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Exercise 1. Different homotopy types that have the same homotopy groups.
Define RP∞ as the union

⋃
n≥0RP n where the inclusion RP n ↪→ RP n+1 is induced by the inclusion

Sn ↪→ Sn+1 given by (x0, · · · xn) 7→ (x0, · · ·xn, 0).

Show that RP 2 and S2 × RP∞ have the same homotopy groups, but are not homotopy equiv-
alent.

Proof. Note that since S2 is the universal cover of RP 2, they have the same homotopy groups in
degree k ≥ 2. By the cellular approximation theorem, every map Sk → RP∞ factors, up to (based)
homotopy, through the k-skeleton RP k ⊆ RP k+1 ⊆ RP∞. For k ≥ 2, πk(RP k+1) ∼= πk(S

k+1) = 0,
which shows that πk(RP∞) = 0 for all k ≥ 2. By the same argument, we have a surjective map
Z/2 ∼= π1(RP 2) → π1(RP∞). Let f : S1 → RP 2 ⊆ RP∞ be a generator. If H : S1× I → RP∞ was
nullhomotopy of f , the homotopy would factor through RP 2, a contradiction. Hence π1(RP∞) ∼=
Z/2.
By the Künneth formula, or by computing cellular homology, they have a different second homology
group.

Exercise 2. Wedge of cofibrations is a cofibration.
If i : A→ X and j : B → Y are cofibrations of pointed spaces, show that i∨ j : A∨B → X ∨ Y is
a cofibration.

Proof. Suppose that we have a homotopy H : (A ∨ B) × I → Z, and a map f : X ∨ Y → Z
extending such that f ◦ (i∨ j) = H0. Restricting the homotopy to HA = H|A×I and HB := H|B×I ,
and extending them to HX : X × I → Z and HY : Y × I → Z we obtain a homotopy (HX ∨HY ) :
(X × I) ∨ (Y × I) → Z (since HX(a0, 0) = HA(a0, 0) = H(a0, 0) = H(b0, 0) = HY (b0, 0) ). But
since the homotopies are pointed, meaning that HX(a0, t) = HA(a0, t) = H(a0, t) = HY (b0, t) for
all t ∈ I, the homotopy factors through (X ∨ Y )× I as desired.

♢Exercise 3. Making the identity laws of an H-space strict.

1. If X and Y are finite CW complexes, show that X ∨ Y → X × Y is a cofibration.
Remark: The conclusion still holds when X and Y are only assumed to be well-pointed.

2. Let (X, x) be an H-space and a pointed CW complex. Show that the multiplication µ :
X ×X → X is homotopic to a map m for which the base point is a strict identity.

3. Apply this strictification to ΩX (no explicit formula is expected).

4. There is another more explicit way to do this. Define the Moore loop space ΩMX as the
subspace of map∗([0,∞), X)× [0,∞[ consisting of those pairs (α, t) where α is a path starting
at x0 and t is such that α(s) = x0 for all s ≥ t, i.e. α becomes constant at x0 after some
time t. Show that ΩX ≃ ΩMX, and define a product on ΩM(X) such that the identity law
is strict.



Remark. The composition law you defined is also strictly associative.

Proof. 1. X ∨Y → X×Y is the inclusion of a subcomplex, hence is a cofibration by the lecture.
For well pointed spaces, the two points inclusion i : 1 → X and j : 1 → Y are cofibrations,
hence their pushout-product i□j : X ∨ Y → X × Y is a cofibration.

2. By the strictification lemma to the cofibration X ∨ X → X × X and the collapse map
X ∨X → X.

3. If X is a finite CW-complex, then ΩX is a loop spaace by a theorem of Milnor [Mil59]. If
X is only well pointed, then ΩX is also well pointed [Str11, §5.6]. The space ΩX is an
H-group, in particular an H-space. Hence we know there exists a strictly unital composition
ΩX × ΩX → ΩX.

4. Define φ : ΩX → ΩMX by α 7→ (α, 1) where we extended α by the constant map on [1,∞[.
Define ψ : ΩMX → ΩX by (α, t) 7→ α(t · −). Then ψ is a strict left inverse of φ, while
φ · ψ ≃ 1ΩMX by the homotopy H : ΩMX × I → ΩMX defined by

((α, t), s) 7→
(
α
(
(t(1− s) + s) · −

)
, ts+ (1− s)

)
Define a concatenation ΩMX ×ΩMX → ΩMX by setting (α, t) ∗ (β, t′) = (α ∗ β, t+ t′) where

α ∗ β(s) =

{
α(s) s ≤ t

β(s− t) s ≥ t.

This operation is clearly strictly unital and strictly associative, where the unit is (cx0 , 0) ∈
ΩMX.

♢Exercise 4. Cofibrations and the extension problem. Let i : A ↪→ X be a cofibration, and
f ≃ g : A→ Z two homotopic maps.

1. Show that f extends to a map X → Z if and only if g does.

2. Let φ : Z
∼−→ Z ′ be a homotopy equivalence. Show that f extends to a map X → Z if and

only if φ ◦ f extends to a map X → Z ′.

3. Let f0, f1 : X → Z be maps that agree on A, ie. f0|A = f1|A. Show that if φ ◦ f0 ≃ φ ◦ f1 rel.
A, then f0 ≃ f1 rel. A.

Proof. 1. It’s a direct application of the HEP.

2. Suppose that f : A → Z extends to f̃ : X → Z, then φ · f̃ is an extension of φ · f . Now
suppose that ˜φ · f is an extension of φ · f . Then ψ · ˜φ · f is an extension of ψ · φ · f , where
ψ is a homotopy inverse of φ. Since ψ · φ · f ≃ f , there exists an extension of f by the first
point.



3. Consider the two cofibrations {0, 1} ↪→ I and A ↪→ X. Their pushout product A× I ∪X ×
{0, 1} ↪→ X×I is a cofibration by the lectures. We apply the second point to this cofibration.
Consider H : A× I ∪X × {0, 1} → Z to be constant homotopy at f0|A = f1|A on A× I, and
f0 ⊔ f2 on X × {0, 1}. By assumption φ ◦H extends to a map from X × I, hence the second
point tells us that H extends to a map H̃ : X × I → Z. This new homotopy is a homotopy
f0 ≃rel A f1 as desired.

Exercise 5. Cofiber sequence induced by a composable pair.
Let f : X → Y and g : Y → Z be pointed maps. Write C(f) for the mapping cone of a map f .

1. Define canonical maps α : C(f) → C(g ◦ f) and β : C(g ◦ f) → C(g).

2. Show that C(f)
α−→ C(g ◦ f) β−→ C(g) is a cofiber sequence, ie. that β is the mapping cone of

the map α.

Proof. We give a categorical proof. One could also write down formulas.

1. Consider the following diagram:

X Y Z

CX C(f) C(f ◦ g)

CY C(g)

f

i0

g

⌟

α

j

⌟

β

⌟

By definition, the space C(f) is the pushout of the left square, while C(g◦f) is the pushout of
the horizontal rectangle. Hence the top right square is also a pushout and α is the canonical
map. Now consider the universal map j : C(f) → CY induced by the maps Cf : CX → CY
and Y → CY , and construct the pushout of the bottom square. It follows that the vertical
rectangle is a pushout, hence we obtain C(g) by definition, where β is the canonical map.

2. To come!

♢ indicates the weekly assignments.


