

◊ **Exercise 1. Cellular approximation for pairs.**

1. Show that the inclusion $S^{n-1} \times I \cup D^n \times 0 \subset D^n \times I$ is a strong deformation retract.
2. Prove that the inclusion $A \hookrightarrow A \cup_f e^n = X$ verifies the HEP (Homotopy Extension Property):
Given a map $f: X \rightarrow Z$ and a homotopy $G: A \times I \rightarrow Z$ starting at $f|_A$, there exists a homotopy $F: X \times I \rightarrow Z$ starting at f and extending G .
3. Show that every map $f: (X, A) \rightarrow (Y, B)$ of CW pairs is homotopic through maps $(X, A) \rightarrow (Y, B)$ to a cellular map.

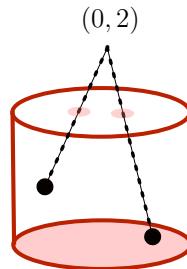
Proof. 1. Write $\iota: S^{n-1} \times I \cup D^n \times \{0\} \subseteq D^n \times I$ for the inclusion and define $r: D^n \times I \rightarrow S^{n-1} \times I \cup D^n \times \{0\}$ by

$$r(x, t) = (\chi(x, t)x, 2 + \chi(x, t)(t - 2))$$

where $\chi: S^{n-1} \times I \cup D^n \times \{0\} \rightarrow \mathbb{R}$ is defined by

$$\chi(x, t) = \begin{cases} \frac{2}{2-t} & \text{if } 2\|x\| \leq 2-t \\ \frac{1}{\|x\|} & \text{if } 2\|x\| \geq 2-t \end{cases}.$$

This corresponds to the projection of the cylinder on $S^{n-1} \times I \cup D^n \times \{0\}$ from the point $(0, 2) \in \mathbb{R}^n \times \mathbb{R}$, as depicted below.



We need to prove that $r \circ \iota = Id$ and $\iota \circ r \simeq Id$. The first equality is a simple verification. For the second one, it is clear from the picture, but a formula is given by

$$\begin{aligned} H: (D^n \times I) \times I &\longrightarrow D^n \times I \\ (x, t, s) &\longmapsto \left([(1-s) + s\chi(x, t)]x, 2 + [(1-s) + s\chi(x, t)](t-2) \right) \end{aligned}$$

A simple verification shows that H is the desired homotopy, and that it fixes $S^{n-1} \times I \cup D^n \times \{0\}$.

2. The space X together with the map f can be given by the following pushout diagram:

$$\begin{array}{ccc}
 S^n & \xrightarrow{f} & A \\
 i_n \downarrow & & \downarrow \\
 D^{n+1} & \xrightarrow{r} & X \\
 & \searrow f|_A & \swarrow f \\
 & f|_{e^n} & \rightarrow Z
 \end{array}$$

Since $(-\times I) \dashv \text{Map}(I, -)$ we know that $-\times I$ preserves pushout diagrams. It follows that to give a homotopy $F : X \times I \rightarrow Z$, we only need to provide a homotopy $G : A \times I \rightarrow Z$ and a map $D^n \times I \rightarrow Z$ which agree on $S^n \times I$. We do it as follow:

$$\begin{array}{ccc}
 S^{n-1} \times I & \xrightarrow{\alpha \times I} & A \times I \\
 \downarrow & & \downarrow \\
 D^n \times I & \xrightarrow{r} & X \times I \\
 & \searrow r & \swarrow G \\
 & S^{n-1} \times I \cup D^n \times \{0\} & \rightarrow Z \\
 & \searrow G \circ (\alpha \times I) \cup f|_{e^n} &
 \end{array}$$

The bottom map $G \circ (\alpha \times I) \cup f|_{e^n}$ is well defined since both maps agree on $S^{n-1} \times \{0\}$. It is immediate that the diagram commutes since r is a retraction of ι by the first point. Hence there exists $F : X \times I \rightarrow Z$ extending F , starting at $F|_{X \times \{0\}} = F|_{A \times \{0\}} \cup F|_{D^n \times \{0\}} = f|_A \cup f|_{e^n} = f$ as desired.

3. First use the cellular approximation theorem to find a homotopy $H : A \times I \rightarrow B$ between $f|_A$ and a cellular map $g : A \rightarrow B$. Then since (X, A) has the homotopy extension property, we can extend the composite $A \times I \xrightarrow{H} B \hookrightarrow Y$ to a homotopy $\tilde{H} : X \times I \rightarrow Y$ with $\tilde{H}(-, 0) = f$ and $\tilde{H}(-, 1)|_A^B = g$. Applying the relative cellular approximation theorem, we can find a homotopy relative to A $K : \tilde{H}(-, 1) \simeq f'$ rel. A , where $f' : X \rightarrow Y$ is cellular. It follows that f' is now cellular as pairs $(X, A) \rightarrow (Y, B)$, and composite $\tilde{H} \cdot K$ gives a homotopy of pairs $f \simeq f'$.

□

Exercise 2. Connectivity of some pairs. A pair (X, A) is n -connected if $\pi_k(X, A, a) = 0$ for all $k \leq n$ and any basepoint $a \in A$. For $k = 0$, we defined $\pi_0(X, A) = \pi_0(X)/i_*(\pi_0(A))$ where $i_* : \pi_0(A) \rightarrow \pi_0(X)$ is induced by the inclusion. The condition says here that A intersects every path component of X .

1. What are the connectivities of the pairs $(S^n, S^k), (\mathbb{R}P^n, \mathbb{R}P^k)$ and $(\mathbb{C}P^n, \mathbb{C}P^k)$ for $n > k$?
2. If X is a CW complex with $X^{(n)} = *$, what can you say about the connexity of ΣX and of the pair $(\Sigma X, X)$?

Proof. 1. Use the standard cell decomposition of S^n , $\mathbb{R}P^n$ and $\mathbb{C}P^n$ and identify S^k , $\mathbb{R}P^k$ and $\mathbb{C}P^k$ respectively as the k , k and $2k$ -skeletons. The three pairs are k , k and $2k$ -connected respectively. To see this you can use the following exercise 3.3, or do the computation directly. The pairs are not $(k+1)$, $(k+1)$ and $(2k+1)$ -connected since it would imply by the long exact sequence that $\pi_k(S^k) = \pi_k(\mathbb{R}P^k) = \pi_{2k}(\mathbb{C}P^k) = 0$.

2. Since ΣX is a quotient of $X \times I$, the n -cells of X are in bijective correspondance with the $(n+1)$ -cells of ΣX . Hence if X only has cells of dimension $> n$, ΣX only has cells of dimension $> n+1$, so is $(n+1)$ -connected. Since ΣX is obtained as a pushout of $CX \leftarrow X \rightarrow CX$, we find that ΣX is obtained from X by attaching $(n+1)$ -cells, so the pair $(\Sigma X, X)$ is n -connected. One can also see this via the long exact sequence for the pair.

□

◊Exercise 3. Connectivity of some more pairs.

1. Show that if X and Y are CW complexes with $X^{(m)} = *$ and $Y^{(n)} = *$, then the pair $(X \times Y, X \vee Y)$ is $(m+n+1)$ -connected, as is the smash product $X \wedge Y$.
2. Prove that the inclusion $S^n \vee S^n \hookrightarrow S^n \times S^n$ induces an isomorphism on π_k for all $k < 2n-1$ (and a surjection if $k = 2n-1$).
3. For X a CW complex, show that the pair $(X, X^{(n)})$ is n -connected. Here $X^{(n)}$ denotes the n -skeleton of X .

Proof. 1. In the standard cell structure for $X \times Y$ the $(k+\ell)$ -cells are indexed by $e_X^k \times e_Y^\ell$. The cells of the form $* \times e_Y^\ell$ and $e_X^k \times *$ for $k \geq m$ and $\ell \geq n$ form a cell decomposition of $X \vee Y$ while the remaining cells are of dimension $> m+n+1$. Hence $(X \times Y)^{(n+m+1)} \subseteq X \vee Y$ is the $(m+n+1)$ -skeleton of $X \times Y$. Now the same technique as in the a)-proof of the third point allows us to conclude directly. For the same reason as above, $X \wedge Y = X \times Y / X \vee Y$ has only cells of dimension $> n+m+1$ so is $(n+m+1)$ -connected.

2. By the first point, $(S^n \times S^n, S^n \vee S^n)$ is $2n+1$ -connected. The long exact sequence for this pair concludes.
3. We give two different proofs.

- (a) We apply the relative cellular approximation of maps of pairs to some $f : (D^k, S^{k-1}) \rightarrow (X, X^{(n)})$ for $k \leq n$ which represents an element in $\pi_k(X, X^{(n)}, x_0)$. Since any connected component contains at least a 0-cell, it is harmless to suppose that the base point $x_0 \in X$ is a 0-cell. It follows that f is cellular on $\{x_0\} \subseteq X^{(n)}$, hence is homotopic, through a homotopy of pairs and relative to $\{x_0\}$ (a pointed homotopy), to a cellular map $f' : (D^k, S^{k-1}) \rightarrow (X, X^{(n)})$. Hence f' factors through $(X^{(n)}, X^{(n)})$ and hence is nullhomotopic. This proves that $\pi_k(X, X^{(n)}, x_0) = 0$ and therefore the pair $(X, X^{(n)})$ is n -connected.
- (b) A different strategy is to prove that the inclusion $X^{(n)} \rightarrow X$ induces isomorphism on π_k for all $0 \leq k < n$ and a surjection for $k = n$. This would imply the result by the long exact sequence of a pair. The surjectivity on π_k follows from the fact that a map $S^k \rightarrow X$ is homotopic, relative to the base point, to a cellular map $S^k \rightarrow X^{(n)} \subseteq X$. For injectivity suppose that a map $f : S^k \rightarrow X^{(n)}$ is nullhomotopic when seen as a map

$S^k \rightarrow X$, i.e. there exists $H : S^k \times I \rightarrow X$ a pointed nullhomotopy. Since H is cellular on $S^k \times \{0, 1\} \cup \{s_0\} \times I$, and $S^k \times I$ is a CW-complex of dimension $k + 1$, H is homotopic, relative to $S^k \times \{0, 1\} \cup \{s_0\} \times I$ to a cellular map $S^k \times I \rightarrow X^{(n)}$. But this gives a pointed nullhomotopy of f . This shows injectivity.

□

◊ **Exercise 4. An extension criterion.**

- Given a CW pair (X, A) and a map $f : A \rightarrow Y$ with Y path-connected, show that f can be extended to a map $X \rightarrow Y$ if $\pi_{n-1}(Y) = 0$ for all n such that $X \setminus A$ has cells of dimension n .
- Show that a CW complex retracts onto any contractible subcomplex: given a CW pair (X, A) where A is contractible, show that there exist $r : X \rightarrow A$ with $r \circ \iota = id_A$, where $\iota : A \hookrightarrow X$ is the inclusion.

Proof. 1. If $X \setminus A$ has an n -cell with attaching map $\psi : S^{n-1} \rightarrow A$, then f extends to $A \cup_{\psi} e^n$ if and only if $f \circ \psi$ is nullhomotopic, which is the case if $\pi_n(Y) = 0$. We can see this using the universal property of the pushout

$$\begin{array}{ccc}
 S^{n-1} & \xrightarrow{\psi} & A \\
 \downarrow & \lrcorner & \downarrow \\
 D^n & \xrightarrow{r} & A \cup_{\psi} e^n \\
 & \searrow & \swarrow f \\
 & H & \nearrow \exists! \bar{f} \\
 & & Y
 \end{array}$$

An extension \bar{f} exists if and only if $f \circ \psi$ factors through D^n , i.e. if and only if $f \circ \psi$ is null-homotopic. In general, extend f inductively on the cells of $X \setminus A$ starting with the cells of lowest dimensions.

- Since A is contractible, the identity $A \rightarrow A$ extends by question 1) to a map $r : X \rightarrow A$. We have $r \circ i = id_A$ since r is an extention of id_A .

□

◊ **Exercise 5. The degree of a map $S^n \rightarrow S^n$.**

The goal of this execrcise is to show that every map $f : S^n \rightarrow S^n$ is homotopic to a multiple of the identity. Thus the degree of such a map determines its homotopy class.

- Reduce to the case where there is a point $y \in S^n$ such that $f^{-1}(y) = \{x_1, \dots, x_k\}$ and f is an invertible linear map in the neighbourhood of each x_i .
Hint: Use the lemma seen in class on PL approximation of a map $I^n \rightarrow Y$ on a polyhedron $K \subset I^n$.
- For f as in (1), consider the composition $g \circ f$ where $g : S^n \rightarrow S^n$ collapses the complement of a small ball around y to the basepoint. Use this to reduce to the case where $k = 1$ in (1).
- Conclude using the fact that $GL_n(\mathbb{R})$ has only two path components (the proof of this fact is not required).

Proof. See an attached solution on moodle. □

Exercise 6. Functoriality of cellular homology.

1. Recall the definition of cellular homology $H_*^{\text{cell}}(X)$ for a CW complex X .
2. Using cellular approximation, show that a map $f : X \rightarrow Y$ between CW complexes induces well defined group morphisms $f_* : H_*^{\text{cell}}(X) \rightarrow H_*^{\text{cell}}(Y)$.
3. Show that for any pair $X \xrightarrow{f} Y \xrightarrow{g} Z$ of composable maps, we have $g_* \circ f_* = (g \circ f)_*$.

Proof. 1. If X is a CW complex, the cellular chain complex $C_*^{\text{cell}}(X)$ of X is given in degree n by the free abelian group $\mathbb{Z}[\{e_\alpha^n\}_\alpha]$ on the n -cells of X . The differential is given on an $(n+1)$ -cell e_α^{n+1} by $de_\alpha^{n+1} = \sum_\beta d_{\alpha\beta} e_\beta^n$ where $d_{\alpha\beta}$ is the degree of the map

$$S_\alpha^n \xrightarrow{\psi_\alpha} X^{(n)} \rightarrow X^{(n)}/X^{(n-1)} \simeq \bigvee_{\beta'} S_{\beta'}^n \rightarrow S_\beta^n$$

where ψ_α is the attaching map for the cell e_β^{n+1} and the last map is the one collapsing every $S_{\beta'}^n$ for $\beta' \neq \beta$. Then $H_*^{\text{cell}}(X) = H(C_*^{\text{cell}}(X))$ is the homology of this chain complex.

2. We use cellular approximation to homotope f to a cellular map $g : X \rightarrow Y$. Define the map $f'_* : C_*^{\text{cell}}(X) \rightarrow C_*^{\text{cell}}(Y)$ as follows : since f' is cellular it induces a map $\bar{f}'^{(n)} : X^{(n)}/X^{(n-1)} \rightarrow Y^{(n)}/Y^{(n-1)}$. Now the map g_n between cellular n -chains is defined by $f'_*(e_\alpha^n) = \sum_\beta \delta_{\alpha\beta} \varepsilon_\beta^n$ where ε_β^n is a labelling of the n -cells of Y and $\delta_{\alpha\beta}$ is the degree of the map

$$S_\alpha^n \hookrightarrow \bigvee_\alpha S_\alpha^n \simeq X^{(n)}/X^{(n-1)} \xrightarrow{\bar{f}'^{(n)}} Y^{(n)}/Y^{(n-1)} \simeq \bigvee_\beta S_\beta^n \rightarrow S_\beta^n.$$

This defines a map of complexes and hence descends to a map $f'_* : H_*^{\text{cell}}(X) \rightarrow H_*^{\text{cell}}(Y)$.

3. Using cellular approximation, f and g are homotopic to cellular maps f' and g' respectively. For an n -cell in X , we have that

$$(g_* \circ f_*)(e_\alpha^n) = g_*(\sum_\beta \delta_{\alpha\beta} e_\beta^n) = \sum_\beta \delta_{\alpha\beta} g_*(e_\beta^n) = \sum_\beta \sum_\gamma \delta_{\alpha\beta} \delta_{\beta\gamma} e_\gamma^n$$

where $\{e_\gamma^n\}$ is a labeling of the n -cells in Z . Now notice that $g' \circ f'$ is a cellular approximation to $g \circ f$, so that we might use this map to define $(g \circ f)_*$. Let us write

$$(g \circ f)_*(e_\alpha^n) = \sum_\gamma \delta_{\alpha\gamma} e_\gamma^n,$$

where the coefficients $\delta_{\alpha\gamma}$ are the degree of the map

$$S_\alpha^n \rightarrow \bigvee_\alpha S_\alpha^n \cong X^{(n)}/X^{(n-1)} \rightarrow Y^{(n)}/Y^{(n-1)} \rightarrow Z^{(n)}/Z^{(n-1)} \cong \bigvee_\gamma S_\gamma^n \rightarrow S_\gamma^n \quad (1)$$

We need to show that

$$\sum_{\beta,\gamma} \delta_{\alpha\beta} \delta_{\beta\gamma} = \sum_\gamma \delta_{\alpha\gamma}. \quad (2)$$

Applying $H_n(-)$ to the sequence (1) we obtain

$$\mathbb{Z} \rightarrow \bigoplus_{\alpha} \mathbb{Z} \xrightarrow{f'} \bigoplus_{\beta} \mathbb{Z} \xrightarrow{g'} \bigoplus_{\gamma} \mathbb{Z} \rightarrow \mathbb{Z}$$

where $f'(e_{\alpha}) = \sum_{\beta} \delta_{\alpha,\beta} e_{\beta}$ and $g'(e_{\beta}) = \sum_{\gamma} \delta_{\beta,\gamma} e_{\gamma}$. It follows that through this composition, 1 is sent to $\sum_{\beta} \delta_{\alpha,\beta} \delta_{\beta,\gamma}$, which by definition is the degree $\delta_{\alpha,\gamma}$ of the composition (1). The equation (2) now follows directly, which concludes the proof. \square

\diamond indicates the weekly assignments.