
EPFL - Autumn semester 2022-2023 J. Scherer
Homotopy theory Sheet 7
Mathematics 1st November 2022

Exercise 1. A map homotopic to the identity.
Let X be a pointed space. Define a map f : ΣX → ΣX by the formula (x, t) 7→ (x,min(2t, 1)).
Show that f ≃ idΣX is homotopic to the identity.

Proof. A homotopy f ≃ idΣX is given by fs : (x, t) 7→ (x,min(t(1 + s), 1).

♢Exercise 2. Pushout squares preserve quotients.
Recall that an embedding is an injective map j : A→ X which induces a homeomorphism A ∼= j(A)
onto its image. Suppose the left square in the following diagram is a pushout with j an embedding.

A X X/A

B Y Y/B

j

f F

p

F

J q

1. Show that J is also an embedding.

2. Define the induced map F : X/A→ B/Y on the quotients.

3. Show that F is a homeomorphism.

Remark. If we work with CW-complexes, the cofibers X/A and Y/B are called homotopy cofibers
of j and J respectively, and the pushout is a homotopy pushout. We will see that the converse is
also true: the left square is a homotopy pushout if and only if the homotopy cofibers are equivalent!
The same is true for homotopy pullback and homotopy fibers.

Proof. 1. The pushout of an injective map is injective. Recall that an injective map ι : C → D
is an embedding if for all open U ⊆ C there exists an open W ⊆ D such that ι−1(W ) = U .
Since j is an embedding, we treat it as a subspace inclusion A ⊆ X. Now let U ⊆ B be
open. Since j is an embedding, there exists an open V ⊆ X such that V ∩ A = f−1(U). Let
W := q(U ⊔ V ) ⊆ Y which is open. Then J(U) = J(B) ∩W , i.e. U = J−1(W ). Hence J is
an embedding.

2. Consider the composition X → Y → Y/B. Since the left square commute, A is sent to the
base point of Y/B and so the maps factors through F : X/A→ Y/B.

3. We give a categorical proof. Consider the following diagram

A X

B Y

∗ Y/B

⌟

⌟



The two squares are pushouts. But pasting two pushout squares yields a pushout square, so
that the rectangle is also a pushout. But the usual model for the pushout of the rectangle is
X/A. Hence the unique map X/A → Y/B given by the universal property of the pushout is
an isomorphism in Top, i.e. a homeomorphism.

♢Exercise 3. The h-coaction on the mapping cone.
Let f : X → Y be a map of pointed spaces. Write C(f) for the mapping cone of f defined
as CX ∪f Y where CX = X ∧ I where we take 0 to be the basepoint of I. Define a map
µ : C(f) → ΣX ∨ C(f) by

(x, t) 7→

{
( (x, 2t) , ∗) if 0 ≤ t ≤ 1

2

(∗, (x, 2t− 1) ) if 1
2
≤ t ≤ 1

and y 7→ y.

1. Show that for any pointed space Z, the map µ induces a left action of the group [ΣX,Z]∗
on the pointed set [C(f), Z]∗. Here [−,−]∗ = π0Map∗(−,−) denotes homotopy classes of
pointed maps.

2. When f is the inclusion X ↪→ CX, show that this action can be identified with left multipli-
cation on the group [ΣX,Z]∗.

Proof. Notice that the map µ collapses X ×{1
2
} ⊆ C(f). The lower part of C(f) in the quotient is

isomorphic to ΣX (parametrized by [0, 1
2
]), while the upper part is C(f) (parametrized by [1

2
, 1]).

1. Since µ is a pointed map, it induces a map [ΣX,Z]∗ × [C(f), Z]∗ ∼= [ΣX ∨ C(f), Z]∗
µ−→

[C(f), Z]∗. Explicitly, the action of [α : ΣX → Z] on [f : C(f) → Z] is given by [C(f)
µ−→

ΣX ∨ C(f) (α,f)−−−→ Z]. If [α] = [cstz0 : ΣX → Z] the identity element, the product is the class
of the map C(f) → Z which is constant on the lower part (≤ 1

2
) of the cone C(f), and is

exactly f on the upper part. This is based homotopic to f by

H : C(f)× I → Z

(
(x, t), s

)
7→


z0 0 ≤ t ≤ s

2

f(x,
2t− s

2− s
)

s

2
≤ t ≤ 1

Now if we have [α], [β] ∈ [Σ, Z]∗, the product (α · β) · f is the class of C(f) → Z which is α
on the [0, 1

4
] part of the cone, β on [1

4
, 1
2
], and g on [1

2
, 1]. On the other hand α · (β · g) is α on

[0, 1
2
], β on [1

2
, 3
4
] and g on [3

4
, 1]. Those two decomposition of the interval are homotopic (the

one we use to prove the associativity of path concatenation), hence we can use it to provide
the desired homotopy.

2. Notice that in this case C(f) = ΣX (parametrized by the interval [−1, 1]), and µ is the
usual comultiplication ΣX → ΣX ∨ ΣX which collapses the suspension in the middle (at
0 ∈ [−1, 1]).



♢Exercise 4. The fiber sequence of a map.
(Only questions (1), (2), (3) are part of the assignment)
Let f : X → Y be a map of pointed spaces and consider the sequence of iterated mapping fibers
(homotopy fibers)

· · · −→ F (f2)
f3−→ F (f1)

f2−→ F (f)
f1−→ X

f−→ Y.

Here f1 : F (f) → X is the mapping (homotopy) fiber of f , f2 : F (f1) → F (f) is the mapping
(homotopy) fiber of f1, and so on.

1. ♢ Describe the elements of F (f1) and its topology, together with the map f2 : F (f1) → F (f).

2. ♢ Define maps ϕY : ΩY → F (f1) and ψY : F (f1) → ΩY that form a pointed homotopy
equivalence. Write j := f2 · ϕY : ΩY → F (f).

3. ♢ Deduce that F (f2) ≃ ΩX are homotopy equivalent and show that the following diagram is
pointed homotopy commutative

ΩX ΩY

F (f2) F (f1)

−Ωf

ϕX ≃

f3

ψY≃

where −Ωf = ι · Ωf and ι : ΩX → ΩX is the inversion map ω 7→ ω.

4. Deduce that the sequence

ΩX
−Ωf−−→ ΩY

j−→ F (f)
f1−→ X

f−→ Y

is h-exact.

5. Deduce that the following sequence is h-exact

· · · −→ Ω2F (f)
Ω2f1−→ Ω2X

Ω2f−→ Ω2Y
−Ωj−→ ΩF (f)

−Ωf1−→ ΩX
−Ωf−→ ΩY

j−→ F (f)
f1−→ X

f−→ Y.

We know make some observations that will help you have new insights on this exercise, once we
have developed the theory of fibrations and homotopy pullbacks.

6. Show that the fiber f−1
1 (x0) is homeomorphic to ΩY , and that the inclusion ΩY ⊂ F (f) is the

map j (hence j is an embedding). This tells us that the strict fiber of f1 is also the homotopy
fiber.

7. Likewise, show that the fiber f−1
2 ((x0, cy0)) is homeomorphic to ΩX and that the inclusion

ΩY ⊂ F (f1) is f3 · ϕX . However notice that ΩX is definitely not the fiber of j : ΩY → F (f)
(it is its homotopy fiber!).



Proof. 1. The iterated construction tells us that elements of F (f1) are triples (x, ω, γ) ∈ X ×
F (X)×F (Y ) where γ(1) = f(x) and ω(1) = x. It is topologized as a subspace of X ×PY ×
PX. Considering the following pasting of pullbacks

F (f1) F (f) F (Y )

F (X) X Y

f2
⌟

f1
⌟

ev1

ev1 f

(1)

we observe that it is homeomorphic to F (X) ×Y F (Y ) = {(ω, γ) ∈ F (X) × F (Y )| γ(1) =
f(ω(1))}. The map f2 is then given by (ω, γ) 7→ (ω(1), γ).

2. Define ϕ and ψ by the formulas ϕ(γ) = (cx0 , γ) and ψ(ω, γ) = γ ∗f(ω) where f(ω) is the path
f(ω) in reverse direction. Define pointed homotopies H : ϕ◦ψ ≃ idF (f1) and K : ψ ◦ϕ ≃ idΩY
by Hs(ω, γ) = (ω(s · −), (γ ∗ f(ω))((1− s

2
) · −)) and Ks(γ) = γ(min((1 + s) · −, 1)).

3. Replacing F (f)
f1−→ X

f−→ Y by F (f1)
f2−→ F (f)

f1−→ X in the previous point yields the first
claim. Notice that F (f2) ∼= FX ×X F (F (f)) with f3(ω, λ) 7→ (ω, λ2(1)), where λ = (λ1, λ2)
since it is a path in a (fibered) product.

The bottom composition is

ψY · f3 · ϕX(ω) = ψY · f3(ω, c(x0,cy0 )) = ψY (ω, cy0)

= cy0 ∗ f(ω),

while −Ωf(ω) = f(ω). A homotopy is given as in the second point.

4. Consider the following diagram

ΩX ΩY

F (f2) F (f1) F (f) X Y

−Ωf

ϕX ϕY
j

f3

ψY

f2 f1 f

We know that the bottom sequence is h-exact (iterate Lemma 2.4 of chapter 4, which I let you
prove). The vertical maps are pointed equivalences (by 2.), the square is pointed commutative
(by 3.), and the triangle commutes. Since we are considering pointed homotopy equivalence
classes of maps [−, Z]∗, the desired sequence is h-exact as well.

5. By induction, noticing that −Ω(−Ωf) = Ω2f .

6. Consider the right pullback square of (1). As in the proof of exercise 2.3, the fiber of f1 is
homeomorphic to the fiber of ev1 : F (Y ) → Y , which is precisely ΩY . With these identifica-
tions, the inclusion ΩY ⊂ F (f) is given by γ 7→ (x0, γ), which is precisely j.

7. Similarly the fiber of f2 is ΩX. However the fiber of j is a point since j is injective.



Exercise 5*. Relating fiber and cofiber sequences.
Let f : X → Y be a map of pointed spaces. Define a map ζ : F (f) → ΩC(f) by the formula

ζ(x, γ)(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2

(x, 2t− 1) if 1
2
≤ t ≤ 1

.

Define also ξ : ΣF (f) → C(f) as the adjoint of ζ. That is, ξ(x, γ, t) = ζ(x, γ)(t). Recall that the
adjunction Σ ⊣ Ω provides maps ηX : X → ΩΣX and εX : ΣΩX → X natural in X.

In the following diagram, the top row is obtained from the fiber sequence of f by application
of the functor Σ, and the bottom row is obtained by applying Ω to the cofiber sequence of f .

ΣΩF (f) ΣΩX ΣΩY ΣF (f) ΣX

ΩY F (f) X Y C(f) ΣX

ΩY ΩC(f) ΩΣX ΩΣY ΩΣC(f)

ΣΩp

εF (f)

ΣΩf

εX

Σα

εY

Σp

ξ

α p

ζ

f

ηX

i

ηY

π

ηC(f)

Ωi Ωπ ΩΣf ΩΣi

Show that the diagram is homotopy commutative. Which of the squares commute strictly?
Hint: there are only two explicit homotopies to write.

Proof. Let’s label the squares (1)-(8) from left to right starting by the first line. The squares (1-2-7-
8) are naturality squares for ε and η so commute strictly. The square (3) is adjoint to (5), while (4)
is adjoint to (6), so one only needs to check (5) and (6). For (5), the composite ζ ◦α sends γ ∈ ΩY
to γ ∗ c(x0,cy0 ) while Ωi is γ 7→ γ. A homotopy H : ζ ◦ α ≃ Ωi is given by Hs(γ)(t) = γ(min(2t, 1)).
For (6) we have that ηX ◦p(x, γ) = ηX(x) is the loop t 7→ (x, t) ∈ ΣX, while Ωπ ◦ ζ(x, γ) is the loop

t 7→

{
(x, 0) t ≤ 1

2

(x, 2t− 1) 1
2
≤ t.

A homotopy L : ηX(x) ≃ Ωπ◦ζ(x, γ) is given by Ls(x, γ) =
(
t 7→

{
(x, 0) t ≤ 1

2
s

(x, (2t− 1)s+ t(1− s)) 1
2
s ≤ t

)
.

♢ indicates the weekly assignments.


