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Exercice 1. The ’quasi-circle’.
Define the ’quasi-circle’ to be a closed subspace of R2 consisting of a portion of the
graph y = sin(π

x
), the segment [−1, 1] in the y-axis and an arc connecting these two

pieces (see picture).
Show that the quasi-circle has trivial homotopy groups, but is not contractible.

Proof. Let Γ = {(x, sin(π
x
)) | 0 < x ≤ 1} be the portion of the graph, L be the

segment [(0,−1), (0, 1)] and C be the arc joining (0, 0) and (1, 0) containing these
two points. We have Q = Γ ∪ L ∪ C.

Since there is no path from Γ to L without going through C, and because Sn is
compact and connected, any map φ : Sn → X has to avoid a point in Γ, say x ∈ Γ.
But then Q \ {x} has two path connected components which are contractible, so
φ has its image in one of these components and so has to be nullhomotopic. This
proves that πn(Q) = 0 for all n ∈ N.

To show that Q is not contractible, consider the quotient map f : Q → Q/L ≃ S1

which collapses the segment L. We claim that f is not nullhomotopic. This proves
that Q is not contractible since any map with contractible domain is nullhomotopic.
Suppose for a contradiction that H is a nullhomotopy cstx0 ≃ f . Consider the
universal cover p : R → S1 and a lift y0 ∈ R of x0. Since any covering space is a
fibration, we can lift the nullhomotopy H to a nullhomotopy H̃ : Q× I → R:

Q R

Q× I S1

cstx

ι0 pH̃

H

Since f̃ := H̃1 lifts f which collapses the segment L and is injective elsewhere, the
lift f̃ is injective, except maybe on the segment L. But the image of L has to be contained in the
fiber Z of p which is discrete, and thus f̃(L) is a point. The map factors through the quotient by

an injective map ˜̃f : S1 ≃ Q/L → R. But by the intermediate value theorem, there can’t exists
injective maps S1 → R, a contradiction.

♢Exercice 2. Weak equivalences vs. homotopy equivalences
Recall that a weak equivalence is a map f : X → Y that induces isomorphisms on all homotopy
groups f∗ : πn(X, x) ∼= πn(Y, f(x)) for all n and all base points x ∈ X. The objective of this
exercise is to give an idea of how to construct a space weakly equivalent to the circle, but which is
not homotopy equivalent.

1. Show that a homotopy equivalence is a weak equivalence.

2. Consider the finite space X with four points a, b, c, d whose topology is given by the following
list of open subsets: ∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X. Show that X is path connected.



3. Construct a surjective (continuous) map f : S1 → X.

4. Show that the only (continuous) maps X → S1 are constant.

5. Show that the open subspace {a, b, c} ⊂ X is contractible. This shows that X can be seen
as a union of two contractible open subspaces whose intersection is a discrete subspace with
two points.

Proof. 1. Let f : X → Y be a homotopy equivalence with homotopy inverse g : Y → X.
We fix an arbitrary base point x0 ∈ X and show that πn(f) : πn(X, x0) → πn(Y, f(x0))
is an isomorphism for all n. Note that the homotopy gf ≃ 1X is not necessarily pointed
and gf(x0) ̸= x0, so it is not true that [gf ] = [1X ] ∈ [X,X]∗. However we can use a path
x0 → gf(x0) to remedy this problem. We use the following claim:

Claim. Let h : X → X be homotopic to the identity, then πn(h) = φγ : πn(X, x0)
∼=−→

πn(X, h(x0)) is the base point change isomorphism given in exercise 7 of sheet 4, where
γ = H|{x0}×I is the path h(x0) → x0 given by the homotopy H : h ≃ 1X .

Proof. To see this, let f : Sn → X be a pointed map, and write γt the reparametrized path
h(x0) → γ(t). Then φγt(Ht ◦ f) is a based homotopy h ◦ f ≃∗ φγ(f). This implies that
[h ◦ f ] = [φγ(f)] in πn(X, h(x0)) as desired.

Remark. When n = 1, we can recover the proof that a homotopy equivalence induces an
isomorphism on π1, where the map φγ : π1(X, x0) → π1(X, h(x0)) is given by conjugation
λ 7→ γ · λ · γ

But now consider the following diagram:

πn(X, x0) πn(X, f(x0)) πn(X, gf(x0)) πn(X, fgf(x0))
πn(f)

πn(gf)

πn(g)

πn(fg)

πn(f)

The claim shows that the two curved arrows are isomorphisms. This implies by direct inspec-
tion that πn(f) is an isomorphism. This last implication is called the 2-out-of-6 property.

2. The map γ : I → X given by t 7→

{
a t < 1;

d t = 1
is continuous and is a path from a to d in

X. By symmetry of the topology on X, we obtain a path from a to c, and similarly from b
to c.

3. Let f : I → X be the concatenation of paths a → b → c → d → a, which factors through a
surjective map S1 → X.

4. Let f : X → S1 be a continuous map. Since X is path connected, its image f(X) is path
connected as well. But f(X) ⊂ S1 is finite so it must be a point.

5. The open space {a, b, c} can be contracted to c using the homotopy H : {a, b, c}×I → {a, b, c}

defined by (x, t) 7→

{
x t < 1;

c t = 1.
A direct inspection shows that H is continuous.



♢Exercice 3. Higher homotopy groups are abelian.

1. Prove that the fundamental group of any H-space (not necessarily homotopy associative) is
abelian.

2. Prove (again) that for any space X the homotopy groups πn(X) are abelian for n ≥ 2.

Proof. 1. Let X be an H-space with identity e ∈ X and multiplication µ : X × X → X. Let
p, q : I → X be loops in X at e. We want a homotopy p ⋆ q ≃ q ⋆ p. Define F : I × I → X
by the formula (s, t) 7→ µ(p(s), q(t)). Then H(−, 0) = H(−, 1) = µ(p, e) ≃ p and H(0,−) =
H(1,−) = µ(e, q) ≃ q. Now let γ : I → I × I be the path defined by γ(t) = (2t, 0) for
0 ≤ t ≤ 1

2
and γ(t) = (1, 2t − 1) for 1

2
≤ t ≤ 1. Let γ′ : I → I × I be the path defined by

γ(t) = (0, 2t) for 0 ≤ t ≤ 1
2
and γ(t) = (2t− 1, 1) for 1

2
≤ t ≤ 1. Let H : I × I → I × I be a

homotopy γ ≃ γ′. Then F ◦H is a homotopy p ⋆ q ≃ q ⋆ p. (Make a drawing to visualize it).

2. If n ≥ 2, then πn(X) = [Sn, X]∗ ∼= [S1 ∧ Sn−1, X]∗ ∼= [S1,Map∗(S
n−1, X)]∗ ∼= π1(Ω

n−1X) and
Ωn−1X is an H-space, so by 1) its fundamental group is abelian.

♢Exercice 4. Homotopy groups and coverings.

1. Show that a covering space projection p : E → B induces isomorphisms p∗ : πn(E) ∼= πn(B)
for any n ≥ 2 and any choice of basepoint e ∈ E.

2. Compute πn(S
1) for all n ≥ 1.

3. Compute πn(K) for all n ≥ 1, where K is the Klein bottle.

4. Compare the higher homotopy groups of RP 2 with those of S2.

Proof. 1. The lifting property of covering spaces says that given a map f : X → B where X is
a path-connected and locally path-connected space with base point x ∈ X, f admits a lifting
f : X → E (such that p ◦ f = f if and only if f∗(π1(X, x)) ⊆ p∗(π1(E, e)). Furthermore, if
we require the lifting to be pointed, i.e f(x) = e, the the lifting is unique. For X = Sn, the
first part gives us surjectivity of p∗, while the second part gives us injectivity.

2. We know that there is a covering projection R → S1. Since R is contractible, we conclude
that πn(S

1) is trivial for n ≥ 2. It is common knowledge that π1(S
1) ∼= Z.

3. We know that there is a covering projection R2 → K. Since R2 is contractible, we conclude
that πn(K) is trivial for n ≥ 2. Seifert Van Kampen shows that π1(K) ∼= ⟨a, b|abab−1 = 1⟩.

4. We know that there is a covering projection p : S2 → RP 2. We conclude that πn(RP 2) ∼=
πn(S

2) for n ≥ 2. Moreover we know that the fiber of p is in bijection with the index of
the fundamental group of S2 in RP 2. Since the fiber is of cardinality 2, it implies that
π1(RP 2) ∼= Z/2Z.

Exercice 5. Homotopy groups of products.



1. Given a collection of path-connected spacesXα, show that there are isomorphisms πn(
∏

α Xα) ∼=∏
α πn(Xα) for any choices of basepoints xα ∈ Xα.

2. Compute πn(T ) for all n ≥ 2, where T = S1 × S1 is the torus (you can also use Exercise 4).

Proof. 1. We have seen in Sheet 1. thatMap(X,
∏

α Yα) ∼=
∏

αMap(X, Yα) whenX is Hausdorff.
Hence we find Map∗(S

n,
∏

α Xα) ∼=
∏

α Map∗(S
n, Xα). Applying π0, which commutes with

products, we obtain [Sn,
∏

α Xα]∗ ∼=
∏

α[S
n, Xα]∗ as desired.

2. πn(S
1 × S1) ∼= πn(S

1)× πn(S
1) ∼=

{
0 if k = 0 or k ≥ 2;

Z× Z if k = 1.

♢Exercice 6. co-H-groups.

1. Let X be a co-H-group. Show that [X,−]∗ defines a functor from pointed topological spaces
to the category of groups.

2. Let X be a pointed space such that [X,−]∗ defines a functor from pointed topological spaces
to the category of groups. Show that X is a co-H-group.

3. Show that a co-H-map X → X ′ between co-H-groups induces a group homomorphism
[X ′, Y ]∗ → [X, Y ]∗ for any pointed space Y .

Proof. It is a special case of the next exercise, for C = hTopop∗ .

♢Exercice 7. Group objects in categories. Let C be a category with products and a terminal
object I.

1. By analogy with the definition of H-group, define the notion of group object in C so that
group objects in Sets are groups.

2. Show that an object G in C is a group object if and only if morC(−, G) : Cop → Sets factors
through the category of groups. (It is the if part which takes more work as you will have to
identify a neutral element, a multiplication, and an inverse).

3. Identify all group objects in the category of groups.

Proof. 1. Check out the nLab page group object for the definition.

2. We work in a more general setting. Let F : D → D′ be a finite product preserving functor
between categories with finite products. It is immediate to see that F preserves group ob-
jects and group homomorphisms. Stated differently, F induces a functor Grp(F ) : Grp(D) →
Grp(D′). Since the Yoneda embedding C → SetC

op
preserves finite products (limits in gen-

eral), we obtain that morC(−, G) is a group object in SetC
op
. This is easily seen to factor

through the category of groups.

Conversely suppose that F as above is fully faithful. We can again show that F reflects group
objects. For example, if m : F (C) × F (C) → F (C) is a multiplication map, we can lift it
through D(G×G,G) ∼= D′(F (G×G), F (G)) ∼= D′(F (G)× F (G), F (G)) to a multiplication
m′ : G × G → G such that F (m′) = m. This multiplication m′ is associative if and only if



m is by naturality of the isomorphism D(−,−) ∼= D′(F−, F−) : Cop × C → Set. Similarly
we can lift the neutral element, as well as the inverse map, which have the desired properties
by naturality. The result follows by the fact that the Yoneda embedding is fully faithful (by
the Yoneda lemma), and that morC(−, G) is a group object in SetC

op
if and only if it factors

through Grp.

3. Let G be a group with multiplication ⋆. Suppose furthermore that G is a group object in
Grp, with multiplication ◦. Since ◦ : G × G → G is a morphism in Grp, it must satisfy
◦((g, g′) ⋆ (h, h′)) = ◦(g, g′) ⋆ ◦(h, h′). The former is ◦(g ⋆ h, g′ ⋆ h′) = (g ⋆ h) ◦ (g′ ⋆ h′) while
the latter is (g ◦ g′) ⋆ (h ◦ h′). This is exactly the interchange law, which implies that the two
group operation agree and are commutative by the Eckmann-Hilon argument. We conclude
that group objects in Grp are exactly abelian groups.

Exercice 8. The category of pairs of spaces.
Write Top(2) for the category of pairs of spaces. Objects are pairs (X,A) where A ⊂ X and
morphisms (X,A) → (Y,B) are continuous maps f : X → Y such that f(A) ⊂ B.
The set HomTop(2)

(
(X,A), (Y,B)

)
is topologized as a subspace of Map(X, Y ). The resulting space

is denoted Map(2)
(
(X,A), (Y,B)

)
.

1. Show that Top(2) is indeed a category.

2. Show that the forgetful functor Top(2) → Top, (X,A) 7→ X has both a left and a right adjoint.

For pairs (X,A), (Y,B), define (X,A)□(Y,B) = (X × Y,X ×B ∪ A× Y ).

3. Prove the exponential law for pairs of locally compact Hausdorff spaces :

Map(2)
(
(X,A)□(Y,B), (Z,C)

) ∼= Map(2)

(
(X,A),

(
Map(2)((Y,B), (Z,C)),Map(Y,C)

) )
Note that there is an inclusion functor Top∗ ↪→ Top(2) given by (X, x) 7→ (X, {x}).

4. Show that the formula q(X,A) = (X/A, ∗) defines a functor Top(2) → Top∗.

5. Show that q is left adjoint to the inclusion Top∗ ↪→ Top(2). Is it an equivalence of categories?

Proof. 1. Check the axioms.

2. You can easily verify that the left adjoint is given by L(X) = (X, ∅), while the right adjoint
is given by R(X) = (X,X).

3. The LHS of the homeomorphism is a subspace of the LHS of the usual exponential law

Map(X × Y, Z) ∼= Map(X,Map(Y, Z)).

Under this homeomorphism, a direct inspection shows that the LHS corresponds precisely to
the RHS of the exponential law for pairs.

4. The functor is well defined on morphisms because for a map f : X → Y such that f(A) ⊆
B, the composition X → Y → Y/B factors through X/A. Then check that q preserves
composition and identities.



5. The universal property of the quotient states that

HomTop∗((X/A, ∗), (Y,B)) ∼= HomTop(2)((X,A), (Y, y))

as desired.

Exercice 9. Cylinder, cone, suspension and their reduced variants.
Given a space X, write Cyl(X) = X × I, CX = (X × I)/X × {1} and SX = (X × I)/(X × ∂I)
for the cylinder, cone and suspension of X respectively.
Given a pointed spaceX, write Cyl(X) = X⋊I, CX = (X⋊I)/X×{1} and ΣX = (X⋊I)/(X×∂I)
for the reduced versions of the above.

1. Show that Cyl, C, S are functors Top → Top and that Cyl, C,Σ are functors Top∗ → Top∗.

2. Prove that there are natural transformations Cyl → C → S and Cyl → C → Σ.

3. Prove that the following diagram of functors Top → Top is commutative

CylU CU SU

UCyl UC UΣ

.

Here U : Top∗ → Top denotes the forgetful functor.

Proof. It is straightforward to check the three points. The natural transformations Cyl → C → S
are given by the quotient maps X × I → (X × I)/X × {1} → (X × I)/(X × ∂I) and the reduced
case is analogous. In a similar fashion, the vertical transformations in the diagram are given by the
quotient of Cyl(X), CX, SX by {x} × I.

♢ indicates the weekly assignments.


