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Exercice 1. Some examples of relative homotopy groups.

1. Compute the relative homotopy groups of the pair (S1 × S1, S1 ∨ S1).

2. What can you say about the relative groups of the pair (RP 2,RP 1)?

Proof. 1. The universal covers of both S1 ×S1 and S1 ∨S1 are contractible (R2 and the Cayley
graph of the free group on two generators respectively), so we only have to identify the
homomorphism i∗ : π1(S

1 ∨S1) → π1(S
1×S1) induced by the inclusion of the wedge into the

product. This is the abelianization F (x, y) → Z2.

The long exact sequence in homotopy allows us to conclude that all homotopy groups (or
sets) πn(S

1×S1, S1∨S1) are trivial (zero or a singleton) except for π2(S
1×S1, S1∨S1). The

latter is the kernel of i∗, i.e. a free group on infinitely many generators.

2. The long exact sequence in homotopy tells us that πn(RP 2,RP 1) ∼= πn(RP 2) for all n ≥ 3.
For n = 2 the long exact sequence takes the form of

1 → Z → π2(RP 2,RP 1) → Z π−→ Z/2Z → π1(RP 2,RP 1) → 1

This tells us that π1(RP 2,RP 1) = 1 while π2(RP 2,RP 1) is a split extension of Z with itself,
i.e. that π2(RP 2,RP 1) ∼= Z ⋊ Z:

1 → Z → π2(RP 2,RP 1) → Z → 1. (1)

This description of π2(RP 2,RP 1) would be sufficient for this exercise, but we can in fact
show that the extension is trivial (Exercise 4.2.11 in Hatcher’s book). If we can show that the
action Z ↷ Z defined by (1) is trivial, it would imply that π2(RP 2,RP 1) ∼= Z×Z. Since the
action is defined by conjugation of Z in π2(RP 2,RP 1), it is sufficient to show that Z lies in
the center of π2(RP 2,RP 1). This is argued by a picture in this post on MathStackExchange.

♢Exercice 2. Some properties of relative homotopy groups.

1. If (A, a) is a pointed space, what are πn(A,A, a) and πn(A, a, a) for n ≥ 1?

2. If A ⊂ X is a homotopy equivalence, show that πn(X,A, a) = 0 for a ∈ A and n ≥ 1.

3. If (X,A, a) is a pointed pair where X is contractible, what can you say about πn(X,A, a) for
n ≥ 1?

4. For a pair (X,A) of path-connected spaces and a ∈ A, show that π1(X,A, a) can be identified
in a natural way with the set of cosets αH of the subgroup H ⊂ π1(X, a) represented by
loops in A based at a.

5. Show that in general, it is not possible to find a group structure on π1(X,A, a) such that
π1(X, a) → π1(X,A, a) is a morphism of groups.

https://math.stackexchange.com/questions/4331980/second-group-homotopy-cw-complex-relative-1-skeleton


Proof. 1. The long exact sequence for pairs shows that πn(A,A, a) = 0 and πn(A, a, a) ∼= π1(A, a)
for all n ≥ 1.

2. By exercise 2.1 of sheet 3, we know that A ⊂ X is a weak homotopy equivalence. The long
exact sequence yields the result.

3. Again, the long exact sequence yields πn(X,A, a) ∼= πn−1(A, a) for all n ≥ 1.

4. Using that π0(A) = 0, the long exact sequence yields a short exact sequence of sets

1 → H → π1(X, a) → π1(X,A, a) → 1.

This yield the desired set bijection. Explicitly, to a map α : (D1, S0) → (X,A) (that is a
path in X starting at a and endpoint in A), we associate a loop s(α) := α · γα : I → X where
γα is a chosen path in A from α(1) ∈ A to a ∈ A (using path connectedness of A). Then the
mapping π1(X,A, a) → π1(X, x)/H defined by α 7→ [s(α)]H is a well defined set bijection
(for you to check).

5. Let S1 ⊂ S1 ∨ S1 be the inclusion of a circle into a wedge. The long exact sequence of the
pair ends with

π2(X,A, a)
0−→ ⟨a⟩ ↪→ ⟨a, b⟩ j∗−→ π1(X,A, a) → 1.

If π1(X,A, a) had a compatible group structure, it would imply that ⟨a⟩ = ker(j∗) is a normal
subgroup of ⟨a, b⟩, which is not true.

Exercice 3. An H-cogroup structure in pointed pairs.
Recall that the category Top

(2)
∗ of pointed pairs has objects (X,A, a) where a ∈ A ⊂ X and mor-

phisms (X,A, a) → (Y,B, b) are continuous maps f : X → Y such that f(A) ⊂ B and f(a) = b.

Given a pointed pair (X,A, a), show that the group structure on πn(X,A, a) for n ≥ 2 is induced

by an H-cogroup structure on (Dn, Sn−1, ∗) in the category Top
(2)
∗ of pairs of pointed spaces.

Observe first that the pinch map is not a map of pointed spaces when n = 1. It would correspond
to identify the “equator” of D1 ≈ [−1; 1] which should become the base point, but the base point
of S0 is 1...
When n ≥ 2 this works. Let us write Dn−1 ⊂ Dn for the subspace of the n-disc consisting of all
points whose last coordinate is zero (for the disc D2 in R2 this is just the interval on the Ox axis).
The intersection of Dn−1 with Sn−1, the boundary of Dn is its equator, and it is not empty since
n ≥ 2. Therefore the pinch map that collapses Dn−1 induces a pointed map of pairs

(Dn, Sn−1) → (Dn ∨Dn, Sn−1 ∨ Sn−1)

We claim this is a co-H-group in the category of pointed pairs. The map to the base point (1, 1),
seen as a pair of identical singletons provides a neutral element. The same homotopy as in the
absolute case can be used to show that, and the associativity goes through in the same way.

We deal with the inverse in the n = 2 case, and then suspension provides the right map for larger
n > 2. Instead of D2 we define ι on I2, where we view D2 as this square with the boundary except



the bottom I × 0 collapsed (we indicate this in red on the pictures below). This bottom segment
is then identified with the boundary circle of the disc.
The comultiplication (pinch) map is given by collapsing the segment 1/2× I:

The inverse is the reflection along this same axis, the multicolored arrows on the bottom seg-
ment show the direction of the loop along the boundary and the decorative spiral illustrates the
orientation of the square:

Therefore the axiom for the inverse we have to verify is whether the composition of the pinch map,
followed by the identity wedge the inverse, and finally by the fold map, is null-homotopic, as a map
of pairs. We see below on the left the effect of this triple composition on the original square On the
bottom segment I × 0 the situation is the one we know from the absolute case, the picture below
on the right explains one possible nullhomotopy:

To conclude we have to extend this nullhomotopy to the whole cube indicated below on the left.
It contains the above nullhomotopy on the bottom square and should start in the back with the
triple composition, and end with a constant map to the base point. This homotopy is hard to draw



entirely, so we simply indicate on the right a vertical slice at the dashed position on the left:

Exercice 4. Extending the sequence of a pair.

1. For a pointed pair (X,A, a), show that the sequence π1(X, a) → π1(X,A, a)
∂→ π0(A, a) →

π0(X, a) is exact.

2. How can you define π0(X,A, a) so that · · · → π0(A, a) → π0(X, a) → π0(X,A, a) → 0 is
exact?

Proof. 1. Recall that exactness for sets means that kernel and image coincide, where we choose
a base point in each of these sets instead of a neutral element. This base point is always the
constant map to the base point a ∈ A ⊂ X. Then kernel means the subset of those elements
whose image is the class of this constant map ca.

To compare kernels with images it is convenient to use the description of π1(X; a) not as
loops, but paths D1 → X such that the boundary S0 is sent to the base point a. The map j∗
is then simply induced by the inclusion of pairs (X, a) ⊂ (X,A).

2. One could define π0(X, a; a) as π0(X/A; Ā). The map collapsing A makes a single path
component out of all those of X containing a point in A. It is clearly surjective and its kernel
consists precisely of the components of X intersecting A.

♢Exercice 5. The long exact sequence of a triple.
A pointed triple (X,A,B, b) consists of spaces X,A,B with B ⊂ A ⊂ X and a basepoint b ∈ B.
For each n ≥ 1, define a ’boundary’ map ∂ : πn(X,A, b) → πn−1(A,B, b) as the composite

πn(X,A, b)
δ→ πn−1(A, b)

i→ πn−1(A,B, b) where δ is the connecting map in the sequence for (X,A)
and i is induced by the inclusion.

Show that there is a long exact sequence

· · · → πn(A,B, b) → πn(X,B, b) → πn(X,A, b)
∂→ πn−1(A,B, b) → · · · → π1(X,A, b).

Hint. You can write down three long exact sequences of pairs and put them together in the form
of a braided diagram. The rest is formal so you don’t have to use the explicit formulas.



Proof. Check out this video https://www.youtube.com/watch?v=z5gWuOmUezs where the long
exact sequence of a triple is proved for homology. The same proof works for the long exact sequence
in homotopy. For a computational proof, check out Theorem 4.3 in Hatcher’s book.

♢Exercice 6. Higher relative homotopy groups are abelian.
Let In be the n-cube and Jn−1 ⊂ ∂In = In−1×∂I ∪∂In−1× I be the subset In−1×{0}∪∂In−1× I.
For triples (X,A,B) and (X ′, A′, B′), denote [(X,A,B), (X ′, A′, B′)] the set of homotopy classes of
maps of triples, ie. maps f : X → X ′ such that f(A) ⊂ A′ and f(B) ⊂ B′.
Given a subspaceA ⊂ X and a basepoint a ∈ A, show that πn(X,A, a) ∼= [(In, ∂In, Jn−1), (X,A, {a})].
We can hence represent elements in πn(X,A, a) by maps In → X. For α, β : In → X, define a map
α ∗i β : In → X by the formula

(α ∗i β)(t1, · · · , tn) =
{

α(t1, · · · , 2ti, · · · , tn) if 0 ≤ ti ≤ 1
2

β(t1, · · · , 2ti − 1, · · · , tn) if 1
2
≤ ti ≤ 1

1. If n ≥ 2 and i < n, show that ∗i defines a group structure on πn(X,A, a).

2. If i, j < n with i ̸= j, show that ∗i and ∗j satisfy the interchange law:

(α ∗i β) ∗j (γ ∗i δ) = (α ∗j γ) ∗i (β ∗j δ).

3. Use the Heckmann-Hilton argument to show that πn(X,A, a) is an abelian group when n ≥ 3.

4. Find an inclusion of spaces A ⊂ X for which π2(X,A, a) is not abelian.

Proof.

Exercice 7. The action of π1 on πn.
Let (X, x) be a path-connected pointed space and γ a path in X with endpoints x, y ∈ X.

1. Use γ to define an isomorphism φγ : πn(X, x) ∼= πn(X, y) for n ≥ 1.
Hint: you can represent a class in πn(X, x) by a map (Dn, Sn−1) → (X, a).

2. Restricting to loops based at x, show that γ 7→ φγ defines an action of π1(X, x) on πn(X, x).

3. Show that this action is induced from a map Sn → Sn ∨ S1 by an application of the functor
[−, X]∗.
Hint: use the fact that Sn ∼= Dn/Sn−1.

4. * Define similarly an action of π1(A, a) on πn(X,A, a) for n ≥ 1, and show that it is induced
from a map of pairs by application of the functor [−, (X,A)]∗.

Proof.1 & 2. A nice explicit and visual description is on pages 341-342 in Hatcher’s book, using the
model (In, ∂In) for (Dn, Sn−1). One could also describe it directly using the next point.

3. Choose (0, . . . , 1) ∈ Sn as the base point of the n-sphere. Define a map f : Sn → Sn ∨ I by

(x0, . . . , xn) 7→

{
(x0,...,xn−1,2xn)

∥(x0,...,xn−1,2xn)∥ ∈ Sn if 0 ≤ xn ≤ 1/2;

2xn − 1 ∈ I if 1/2 ≤ xn ≤ 1.

https://www.youtube.com/watch?v=z5gWuOmUezs


Notice that f takes the base point to the endpoint of the interval. This map is a homotopy
equivalence with inverse Sn ∨ I → Sn which contracts the interval to the base point of
Sn. Given a path γ in X from x to y, one obtains the base point change isomorphism
πn(X, x) → πn(X, y) defined by g 7→ (g ∨ γ) ◦ f . When we want to restrict to based loops

in X, one considers the composition Sn f−→ Sn ∨ I → Sn ∨ S1, which becomes a based map.
Since representable functors preserves limits, [−, X]∗ : hTop

op
∗ → Set turns wedge sums into

products. It follows that Sn → Sn ∨ S1 induces the action πn(X, x)× π1(X, x) → πn(X, x).

♢ indicates the weekly assignments.


