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♢Exercise 1. Cellular approximation for pairs.

1. Show that the inclusion Sn−1 × I ∪Dn × 0 ⊂ Dn × I is a strong deformation retract.

2. Prove that the inclusion A ↪→ A∪f en = X verifies the HEP (Homotopy Extension Property):
Given a map f : X → Z and a homotopy G : A × I → Z starting at f |A, there exists a
homotopy F : X × I → Z starting at f and extending G.

3. Show that every map f : (X,A)→ (Y,B) of CW pairs is homotopic through maps (X,A)→
(Y,B) to a cellular map.

Proof. 1. Write ι : Sn−1 × I ∪Dn × {0} ⊆ Dn × I for the inclusion and define r : Dn × I −→
Sn−1 × I ∪Dn × {0} by

r(x, t) = (χ(x, t)x, 2 + χ(x, t)(t− 2))

where χ : Sn−1 × I ∪Dn × {0} −→ R is defined by

χ(x, t) =

{
2

2−t if 2∥x∥ ≤ 2− t
1

∥x∥ if 2∥x∥ ≥ 2− t
.

This corresponds to the projection of the cylinder on Sn−1 × I ∪ Dn × {0} from the point
(0, 2) ∈ Rn × R, as depicted below.

(0, 2)

We need to prove that r ◦ ι = Id and ι ◦ r ≃ Id. The first equality is a simple verification.
For the second one, it is clear from the picture, but a formula is given by

H : (Dn × I)× I −→ Dn × I
(x, t, s) 7−→

(
[(1− s) + sχ(x, t)]x, 2 + [(1− s) + sχ(x, t)](t− 2)

)
A simple verification shows that H is the desired homotopy, and that it fixes Sn−1× I ∪Dn×
{0}.



2. The space X together with the map f can be given by the following pushout diagram:

Sn A

Dn+1 X

Z

f

in
f |A

f |en

⌟

f

Since (−× I) ⊣ Map(I,−) we know that −× I preserves pushout diagrams. It follows that
to give a homotopy F : X × I → Z, we only need to provide a homotopy G : A× I → Z and
a map Dn × I → Z which agree on Sn × I. We do it as follow:

Sn−1 × I A× I

Dn × I X × I

Sn−1 × I ∪Dn × {0}

Z

α×I

G

r

⌟

G◦(α×I)∪f |en

The bottom map G ◦ (α× I)∪ f |en is well defined since both maps agree on Sn−1×{0}. It is
immediate that the diagram commute since r is a retraction of ι by the first point. Hence there
exists F : X×I → Z extending F , starting at F |X×{0} = F |A×{0}∪F |Dn×{0} = f |A∪f |en = f
as desired.

3. First use the cellular approximation theorem to find a homotopy H : A× I → B between f
|B
|A

and a cellular map g : A → B. Then since (X,A) has the homotopy extension property, we

can extend the composite A× I H→ B ↪→ Y to a homotopy H̃ : X × I → Y with H̃(−, 0) = f

and H̃(−, 1)|B|A = g. Applying the relative cellular approximation theorem, we can find a

homotopy relative to A K : H̃(−, 1) ≃ f ′ rel. A, where f ′ : X → Y is cellular. It follows that
f ′ is now cellular as pairs (X,A) → (Y,B), and composite H̃ ·K gives a homotopy of pairs
f ≃ f ′.

Exercise 2. Connectivity of some pairs. A pair (X,A) is n-connected if πk(X,A, a) = 0 for
all k ≤ n and any basepoint a ∈ A. For k = 0, we defined π0(X,A) = π0(X)/i∗(π0(A)) where
i∗ : π0(A) → π0(X) is induced by the inclusion. The condition says here that A intersects every
path component of X.

1. What are the connectivities of the pairs (Sn, Sk),(RP n,RP k) and (CP n,CP k) for n > k?

2. If X is a CW complex with X(n) = ∗, what can you say about the connexity of ΣX and of
the pair (ΣX,X)?



Proof. 1. Use the standard cell decomposition of Sn,RP n and CP n and identify Sk,RP k and
CP k respectively as the k, k and 2k-skeletons. The three pairs are k, k and 2k-connected
respectively. To see this you can use the following exercise 3.3, or do the computation directly.
The pairs are not (k + 1), (k + 1) and (2k + 1)-connected since it would imply by the long
exact sequence that πk(S

k) = πk(RP k) = π2k(CP k) = 0.

2. Since ΣX si a quotient of X × I, the n-cells of X are in bijective correspondance with the
(n+1)-cells of ΣX. Hence ifX only has cells of dimension > n, ΣX only has cells of dimension
> n+ 1, so is (n+ 1)-connected. Since ΣX is obtained as a pushout of CX ← X → CX, we
find that ΣX is obtained fromX by attaching (n+1)-cells, so the pair (ΣX,X) is n-connected.
One can also see this via the long exact sequence for the pair.

♢Exercise 3. Connectivity of some more pairs.

1. Show that if X and Y are CW complexes with X(m) = ∗ and Y (n) = ∗, then the pair
(X × Y,X ∨ Y ) is (m+ n+ 1)-connected, as is the smash product X ∧ Y .

2. Prove that the inclusion Sn ∨Sn ↪→ Sn×Sn induces an isomorphism on πk for all k < 2n− 1
(and a surjection if k = 2n− 1).

3. For X a CW complex, show that the pair (X,X(n)) is n-connected. Here X(n) denotes the
n-skeleton of X.

Proof. 1. In the standard cell structure for X ×Y the (k+ ℓ)-cells are indexed by ekX × eℓY . The
cells of the form ∗ × eℓY and ekX × ∗ for k ≥ m and ℓ ≥ n form a cell decomposition of X ∨ Y
while the remaining cells are of dimension > m + n + 1. Hence (X × Y )(n+m+1) ⊆ X ∨ Y is
the (m + n + 1)-skeleton of X × Y . Now the same technique as in the a)-proof of the third
point allows us to conclude directly. For the same reason as above, X ∧ Y = X × Y/X ∨ Y
has only cells of dimension > n+m+ 1 so is (n+m+ 1)-connected.

2. By the first point, (Sn × Sn, Sn ∨ Sn) is 2n + 1-connected. The long exact sequence for this
pair concludes.

3. We give two different proofs.

(a) We apply the relative cellular approximation of maps of pairs to some f : (Dk, Sk−1)→
(X,X(n)) for k ≤ n which represents an element in πk(X,X

(n), x0). Since any connected
component contains at least a 0-cell, it is harmless to suppose that the base point
x0 ∈ X is a 0-cell. It follows that f is cellular on {x0} ⊆ X(n), hence is homotopic,
through a homotopy of pairs and relative to {x0} (a pointed homotopy), to a cellular
map f ′ : (Dk, Sk−1) → (X,X(n)). Hence f ′ factors through (X(n), X(n)) and hence is
nullhomotopic. This proves that πk(X,X

(n), x0) = 0 and therefore the pair (X,X(n)) is
n-connected.

(b) A different strategy is to prove that the inclusion X(n) → X induces isomorphism on
πk for all 0 ≤ k < n and a surjection for k = n. This would imply the result by the
long exact sequence of a pair. The surjectivity on πk follows from the fact that a map
Sk → X is homotopic, relative to the base point, to a cellular map Sk → X(n) ⊆ X.
For injectivity suppose that a map f : Sk → X(n) is nullhomotopic when seen as a map



Sk → X, i.e. there exists H : Sk×I → X a pointed nullhomotopy. Since H is cellular on
Sk×{0, 1}∪ {s0}× I, and Sk× I is a CW-complex of dimension k+1, H is homotopic,
relative to Sk × {0, 1} ∪ {s0} × I to a cellular map Sk × I → X(n). But this gives a
pointed nullhomotopy of f . This shows injectivity.

♢Exercise 4. An extension criterion.

1. Given a CW pair (X,A) and a map f : A→ Y with Y path-connected, show that f can be
extended to a map X → Y if πn−1(Y ) = 0 for all n such that X \A has cells of dimension n.

2. Show that a CW complex retracts onto any contractible subcomplex: given a CW pair (X,A)
where A is contractible, show that there exist r : X → A with r ◦ ι = idA, where ι : A ↪→ X
is the inclusion.

Proof. 1. If X \A has an n-cell with attaching map ψ : Sn−1 → A, then f extends to A∪ψ en if
and only if f ◦ ψ is nullhomotopic, which is the case if πn(Y ) = 0. We can see this using the
universal property of the pushout

Sn−1 A

Dn A ∪ψ en

Y

ψ

f

H

⌟

∃!f

An extension f exists if and only if f ◦ ψ factors through Dn, i.e. if and only if f ◦ ψ is
null-homotopic. In general, extend f inductively on the cells of X\A starting with the cells
of lowest dimensions.

2. Since A is contractible, the identity A→ A extends by question 1) to a map r : X → A. We
have r ◦ i = idA since r is an extention of idA.

♢Exercise 5. The degree of a map Sn → Sn.
The goal of this execrcise is to show that every map f : Sn → Sn is homotopic to a multiple of the
identity. Thus the degree of such a map determines its homotopy class.

1. Reduce to the case where there is a point y ∈ Sn such that f−1(y) = {x1, · · · , xk} and f is
an invertible linear map in the neighbourhood of each xi.
Hint: Use the lemma seen in class on PL approximation of a map In → Y on a polyhedron
K ⊂ In.

2. For f as in (1), consider the composition g ◦ f where g : Sn → Sn collapses the complement
of a small ball around y to the basepoint. Use this to reduce to the case where k = 1 in (1).

3. Conclude using the fact that GLn(R) has only two path components (the proof of this fact is
not required).



Proof. See an attached solution on moodle.

Exercise 6. Functoriality of cellular homology.

1. Recall the definition of cellular homology Hcell
∗ (X) for a CW complex X.

2. Using cellular approximation, show that a map f : X → Y between CW complexes induces
well defined group morphisms f∗ : H

cell
∗ (X)→ Hcell

∗ (Y ).

3. Show that for any pair X
f→ Y

g→ Z of composable maps, we have g∗ ◦ f∗ = (g ◦ f)∗.

Proof. 1. If X is a CW complex, the cellular chain complex Ccell
∗ (X) of X is given in degree n by

the free abelian group Z[{enα}α] on the n-cells of X. The differential is given on an (n+1)-cell
en+1
α by den+1

α =
∑

β dαβe
n
β where dαβ is the degree of the map

Snα
ψα−→ X(n) → X(n)/X(n−1) ≃

∨
β′

Snβ′ → Snβ

where ψα is the attaching map for the cell en+1
β and the last map is the one collapsing every

Snβ′ for β′ ̸= β. Then Hcell
∗ (X) = H(Ccell

∗ (X)) is the homology of this chain complex.

2. We use cellular approximation to homotope f to a cellular map g : X → Y . Define the map

f ′
∗ : C

cell
∗ (X)→ Ccell

∗ (Y ) as follows : since f ′ is cellular it induces a map f ′(n) : X(n)/X(n−1) →
Y (n)/Y (n−1). Now the map gn between cellular n-chains is defined by f ′

n(e
n
α) =

∑
β δαβε

n
β where

εnβ is a labelling of the n-cells of Y and δαβ is the degree of the map

Snα ↪→
∨
α

Snα ≃ X(n)/X(n−1) f
′(n)

−→ Y (n)/Y (n−1) ≃
∨
β

Snβ → Snβ .

This defines a map of complexes and hence descends to a map f ′
∗ : H

cell
∗ (X)→ Hcell

∗ (Y ).

3. Using cellular approximation, f and g are homotopic to cellular maps f ′ and g′ respectively.
For an n-cell in X, we have that

(g∗ ◦ f∗)(enα) = g∗(
∑
β

δα,βe
n
β) =

∑
β

δα,βg∗(e
n
β) =

∑
β

∑
γ

δα,βδβ,γe
n
γ

where {enγ} is a labeling of the n-cells in Z. Now notice that g′ ◦f ′ is a cellular approximation
to g ◦ f , so that we might use this map to define (g ◦ f)∗. Let us write

(g ◦ f)∗(enα) =
∑
γ

δα,γe
n
γ ,

where the coefficients δα,γ are the degree of the map

Snα →
∨
α

Snα
∼= X(n)/X(n−1) → Y (n)/Y (n−1) → Z(n)/Z(n−1) ∼=

∨
γ

Snγ → Snγ (1)

We need to show that ∑
β,γ

δα,βδβ,γ =
∑
γ

δα,γ. (2)



Applying Hn(−) to the sequence (1) we obtain

Z→
⊕
α

Z f ′−→
⊕
β

Z g′−→
⊕
γ

Z→ Z

where f ′(eα) =
∑

β δα,βeβ and g′(eβ) =
∑

γ δβ,γeγ. It follows that through this composition,
1 is sent to

∑
β δα,βδβ,γ, which by definition is the degree δα,γ of the composition (1). The

equation (2) now follows directly, which concludes the proof.

♢ indicates the weekly assignments.


