

Exercise 1. Examples of CW approximations.

1. Find a CW approximation to the quasi-circle (defined in sheet 3).
2. Find a CW approximation to the space $\{0\} \cup \{\frac{1}{n} \mid n \geq 1\} \subset \mathbb{R}$.

Proof. 1. We have seen that $\pi_n(Q) = 0$ for all n in a previous problem sheet. Hence $* \rightarrow Q$ is a CW approximation.

2. The map $\mathbb{N} \rightarrow \{0\} \cup \{\frac{1}{n} \mid n \geq 1\}$ defined by $n \mapsto \frac{1}{n}$ and $0 \mapsto 0$ is a CW approximation since it induces a bijection on π_0 and higher homotopy groups of both spaces are trivial.

□

◊Exercise 2. A space with prescribed homotopy groups.

1. Comparing $S^n \vee S^n$ with $S^n \times S^n$ compute $\pi_n(S^n \vee S^n)$ (the case $n = 1$ has to be treated separately).
2. Compute $\pi_n(\bigvee_{i=1}^n S^n)$ for any finite wedge of spheres (and an arbitrary wedge if you want!).
3. Let $M(\mathbb{Z}/p^k, n)$ be the $(n+1)$ -dimensional Moore space $S^n \cup_{p^k} e^{n+1}$, where the top cell is attached via the degree p^k map on S^n . Show that $\pi_n M(\mathbb{Z}/p, n) \cong \mathbb{Z}/p$ by first showing it must be a quotient of $\pi_n S^n$ and then using cellular homology to identify the order of the generator. Can you do it for $M(\mathbb{Z}/p^k, n)$?
4. For any finitely generated abelian group A , construct a connected space X with $\pi_n X \cong A$.

Proof. 1. By exercise 3 of sheet 5, we know that $\pi_n(S^n \vee S^n) \cong \mathbb{Z} \times \mathbb{Z}$ for all $n \geq 2$. Seifert van-Kampen shows that $\pi_1(S^1 \vee S^1) \cong \mathbb{Z} * \mathbb{Z}$.

2. Using a similar argument, we find that $\pi_n(\bigvee_{i=1}^n S^n) \cong \mathbb{Z}^n$.
3. We prove the general case directly: let $M = M(\mathbb{Z}/p^k, n)$ and $i : S^n \hookrightarrow M$ the inclusion of the n -skeleton. By exercise 3 of sheet 5, the pair (M, S^n) is n -connected, which shows that $i_* : \pi_n S^n \rightarrow \pi_n M$ is surjective. Hence $\pi_n M \cong \mathbb{Z}/\ker(i_*)$ is a quotient of \mathbb{Z} . Notice first that since

$$\begin{array}{ccc} S^n & \xrightarrow{p^k} & S^n \\ \downarrow & & \downarrow i \\ D^{n+1} & \longrightarrow & M \end{array}$$

commutes (it is a pushout), $i_*([p^k]) = [i \circ p^k] = 0 \in \pi_n(M)$. It follows that $p^k \mathbb{Z} \subseteq \ker(i_*)$. We deduce that $\ker(i_*) = p^l \mathbb{Z}$ for some $l \leq k$. Suppose for a contradiction that $l < k$, so that the composition $f : S^n \xrightarrow{p^l} S^n \xrightarrow{i} M$ is (based) nullhomotopic. But on cellular homology, we can easily observe (using exercise 6 of sheet 5) that $H_n^{\text{cell}}(f)(1) = p^l \in \mathbb{Z}/p^k \mathbb{Z} \cong H_n^{\text{cell}}(M)$ which is non-zero. One sees this by computing $H_n^{\text{cell}}(M)$ first, and using the formula for functoriality. It follows that f can't be nullhomotopic, otherwise we would have $H_n(f) = 0$. This shows that $k = l$ and $\pi_n(M) \cong \mathbb{Z}/p^k \mathbb{Z}$.

4. Suppose that $A \cong \bigoplus_I \mathbb{Z} \oplus \mathbb{Z}/p^{k_1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/p^{k_n}\mathbb{Z}$. We define

$$X = \bigvee_I S^n \vee M(\mathbb{Z}/p^{k_1}\mathbb{Z}, n) \vee \cdots \vee M(\mathbb{Z}/p^{k_n}\mathbb{Z}, n)$$

which has the desired property. □

◊**Exercise 3. Equivalent definitions of n -connectedness.**

We say that a map $f : X \rightarrow Y$ is an n -equivalence if it induces isomorphisms $f_* : \pi_k(X, x) \cong \pi_k(Y, f(x))$ for $k < n$ and a surjection $\pi_n(X, x) \twoheadrightarrow \pi_n(Y, f(x))$ for $k = n$, for any basepoint $x \in X$. Show that the following properties of a space X are equivalent :

1. $\pi_0 Map_*(K, (X, x)) = 0$ for any pointed CW complex K of dimension $\leq n$ and any $x \in X$.
2. $X \rightarrow *$ is an $(n + 1)$ -equivalence.
3. $x : * \rightarrow X$ is an n -equivalence for any $x \in X$.
4. $\pi_k(X, x) = 0$ for all $k \leq n$ and any $x \in X$.

Hint: For (4) \Rightarrow (1), show by induction on $m \leq n$ that $K^m \hookrightarrow K \rightarrow X$ is nullhomotopic.

Proof. Conditions (2), (3), (4) are easily seen to be equivalent since $0 \rightarrow G$ being surjective amounts to G being trivial. For (1) \Rightarrow (4), just apply (1) where $K = S^k$ for $k \leq n$. Now assuming (4), let $f : K \rightarrow X$ a based map (we assume WLG that the base point of K is in K^0). We prove inductively on $m \leq n$ that $f^m : K^m \hookrightarrow K \xrightarrow{f} X$ is based nullhomotopic. This will show the result since $K^n = K$. For $m = 0$ the 0-skeleton K^0 is just a discrete set. Since X is path connected, a choice of paths between points in the image of f^0 to $x \in X$ gives a based nullhomotopy. Now suppose that $f^m := f|_{K^m}$ is based nullhomotopic for $m < n$. Since (K^{m+1}, K^m) has the homotopy extension property (exercise 1.2 of sheet 5), and $f^{m+1}|_{K^m} = f^m$, we can extend the nullhomotopy of f^m to K^{m+1} . We obtain that f^{m+1} is based homotopic to a map $K^{m+1} \rightarrow X$ which sends K^m to a point, i.e. factors through $K^{m+1}/K^m \cong \bigvee S^{m+1}$. But $[\bigvee S^{m+1}, X]_* \cong \prod [S^{m+1}, X]_* \cong \prod \pi_{m+1}(X, x) = 0$, which implies that $K^{m+1}/K^m \rightarrow X$ is based nullhomotopic. Precomposing with the quotient map $K^{m+1} \rightarrow K^{m+1}/K^m$ we find that f^m is based nullhomotopic as well. □

◊**Exercise 4. The Whitehead tower of a space.**

In this exercise all spaces are pointed.

1. Given a space X and $n \geq 0$, build an n -connected CW complex $X\langle n \rangle$ together with a map $f_n : X\langle n \rangle \rightarrow X$ that induces isomorphisms $\pi_k(X\langle n \rangle) \cong \pi_k(X)$ for all $k > n$.

Hint: Reproduce the proof of CW approximation seen in class.

2. Modify the construction of $X\langle n \rangle$ so that for each n , there are maps $X\langle n+1 \rangle \rightarrow X\langle n \rangle$ making

the triangle
$$\begin{array}{ccc} X\langle n+1 \rangle & \longrightarrow & X\langle n \rangle \\ & \searrow f_{n+1} & \swarrow f_n \\ & X & \end{array}$$
 strictly commutative.

Hint: construct $X\langle n+1 \rangle$ from $X\langle n \rangle$. The resulting diagram $\cdots \rightarrow X\langle n+1 \rangle \rightarrow X\langle n \rangle \rightarrow \cdots \rightarrow X\langle 0 \rangle \rightarrow X$ is called a Whitehead tower for X .

Proof. 1. We apply the construction of the CW-approximation, but starting at level $n + 1$ in order to obtain a space with trivial homotopy groups in degree $\leq n$. Explicitly, we start with a wedge $\bigvee_I S^{n+1}$ of $(n + 1)$ -spheres, where I is a set of generators of $\pi_{n+1}(X)$, instead of a wedge of circles. This comes with map to X corresponding to the generators. Then attach $(n + 2)$ -cells to kill the kernel, and continue as in the lecture notes.

2. We proceed by induction. Having $X\langle n \rangle \rightarrow X$ in hands, we apply the construction of the first point to $X\langle n \rangle$ itself to obtain $(X\langle n \rangle)\langle n + 1 \rangle \rightarrow X\langle n \rangle$. Note that $(X\langle n \rangle)\langle n + 1 \rangle = X\langle n + 1 \rangle$ by construction, but this time it comes with a map $X\langle n + 1 \rangle \rightarrow X\langle n \rangle$ as desired. \square

◊Exercise 5. Some relations between a CW complex and its n -skeleton.

Recall that if X and Y are CW complexes, the product $X \times Y$ has a canonical CW structure.

1. Let X be an n -connected space. Show that there exists a CW approximation $K \rightarrow X$ such that K has trivial n -skeleton, ie. $K^{(n)} = *$.
2. Let (X, x) be a pointed CW complex. Show that the inclusion $X^{(n)} \hookrightarrow X$ of the n -skeleton is an n -equivalence, ie. induces isomorphisms $\pi_k(X^{(n)}, x) \cong \pi_k(X, x)$ for $k < n$ and a surjection $\pi_n(X^{(n)}, x) \twoheadrightarrow \pi_n(X, x)$.
3. If $X \simeq Y$ are homotopy equivalent CW complexes without cells of dimension $n + 1$, show that $X^{(n)} \simeq Y^{(n)}$. Disprove the statement for arbitrary CW complexes.

Proof. 1. The construction done in class is such that $X^{(n)} = *$.

2. The pair $(X, X^{(n)})$ is n -connected by an exercise of sheet 5, so we conclude by the long exact sequence.
3. Let $f : X \rightarrow Y$ and $g : Y \rightarrow X$ be homotopy inverses. By cellular approximation, we can suppose that both maps are cellular. Let $H : X \times I \rightarrow X$ be a homotopy $gf \simeq 1_X$. Since H is already cellular on $X \times \{0, 1\}$, H is homotopic to a cellular map $H' : X \times I \rightarrow X$ relative to $X \times \{0, 1\}$. Hence H' is a cellular homotopy $gf \simeq 1_X$. Consider the restriction $H'|_{X^{(n)} \times I} : X^{(n)} \times I \rightarrow Y$. The domain is a CW-complex of dimension $n + 1$, so it lands in $Y^{(n+1)} = Y^{(n)}$ by assumption. It follows that $H'|_{X^{(n)} \times I}$ is a homotopy $f^{(n)}g^{(n)} \simeq 1_{X^{(n)}}$. Similarly $g^{(n)}f^{(n)} \simeq 1_{Y^{(n)}}$. \square

◊ indicates the weekly assignments.