

Exercise 1. Different homotopy types that have the same homotopy groups.

Define $\mathbb{R}P^\infty$ as the union $\bigcup_{n \geq 0} \mathbb{R}P^n$ where the inclusion $\mathbb{R}P^n \hookrightarrow \mathbb{R}P^{n+1}$ is induced by the inclusion $S^n \hookrightarrow S^{n+1}$ given by $(x_0, \dots, x_n) \mapsto (x_0, \dots, x_n, 0)$.

Show that $\mathbb{R}P^2$ and $S^2 \times \mathbb{R}P^\infty$ have the same homotopy groups, but are not homotopy equivalent.

Proof. Note that since S^2 is the universal cover of $\mathbb{R}P^2$, they have the same homotopy groups in degree $k \geq 2$. By the cellular approximation theorem, every map $S^k \rightarrow \mathbb{R}P^\infty$ factors, up to (based) homotopy, through the k -skeleton $\mathbb{R}P^k \subseteq \mathbb{R}P^{k+1} \subseteq \mathbb{R}P^\infty$. For $k \geq 2$, $\pi_k(\mathbb{R}P^{k+1}) \cong \pi_k(S^{k+1}) = 0$, which shows that $\pi_k(\mathbb{R}P^\infty) = 0$ for all $k \geq 2$. By the same argument, we have a surjective map $\mathbb{Z}/2 \cong \pi_1(\mathbb{R}P^2) \rightarrow \pi_1(\mathbb{R}P^\infty)$. Let $f : S^1 \rightarrow \mathbb{R}P^2 \subseteq \mathbb{R}P^\infty$ be a generator. If $H : S^1 \times I \rightarrow \mathbb{R}P^\infty$ was nullhomotopy of f , the homotopy would factor through $\mathbb{R}P^2$, a contradiction. Hence $\pi_1(\mathbb{R}P^\infty) \cong \mathbb{Z}/2$.

By the Künneth formula, or by computing cellular homology, they have a different second homology group. □

Exercise 2. Wedge of cofibrations is a cofibration.

If $i : A \rightarrow X$ and $j : B \rightarrow Y$ are cofibrations of pointed spaces, show that $i \vee j : A \vee B \rightarrow X \vee Y$ is a cofibration.

Proof. Suppose that we have a homotopy $H : (A \vee B) \times I \rightarrow Z$, and a map $f : X \vee Y \rightarrow Z$ extending such that $f \circ (i \vee j) = H_0$. Restricting the homotopy to $H_A = H|_{A \times I}$ and $H_B := H|_{B \times I}$, and extending them to $H_X : X \times I \rightarrow Z$ and $H_Y : Y \times I \rightarrow Z$ we obtain a homotopy $(H_X \vee H_Y) : (X \times I) \vee (Y \times I) \rightarrow Z$ (since $H_X(a_0, 0) = H_A(a_0, 0) = H(a_0, 0) = H(b_0, 0) = H_Y(b_0, 0)$). But since the homotopies are pointed, meaning that $H_X(a_0, t) = H_A(a_0, t) = H(a_0, t) = H_Y(b_0, t)$ for all $t \in I$, the homotopy factors through $(X \vee Y) \times I$ as desired. □

◊**Exercise 3. Making the identity laws of an H -space strict.**

1. If X and Y are finite CW complexes, show that $X \vee Y \rightarrow X \times Y$ is a cofibration.

Remark: The conclusion still holds when X and Y are only assumed to be well-pointed.

2. Let (X, x) be an H -space and a pointed CW complex. Show that the multiplication $\mu : X \times X \rightarrow X$ is homotopic to a map m for which the base point is a strict identity.
3. Apply this strictification to ΩX (no explicit formula is expected).
4. There is another more explicit way to do this. Define the Moore loop space $\Omega_M X$ as the subspace of $\text{map}_*([0, \infty), X) \times [0, \infty[$ consisting of those pairs (α, t) where α is a path starting at x_0 and t is such that $\alpha(s) = x_0$ for all $s \geq t$, i.e. α becomes constant at x_0 after some time t . Show that $\Omega X \simeq \Omega_M X$, and define a product on $\Omega_M(X)$ such that the identity law is strict.

Remark. The composition law you defined is also strictly associative.

Proof. 1. $X \vee Y \rightarrow X \times Y$ is the inclusion of a subcomplex, hence is a cofibration by the lecture. For well pointed spaces, the two points inclusion $i : 1 \rightarrow X$ and $j : 1 \rightarrow Y$ are cofibrations, hence their pushout-product $i \square j : X \vee Y \rightarrow X \times Y$ is a cofibration.

2. By the strictification lemma to the cofibration $X \vee X \rightarrow X \times X$ and the collapse map $X \vee X \rightarrow X$.
3. If X is a finite CW-complex, then ΩX is a loop space by a theorem of Milnor [Mil59]. If X is only well pointed, then ΩX is also well pointed [Str11, §5.6]. The space ΩX is an H-group, in particular an H -space. Hence we know there exists a strictly unital composition $\Omega X \times \Omega X \rightarrow \Omega X$.
4. Define $\varphi : \Omega X \rightarrow \Omega_M X$ by $\alpha \mapsto (\alpha, 1)$ where we extended α by the constant map on $[1, \infty[$. Define $\psi : \Omega_M X \rightarrow \Omega X$ by $(\alpha, t) \mapsto \alpha(t \cdot -)$. Then ψ is a strict left inverse of φ , while $\varphi \cdot \psi \simeq 1_{\Omega_M X}$ by the homotopy $H : \Omega_M X \times I \rightarrow \Omega_M X$ defined by

$$((\alpha, t), s) \mapsto \left(\alpha((t(1-s) + s) \cdot -), ts + (1-s) \right)$$

Define a concatenation $\Omega_M X \times \Omega_M X \rightarrow \Omega_M X$ by setting $(\alpha, t) * (\beta, t') = (\alpha * \beta, t + t')$ where

$$\alpha * \beta(s) = \begin{cases} \alpha(s) & s \leq t \\ \beta(s-t) & s \geq t. \end{cases}$$

This operation is clearly strictly unital and strictly associative, where the unit is $(c_{x_0}, 0) \in \Omega_M X$. □

◊**Exercise 4. Cofibrations and the extension problem.** Let $i : A \hookrightarrow X$ be a cofibration, and $f \simeq g : A \rightarrow Z$ two homotopic maps.

1. Show that f extends to a map $X \rightarrow Z$ if and only if g does.
2. Let $\varphi : Z \xrightarrow{\sim} Z'$ be a homotopy equivalence. Show that f extends to a map $X \rightarrow Z$ if and only if $\varphi \circ f$ extends to a map $X \rightarrow Z'$.
3. Let $f_0, f_1 : X \rightarrow Z$ be maps that agree on A , ie. $f_0|_A = f_1|_A$. Show that if $\varphi \circ f_0 \simeq \varphi \circ f_1$ rel. A , then $f_0 \simeq f_1$ rel. A .

Proof. 1. It's a direct application of the HEP.

2. Suppose that $\tilde{f} : A \rightarrow Z$ extends to $\tilde{f} : X \rightarrow Z$, then $\varphi \cdot \tilde{f}$ is an extension of $\varphi \cdot f$. Now suppose that \tilde{f} is an extension of $\varphi \cdot f$. Then $\psi \cdot \tilde{f}$ is an extension of $\psi \cdot \varphi \cdot f$, where ψ is a homotopy inverse of φ . Since $\psi \cdot \varphi \cdot f \simeq f$, there exists an extension of f by the first point.

3. Consider the two cofibrations $\{0, 1\} \hookrightarrow I$ and $A \hookrightarrow X$. Their pushout product $A \times I \cup X \times \{0, 1\} \hookrightarrow X \times I$ is a cofibration by the lectures. We apply the second point to this cofibration. Consider $H : A \times I \cup X \times \{0, 1\} \rightarrow Z$ to be constant homotopy at $f_0|_A = f_1|_A$ on $A \times I$, and $f_0 \sqcup f_2$ on $X \times \{0, 1\}$. By assumption $\varphi \circ H$ extends to a map from $X \times I$, hence the second point tells us that H extends to a map $\tilde{H} : X \times I \rightarrow Z$. This new homotopy is a homotopy $f_0 \simeq_{rel A} f_1$ as desired. □

Exercise 5. Cofiber sequence induced by a composable pair.

Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be pointed maps. Write $C(f)$ for the mapping cone of a map f .

1. Define canonical maps $\alpha : C(f) \rightarrow C(g \circ f)$ and $\beta : C(g \circ f) \rightarrow C(g)$.
2. Show that $C(f) \xrightarrow{\alpha} C(g \circ f) \xrightarrow{\beta} C(g)$ is a cofiber sequence, ie. that β is the mapping cone of the map α .

Proof. We give a categorical proof. One could also write down formulas.

1. Consider the following diagram:

$$\begin{array}{ccccc}
 X & \xrightarrow{f} & Y & \xrightarrow{g} & Z \\
 \downarrow i_0 & \lrcorner & \downarrow & \lrcorner & \downarrow \\
 CX & \longrightarrow & C(f) & \xrightarrow{\alpha} & C(f \circ g) \\
 & \downarrow j & \lrcorner & & \downarrow \beta \\
 CY & \longrightarrow & & & C(g)
 \end{array}$$

By definition, the space $C(f)$ is the pushout of the left square, while $C(g \circ f)$ is the pushout of the horizontal rectangle. Hence the top right square is also a pushout and α is the canonical map. Now consider the universal map $j : C(f) \rightarrow CY$ induced by the maps $Cf : CX \rightarrow CY$ and $Y \rightarrow CY$, and construct the pushout of the bottom square. It follows that the vertical rectangle is a pushout, hence we obtain $C(g)$ by definition, where β is the canonical map.

2. To come! □

◊ indicates the weekly assignments.