
Error control in scientific modelling

(with a focus on eigenvalue problems)

Michael F. Herbst, Niklas Schmitz

Mathematics for Materials Modelling (matmat.org), EPFL

12 September 2024

Leading thought

All computation is wrong, only some is useful.

So far so obvious, but to what extend should one care?

Leading thought

All computation is wrong, only some is useful.

So far so obvious, but to what extend should one care?

Or: Why should I devote a full semester to this topic?

Why care ? Let's say your future job involves to ...

Launch a rocket

Build an oil rig

Intercept a missile

Why care ? Let's say your future job involves to ...

Launch a rocket

- June 1996
- Ariane 5 test
- 500 million dollar

Build an oil rig

- August 1991
- Sleipner A offshore platform
- 1 billion dollar

Intercept a missile

- February 1991
- Patriot missile failure
- 28 soldiers killed, 100 injured

Why care ? Let's say your future job involves to ...

Launch a rocket

- June 1996
- Ariane 5 test
- 500 million dollar
- floating point conversion error

Build an oil rig

- August 1991
- Sleipner A offshore platform
- 1 billion dollar
- Too crude discretisation

Intercept a missile

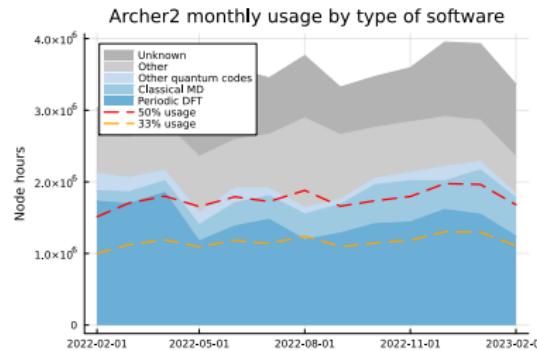
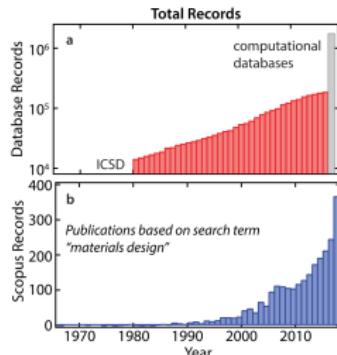
- February 1991
- Patriot missile failure
- 28 soldiers killed, 100 injured
- floating point conversion error

- See website of Douglas N. Arnold for more details:

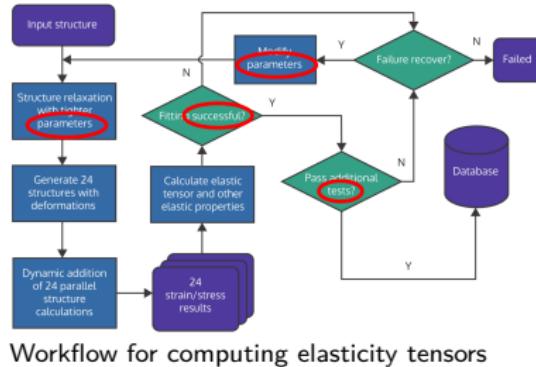
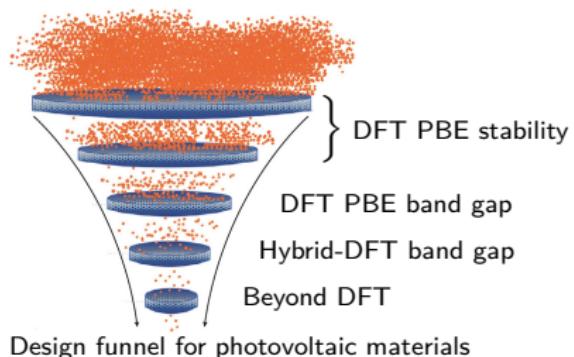
<https://www-users.cse.umn.edu/~arnold/disasters/disasters.html>

Ok, so these are the extreme cases, right?

Brainstorming: Sources of error in scientific simulations



Ok, so these are the extreme cases, right?

Brainstorming: Sources of error in scientific simulations



- Model
- Numerics (discretisation / basis set, algorithm, arithmetic)
- Implementation
- Hardware (CPUs have bugs!)

Motivation in the ~~Mat~~ group

- 21st century challenges:
 - Renewable energy, green chemistry, health care ...
- Current solutions limited by properties of available materials
⇒ Innovation driven by **discovering new materials**
- Crucial tool: **Computational materials discovery**
 - Systematic simulations on $\simeq 10^4 - 10^6$ compounds
 - Complemented by data-driven approaches
 - **Noteworthy share** of world's supercomputing resources

Sketch of high-throughput workflows

- Many parameters to choose (algorithms, tolerances, models)
 - Elaborate heuristics: Failure rate $\simeq 1\%$
 - Still: Thousands of failed calculations
- ⇒ Wasted resources & increased human attention (limits throughput)
- Goal in ~~Mat~~ group: Self-adapting black-box algorithms
 - Transform empirical wisdom to built-in convergence guarantees
 - Requires: Uncertainty quantification & error estimation
- ⇒ Understand where and how to spend efforts best

Broader vision: Robust & error-controlled simulations

- Error control = **Track simulation uncertainties**:
 - Self-adapting simulations with mathematical guarantees
 - Integrate with error propagation efforts for surrogates¹

⇒ Byproducts: Data quality control, accelerated design
- Error control = **Learn missing physics**:
 - Data-enhanced models, active learning
 - Integration with experiment (autonomous discovery)

⇒ Exploit high-fidelity experimental, beyond-DFT data
- Error control = **Leverage inexactness**:
 - Error balancing: Optimal adaptive parameter selection
 - Randomised methods, selective precision (16-bit, FPGA)
 - Multi-fidelity approaches (reduced basis, surrogates)

⇒ Understand **where and how** to spend efforts best

⇒ Realm of mathematical research

¹F. Musil, A. Grisafi *et. al.* *J. Chem. Theo. Comput.* **15**, 2 (2019).

Questions ?

Questions ?

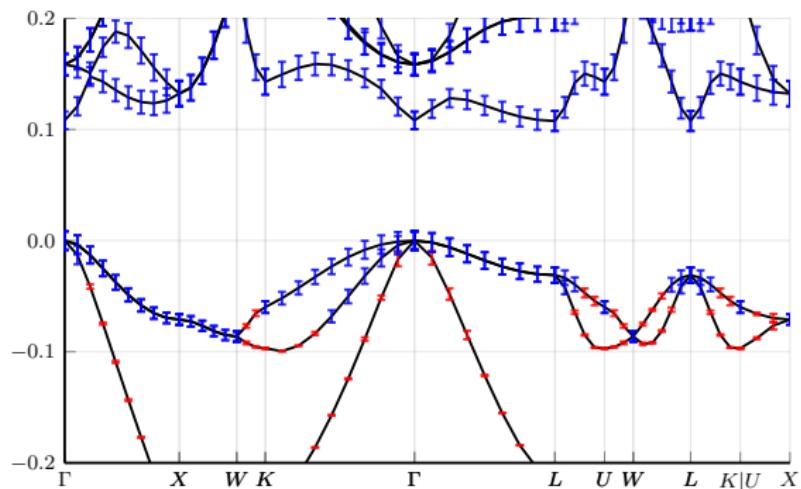
Focus of the course: Eigenvalue problems

- Eigenvalue problems are ubiquitous, e.g.
- Vibrations of structures
 - Tacoma narrows bridge collapse 1940
 - London millennium bridge construction flaw
- Quantum states (details follow)
- Tight relation to linear problems & PDEs
 - Convergence analysis (CG, iterative methods)
 - Quantum mechanics
 - Close relation to solving PDEs (details follow)

Structure of the course

- Moodle: <https://go.epfl.ch/error-control>
- Lectures split into two rough segments
 - First half: Matrix eigenvalue problems & floating-point error
 - Second half: Operator theory & discretisation error
- Attendance of exercises is **expected** (introduces new material!)
 - Discussion follows weekly exercise sheet
- Evaluation:
 - Marked semester project (1/3 of grade)
 - Project interview & oral exam (2/3 of grade)
 - Project done in **teams of 2 – 3 students.**
 - Interdisciplinary teams are highly recommended
- Working on the projects **requires substantial time outside class**
⇒ We will setup **survey** in week 2 to **aid** formation of groups

Details on the exercises & problem sheets


- One problem sheet per week from moodle:
<https://go.epfl.ch/error-control>
- Handing in of exercise sheets is optional
 - Submission can only be done in the project group
 - Tutors give feedback on submitted sheets
- Initial exercises classes will be denser
- Later exercise classes provide time to work on the project

Details on the projects

- Each project is essentially a larger problem sheet
- One joint solution is submitted by each group
- Responsibilities should be shared equally.
- During the oral exam (about half the time)
 - Presentation of the problem sheet by student
 - Targeted follow-up questions
- Evaluation criteria:
 - See document on moodle
- Each group member obtains an **individual** mark.

Semester project

- Topic: **Band structures with guaranteed error bars**
 - Handout: 21st October (tentative)
 - Duration: 2 months, i.e. projected deadline: **20th December**

- Let's have a brief look at last year's projects . . .

Questions ?

Questions ?

Your background & prior knowledge

Your background and prior knowledge

Vector spaces

Which of the following things is a **vector space** over \mathbb{R}

- ① $\mathbb{R}^n = \{(x_1, \dots, x_n)^T, x_i \in \mathbb{R}\}$
- ② $\mathcal{F}(D, \mathbb{R}) = \{f : D \rightarrow \mathbb{R}\}$, the set of all functions from D to \mathbb{R} .
- ③ $\mathbb{R}^{n \times n}$: The set of all matrices

Vector spaces

Which of the following things is a **vector space** over \mathbb{R}

- ① $\mathbb{R}^n = \{(x_1, \dots, x_n)^T, x_i \in \mathbb{R}\}$
- ② $\mathcal{F}(D, \mathbb{R}) = \{f : D \rightarrow \mathbb{R}\}$, the set of all functions from D to \mathbb{R} .
- ③ $\mathbb{R}^{n \times n}$: The set of all matrices

Answer: All of them!

Inner products

Given vectors x, y, z from an \mathbb{C} -vector space V . What makes an inner product?

Inner products

Given vectors x, y, z from an \mathbb{C} -vector space V . What makes an inner product?

- $\langle x, x \rangle \geq 0$
- $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$

Examples:

- $\langle x, y \rangle = x^H y = \overline{x^T} y = \sum_{i=1}^n \overline{x_i} y_i$ for vectors $x, y \in \mathbb{C}^n$
- $\langle A, B \rangle_F = A^H B = \text{tr}(A^H B)$ for matrices $A, B \in \mathbb{C}^{n \times n}$

Norms

Which of these statements is true:

- ① If $\langle x, y \rangle$ is an inner product, then $\|x\| = \sqrt{\langle x, x \rangle}$ is a norm
- ② If $\langle x, y \rangle$ is an inner product and $\|x\| = \sqrt{\langle x, x \rangle}$, then

$$\langle x, y \rangle < \|x\| \|y\|$$

- ③ If $\|x\|$ is a norm, there exists an inner product $\langle x, y \rangle$, such that $\|x\| = \sqrt{\langle x, x \rangle}$
- ④ Every norm satisfies the triangle inequality

$$\|x + y\| \leq \|x\| + \|y\|$$

Norms

Which of these statements is true:

- ① If $\langle x, y \rangle$ is an inner product, then $\|x\| = \sqrt{\langle x, x \rangle}$ is a norm
- ② If $\langle x, y \rangle$ is an inner product and $\|x\| = \sqrt{\langle x, x \rangle}$, then

$$\langle x, y \rangle < \|x\| \|y\|$$

- ③ If $\|x\|$ is a norm, there exists an inner product $\langle x, y \rangle$, such that $\|x\| = \sqrt{\langle x, x \rangle}$
- ④ Every norm satisfies the triangle inequality

$$\|x + y\| \leq \|x\| + \|y\|$$

Answer: 1 and 4 are true, 2 and 3 are false. 2 is almost true the correct version is

$$\langle x, y \rangle \leq \|x\| \|y\| \quad \text{Cauchy-Schwarz}$$

Diagonalisation algorithms

Which iterative diagonalisation algorithms do you know?

Who has studied before:

Diagonalisation algorithms

Which iterative diagonalisation algorithms do you know?

Who has studied before:

- Power method

Diagonalisation algorithms

Which iterative diagonalisation algorithms do you know?

Who has studied before:

- Power method
- Inverse power method

Diagonalisation algorithms

Which iterative diagonalisation algorithms do you know?

Who has studied before:

- Power method
- Inverse power method
- Rayleigh-quotient iteration

Diagonalisation algorithms

Which iterative diagonalisation algorithms do you know?

Who has studied before:

- Power method
- Inverse power method
- Rayleigh-quotient iteration
- LOPCG

I need a volunteer

- **Your job:** Take pictures of blackboards