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Exercise 1. Different homotopy types that have the same homotopy groups.
Define RP> as the union (J,,., RP" where the inclusion RP" — RP™! is induced by the inclusion
S — S" given by (g, x,) — (20, Tn, 0).

Show that RP? and S? x RP> have the same homotopy groups, but are not homotopy equiv-
alent.

Proof. Note that since S? is the universal cover of RP?, they have the same homotopy groups in
degree k > 2. By the cellular approximation theorem, every map S* — RP> factors, up to (based)
homotopy, through the k-skeleton RP* C RPk1 C RP>. For k > 2, m(RPH1) = 1 (S = 0,
which shows that 7 (RP>) = 0 for all £ > 2. By the same argument, we have a surjective map
Z)2 = 1 (RP?) — 7 (RP>). Let f: S' — RP? C RP™ be a generator. If H : S' x [ — RP> was
nullhomotopy of f, the homotopy would factor through RP? a contradiction. Hence m(RP>) &
7)2.
By the Kiinneth formula, or by computing cellular homology, they have a different second homology
group.

O

Exercise 2. Wedge of cofibrations is a cofibration.
Ifi:A— X and j: B — Y are cofibrations of pointed spaces, show that iV j: AVB — X VY is
a cofibration.

Proof. Suppose that we have a homotopy H : (AV B) xI — Z, and amap f: X VY — Z
extending such that fo (iV j) = Hy. Restricting the homotopy to Hy = H|ax; and Hp := H|py,
and extending them to Hx : X x [ — Z and Hy : Y x I — Z we obtain a homotopy (Hx V Hy) :
(X xI)V (Y xI) — Z (since Hx(ap,0) = Hx(ao,0) = H(ap,0) = H(by,0) = Hy(by,0) ). But
since the homotopies are pointed, meaning that Hx(ag,t) = Ha(ag,t) = H(ap,t) = Hy(bo,t) for
all t € I, the homotopy factors through (X VY') x I as desired. O

QOExercise 3. Making the identity laws of an H-space strict.

1. If X and Y are finite CW complexes, show that X VY — X X Y is a cofibration.
Remark: The conclusion still holds when X and Y are only assumed to be well-pointed.

2. Let (X,z) be an H-space and a pointed CW complex. Show that the multiplication p :
X x X — X is homotopic to a map m for which the base point is a strict identity.

3. Apply this strictification to QX (no explicit formula is expected).

4. There is another more explicit way to do this. Define the Moore loop space €,, X as the
subspace of map,([0,00), X) x [0, 00| consisting of those pairs («a, t) where « is a path starting
at xo and ¢ is such that a(s) = xy for all s > ¢, i.e. « becomes constant at xy after some
time ¢. Show that QX ~ QX and define a product on €,,(X) such that the identity law
is strict.



Remark. The composition law you defined is also strictly associative.

Proof. 1. XVY — X xY is the inclusion of a subcomplex, hence is a cofibration by the lecture.

For well pointed spaces, the two points inclusion ¢ : 1 — X and j : 1 — Y are cofibrations,
hence their pushout-product :[1j : X VY — X X Y is a cofibration.

. By the strictification lemma to the cofibration X V X — X x X and the collapse map

XVX—=X.

If X is a finite CW-complex, then QX is a loop spaace by a theorem of Milnor [Mil59]. If
X is only well pointed, then QX is also well pointed [Strll, §5.6]. The space QX is an

H-group, in particular an H-space. Hence we know there exists a strictly unital composition
QX x QX — QX.

Define ¢ : QX — QX by a+— (a,1) where we extended « by the constant map on [1, col.
Define ¢ : QX — QX by (a,t) — «at - —). Then ¢ is a strict left inverse of p, while
¢ ~1g,,x by the homotopy H : QX x I — QX defined by

(a,t), ) > (a((t(l —8)+ ) =) ts+ (1— s))

Define a concatenation Q3 X x QX — QX by setting (o, t) * (8,t) = (a5, t +t') where

~Ja(s) s<t
a*ﬁ(s)—{ﬁ(s—t) s>t

This operation is clearly strictly unital and strictly associative, where the unit is (cg,,0) €
QuX.
O

OExercise 4. Cofibrations and the extension problem. Let i : A < X be a cofibration, and
f~g:A— Z two homotopic maps.

1.
2.

Show that f extends to a map X — Z if and only if g does.

Let ¢ : Z = Z' be a homotopy equivalence. Show that f extends to a map X — Z if and
only if p o f extends to a map X — Z'.

Let fo, f1 : X — Z be maps that agree on A, ie. fo|a = fi]|a. Show that if p o fy ~ ¢ o f rel.
A, then fy ~ fi rel. A.

Proof. 1. It’s a direct application of the HEP.

2.

Suppose that f : A — Z extends to f:X =2z then ¢ - f is an extension of ¢ - f. Now
suppose that ¢ - f is an extension of ¢ - f. Then ¥ - ¢ - f is an extension of ¢ - ¢ - f, where
1 is a homotopy inverse of . Since ¥ - ¢ - f =~ f, there exists an extension of f by the first
point.



3. Consider the two cofibrations {0,1} < I and A < X. Their pushout product A x I U X x
{0,1} — X x I is a cofibration by the lectures. We apply the second point to this cofibration.
Consider H : Ax TUX x {0,1} — Z to be constant homotopy at fo|a = fi|a on A x I, and
fol fo on X x {0,1}. By assumption ¢ o H extends to a map from X x I, hence the second
point tells us that H extends to a map H : X x I — Z. This new homotopy is a homotopy
fo ~rer 4 f1 as desired.

O

Exercise 5. Cofiber sequence induced by a composable pair.
Let f: X =Y and g: Y — Z be pointed maps. Write C(f) for the mapping cone of a map f.

1. Define canonical maps a: C(f) — C(go f) and 5 : C(go f) = C(g).

2. Show that C(f) = C(go f) LA C(g) is a cofiber sequence, ie. that  is the mapping cone of
the map a.

Proof. We give a categorical proof. One could also write down formulas.

1. Consider the following diagram:

x It 5y g
of ] l
CX — C(f C(fog)

b

Y —— C(g

By definition, the space C(f) is the pushout of the left square, while C'(go f) is the pushout of
the horizontal rectangle. Hence the top right square is also a pushout and « is the canonical
map. Now consider the universal map j : C'(f) — CY induced by the maps C'f : CX — CY
and Y — (Y, and construct the pushout of the bottom square. It follows that the vertical
rectangle is a pushout, hence we obtain C(g) by definition, where £ is the canonical map.

2. To come!

¢ indicates the weekly assignments.



