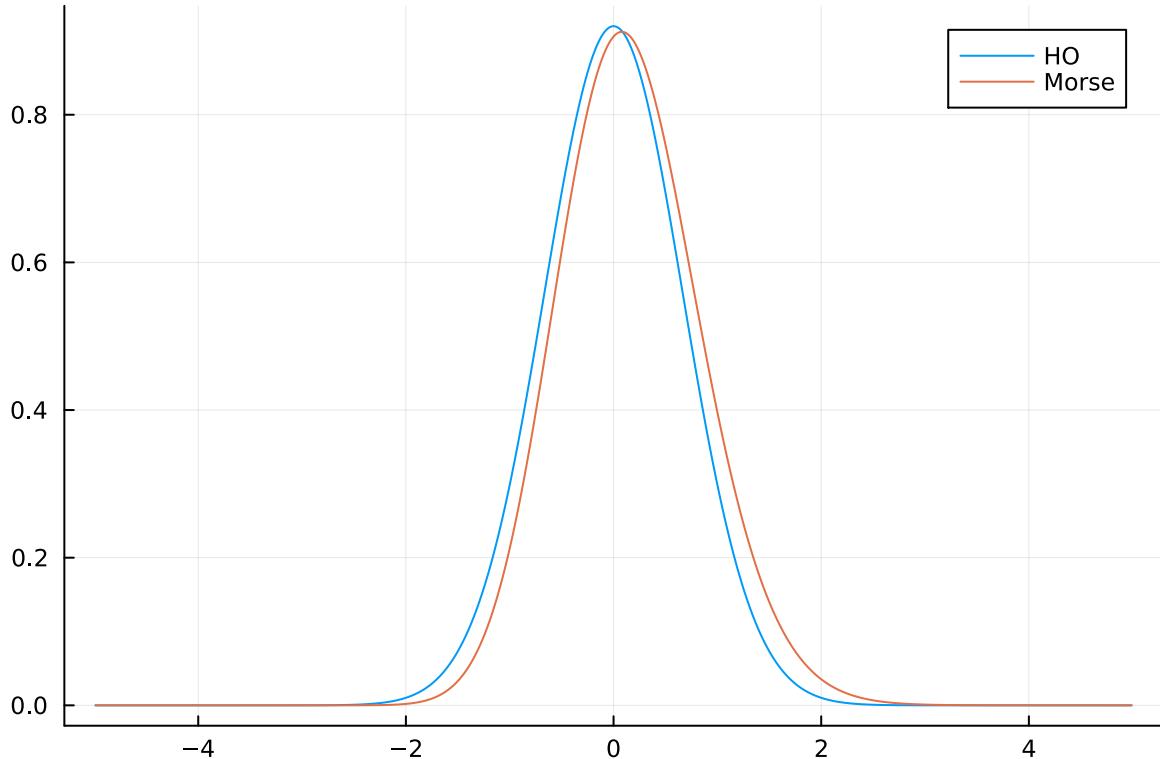
```

1 begin
2    $\chi = \omega / (4D)$ 
3   n = 0
4
5   println("Numerical deviation: ", abs(λm[1] - λ[1]))
6   println("Analytical deviation: ", ω * χ * (n + 0.5)^2)
7 end

```

Numerical deviation: 0.015819724588810535
Analytical deviation: 0.0158203125

?



```

1 let
2   X1 = properly_normalise(X[:, 1])
3   Xm1 = properly_normalise(Xm[:, 1])
4
5   c = coordinates(N, a)
6   plot(c, X1, label="HO")
7   plot!(c, Xm1, label="Morse")
8 end

```

Exercise 3

```
inverse_power_method (generic function with 1 method)
1 function inverse_power_method(A; u=randn(eltype(A), size(A, 2)),
2                               tol=1e-6, maxiter=500)
3     norm_Du = NaN
4     Afac = factorize(A) # Factorise A to make A \ x more economical
5     for i in 1:maxiter
6         u_prev = u
7         u = Afac \ u
8         normalize!(u)
9         norm_Du = norm(u - u_prev)
10        norm_Du < tol && break
11    end
12    μ = dot(u, A, u)
13    norm_Du ≥ tol && @warn "Inverse power not converged $norm_Du"
14    (; μ, u)
15 end
```

```
1 Enter cell code...
```

(a) We saw before, that the error in the $l^2(\mathbb{R}^N)$ -norm used by our linear algebra and the error in the $L^2(\mathbb{R})$ -norm that we target are related by a factor of \sqrt{h} . Therefore we need

```
9.995003746877732e-6
```

```
1 begin
2     h = 2a / (N+1)
3     tol = sqrt(h) * 1e-4
4 end
```

```
harmonic_hamiltonian (generic function with 1 method)
```

```
1 function harmonic_hamiltonian(N, a; T=Float64)
2     -0.5 * fd_laplacian(N, a; T) + Diagonal(Who.(coordinates(N, a; T)))
3 end
```

```
(error_λ = 1.57889e-5, error_X1 = 1.03309e-5)
```

```
1 let
2     # Test that I did not mess up
3     T = Float64
4     H = harmonic_hamiltonian(N, a; T)
5     λpow, Xpow = inverse_power_method(H)
6     error_λ = abs(λpow - Eho(0))
7
8     X1 = properly_normalise(Xpow)
9     phivalues = phinorm.(coordinates(N, a))
10    signfix = sign(X1[1] ./ phivalues[1])
11    error_X1 = discretized_l2_norm(X1 .- signfix .* phivalues, a)
12
13    (; error_λ, error_X1)
14 end
```

Float32 or Float64 makes negligible difference here

(b)

We are looking at the following sequence of ground-state energy approximations:

μ_0 : the analytical energy of the Morse

μ_1 : the analytical energy of the HO

μ_2 : the min eigval of the discretized HO matrix (e.g. eigen + high accuracy)

μ_3 : the min eigval of the HO with power method finite iterations

μ_4 : the min eigval of the HO with power method and Float32

And decompose the total error (assuming these are all the relevant errors) as

$$\mu_0 - \mu_4 = (\mu_0 - \mu_1) + (\mu_1 - \mu_2) + (\mu_2 - \mu_3) + (\mu_3 - \mu_4)$$

```
μ0 = 1.1091796875
```

```
1 μ0 = let
2   n = 0
3   χ = ω / 4D
4   ω * (n + 0.5) - ω * χ * (n + 0.5)^2
5 end
```

```
μ4 = 1.1249841413149477
```

```
1 μ4 = inverse_power_method(harmonic_hamiltonian(N, a; T=Float32)).μ
```

```
total_error = -0.015804453814947772
```

```
1 total_error = μ0 - μ4
```

```
1 begin
2   μ1 = Eho(0)
3
4   # TODO MFH: use BigFloat with eigen for this !
5   H_exact = harmonic_hamiltonian(N, a; T=Float64)
6   μ2 = eigen(H_exact).values[1]
7
8   μ3 = inverse_power_method(H_exact).μ
9 end;
```

```
model_error = -0.015820312500000044
```

```
1 model_error = μ0 - μ1
```

```
discretization_error = 1.5788936367000517e-5
```

```
1 discretization_error = μ1 - μ2
```

```
algorithm_error = 4.1742165279856636e-12
```

```
1 algorithm_error = μ2 - μ3
```

```
arithmetic_error = 6.97445110553474e-8
```

```
1 arithmetic_error = μ3 - μ4
```

And we verify the triangle inequality of our error estimate:

```
(0.0158045, 0.0158362)
```

```
1 abs(total_error), abs(model_error) + abs(discretization_error) +  
abs(algorithm_error) + abs(arithmetic_error)
```

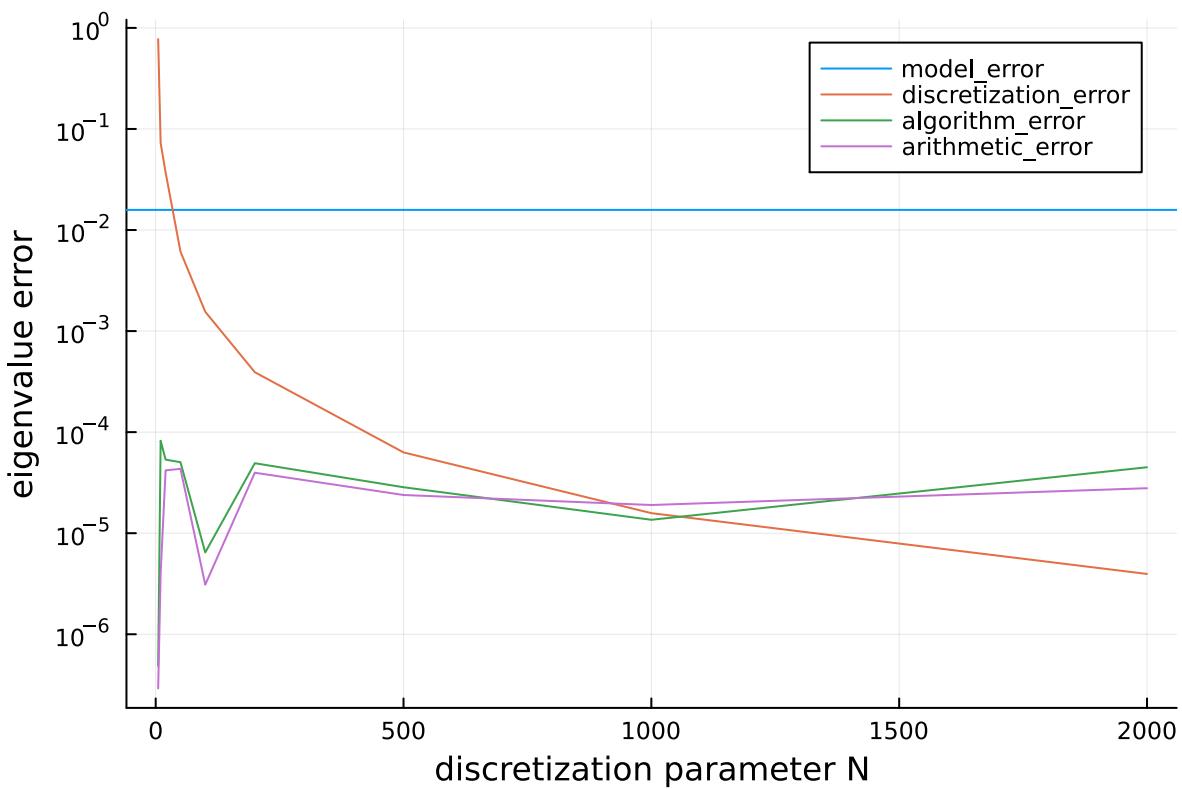
```
true
```

```
1 abs(total_error) ≤ abs(model_error) + abs(discretization_error) +  
abs(algorithm_error) + abs(arithmetic_error)
```

(c)

```
estimate_abs_errors (generic function with 2 methods)
```

```
1 function estimate_abs_errors(N, tol=1e-3)  
2     H_exact = harmonic_hamiltonian(N, a; T=Float64)  
3     μ2 = eigen(H_exact).values[1]  
4  
5     μ3 = inverse_power_method(H_exact; tol).μ  
6  
7     H_float32 = harmonic_hamiltonian(N, a; T=Float32)  
8     μ4 = inverse_power_method(H_float32; tol).μ  
9  
10    Dict(  
11        :discretization_error=>abs(μ1 - μ2),  
12        :algorithm_error=>abs(μ2 - μ3),  
13        :arithmetic_error=>abs(μ3 - μ4),  
14        :total_error=>abs(μ1 - μ4),  
15    )  
16 end
```



We see that for this problem a meager $N=50$ points and a high tolerance=1e-2 already undercut the model error.

Appendix on BigFloat. Option 1: using BigFloat to converge the algorithm+arithmethic error even further and isolate the discretization error

1 using GenericLinearAlgebra

```
1 H_exact_big = harmonic_hamiltonian(N, a; T=BigFloat)
```

res =

($\mu = 1.12498$, $u = [1.25945e-14, 2.53446e-14, 3.84066e-14, 5.19393e-14, 6.61059e-14, 8.107$

```
1 res = inverse_power_method(H_exact_big, tol=1e-50, maxiter=1000)
```

1.124984211059132462453195445877965871929002239077418316826698227268292429092615

1 res.μ

```
1.578894086753754680455412203412807099776092258168317330177273170757090738498622e-05
```

```
1 abs(mu1 - res.mu) # The isolated discretization error approximated with BigFloat and  
high-precision power_method
```

Option 2 (not recommended): BigFloat + GenericLinearAlgebra.jl. Caution: N=100 still doable in seconds, but high N might become impractical for this example.

```
1 # eigen(H_exact_big) # TODO how long does this take?
```

```
(0.00155301, 0.00153722)
```

```
1 let  
2   N = 100  
3   H = harmonic_hamiltonian(N, a; T=BigFloat)  
4   mu = eigen(H).values[1]  
5   abs(mu1 - mu), abs(mu - mu2)  
6 end
```