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♢Exercice 1. Homotopies are paths in a function space.
A homotopy between maps f, g : X → Y is a map H : X × I → Y such that H(−, 0) = f and
H(−, 1) = g. Write H : f ≃ g in such a situation. Given a space X and x, y ∈ X, a path in X
between x and y is a (continuous) map γ : I → X such that γ(0) = x and γ(1) = y. The set
of homotopy classes between X and Y , denoted [X, Y ], is the set of equivalences classes of maps
X → Y under the relation ≃.

1. If X is locally compact Hausdorff, show that there is a bijection between the set of homotopies
f ≃ g and the set of paths in Map(X, Y ) between f and g.

2. Under the same hypotheses, show that [X, Y ] ∼= π0Map(X, Y ).

Proof. 1. Since I is Hausdorff and X is assumed to be locally compact Hausdorff, there is a
homeomorphism Map(X × I, Y ) ∼= Map(I,Map(X, Y )), which restricts to a bijections of
the underlying sets. Moreover, one checks that given a homotopy h : f ≃ g, the adjoint
map a(h) : I → Map(X, Y ), which is defined by a(h)(t) = h(−, t) satisfies a(h)(0) = f and
a(h)(1) = g.

2. Under the bijection proved in 1), two maps f, g : X → Y are homotopic iff they are in the
same path component ofMap(X, Y ), so that the two equivalence relations ≃ and ’being in the
same path component’ are the same on Map(X, Y ), hence the quotient sets are in bijection.

Exercice 2. Composition preserves and detects homotopy equivalences.
Let X, Y, Z be locally compact spaces.

1. If g, g′ : Y → Z are homotopic maps, show that g ◦ − and g′ ◦ − are homotopic maps
Map(X, Y )→Map(X,Z).

2. Show that if g : Y → Z is a homotopy equivalence, then so is g ◦ −.

3. Suppose that g ◦ − is a homotopy equivalence Map(X, Y ) → Map(X,Z) for any space X.
Show that g is a homotopy equivalence.

Proof. 1. If h : Y ×I → Z is a homotopy g ≃ g′, then H :Map(X, Y )×I →Map(X,Z) defined
by H(f, t) = h(−, t) ◦ f is a homotopy (g ◦ −) ≃ (g′ ◦ −).

2. Since g is a homotopy equivalence, it has a homotopy inverse f : Z → Y and we have
homotopies g ◦ f ≃ idZ and f ◦ g ≃ idY . We have to prove that f ◦ − is a homotopy inverse
for g ◦−. By 1) we have that (f ◦−)◦ (g ◦−) = (f ◦g ◦−) ≃ (idY ◦−) = idMap(X,Y ). Similarly
(g ◦ −) ◦ (f ◦ −) = (g ◦ f ◦ −) ≃ (idY ◦ −) = idMap(X,Z).

3. Taking X = {∗} and under the homeomorphisms Map(∗, Y ) ∼= Y and Map(∗, Z) ∼= Z, the
map g ◦ − is identified with g, so that g is a homotopy equivalence.



♢Exercice 3. The half-smash product.
Let (X, x) be a pointed space and Y be an unpointed space. Define the half-smash product X ⋊ Y
to be the collapse (X × Y )/({x}× Y ), with base point {x}× Y . For an unpointed space Y , define
Y+ = Y

∐
{∗} to be Y with a disjoint basepoint.

1. Prove that X ⋊ Y ∼= X ∧ Y+.

2. Prove that for a pointed space Y there is a homeomorphism

Map∗(X+, Y ) ∼= Map(X, Y ).

3. For spaces X, Y with X unpointed and Y pointed, prove the adjunction identity

Map∗(X ⋊ Y, Z) ∼= Map(Y,Map∗(X,Z)).

4. Suppose X, Y, Z are pointed spaces with Y locally compact. Prove that

Map∗(X ⋊ Y, Z) ∼= Map∗(X,Map(Y, Z)).

Proof. 1. We have
X ∧ Y+ = (X × Y+)/({x} × Y+ ∪X × {∗})

= ((X × Y ) ⊔X)/({x} × Y ⊔X)

= (((X × Y ) ⊔X)/X)/({x} × Y )

= (X × Y )/({x} × Y ) = X ⋊ Y.

2. Define a map φ : Map∗(X+, Y ) → Map(X, Y ) by φ(f) = f|X . This map is a home-
omorphism since Map∗(X+, Y ) is a subspace of Map(X+, Y ) and under the homeomor-
phism Map(X+, Y ) ∼= Map(X, Y ) × Y it is identified with the composite Map(X, Y ) →
Map(X, Y )× Y →Map(X, Y ) which is the identity.

3. Using 1) and 2) we have

Map∗(X ⋊ Y, Z) ∼= Map∗(X ∧ Y+, Z)
∼= Map∗(Y+,Map∗(X,Z))
∼= Map(Y,Map∗(X,Z)).

4. Similarly, we find
Map∗(X ⋊ Y, Z) ∼= Map∗(X ∧ Y+, Z)

∼= Map∗(X,Map∗(Y+, Z))
∼= Map∗(X,Map(Y, Z)).

Exercice 4. Some special pullbacks.



1. Let f : X → Y be a map and y ∈ Y . Show that the subspace f−1(y) ⊆ X defined by
{x ∈ X | f(x) = y} makes the following square a pullback of spaces:

f−1(y) X

{y} Y

f .

2. Let f : X → Y be a map and A ⊆ Y . Define a subspace B ⊆ X by {x ∈ X | f(x) ∈ A}.
Find the map g : B → A that makes the following square a pullback of spaces:

B X

A Y

g f .

(once you have identified the map g, you also have to show that the square is a pullback)

Proof. 1. Check the universal property. In general the pullback of X
f→ Z

g← Y is easily shown
to be homeomorphic to the subspace of X × Y defined by {(x, y) | f(x) = g(y)}.

2. Same as before. The map g : B → A is just f|B.

Exercice 5. Some preservation properties of adjoint functors. Let C,D be categories and
let F : C → D, G : D → C be adjoint functors F ⊣ G. Show that F preserves pushouts squares
and that G preserves pullback squares. For example for F , you have to show that if

A B

C D

f

g h

k

.

is a pushout square in C, then

F (A) F (B)

F (C) F (D)

F (f)

F (g) F (h)

F (k)

.

is a pushout square in D. By a similar argument you can show that a left adjoint preserves any
colimit, and a right adjoint preserves any limit.

Proof. The usual proof : if {Xi → X}i is a colimit cone in C, and {F (Xi) → Y }i is a cone
in D, then by adjunction {Xi → G(Y )}i is a cone in C, which factors through {Xi → X}i
by a map φ : X → G(Y ). Then the adjunct map a(φ) : F (X) → Y gives a factorization
{F (Xi)→ F (X)→ Y }i of {F (Xi)→ Y }i which is unique.



♢Exercice 6. The Sierpiński space.
Denote S the Sierpiński space, defined as follows: the underlying set is {0, 1}, with open sets
∅, {1}, {0, 1}. If A ⊂ X is an inclusion of spaces, denote χA : X → {0, 1} the characteristic
function of A, defined by χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise.

1. Given a space X, identify the set HomTop(X,S) of continuous maps X → S.

2. For X compact Hausdorff, show that the singleton {χX} is open in Map(X,S).

Denote TX the topology on X. For a subset A ⊆ X, write OA = {U ∈ TX | A ⊆ U}.

3. Show that {OK | K ⊂ X compact} is the basis for a topology on TX . Write O(X) for the
topology it generates and Open(X) for the space (TX ,O(X)).

4. Show that there is a homeomorphism Map(X,S) ∼= Open(X).

Proof. 1. We show that HomTop(X,S) is in bijection with the set TX of open sets of X. Define
a map φ : HomTop(X,S)→ TX by f 7→ f−1({1}). The inverse is given by U 7→ χU .

2. Since X is compact, one can just say that B(X, {1}) = {χX} is open in Map(X,S).

3. First check that the OK cover TX : we have U ∈ O∅ for any open U ⊆ X since ∅ ⊆ X ic
compact. Now check that for every OK ,OL with K,L ⊆ X compact, there is a C ⊆ X
compact with OC ⊆ OK ∩ OL. We find that OK ∩ OL = OK∪L and K ∪ L is compact so we
are done.

4. There is a bijection φ of the underlying sets by 1). This map is continuous since φ−1(OK) =
{χU |U ∈ OK} = {χU |K ⊆ U} = B(K, {1}). Moreover its inverse ψ is also continuous since
ψ−1(B(K, {1})) = ψ−1(φ−1(OK)) = OK .

Exercice 7*. Problem with locally compact spaces.

1. Show that the category of locally compact spaces is not cocomplete.
Hint: Consider for example the sequence of inclusions R ↪→ R2 ↪→ R3 ↪→ · · ·

2. Show that a colimit of locally compact spaces is compactly generated.

Proof. 1. We want to show that R∞ = colimn Rn is not locally compact. If it were, we could
find a compact neighbourhood K ⊆ R∞ of the point 0. Because R∞ is metrizable, a basis
of neighbourhoods of 0 consists of open balls B(0, r) for r > 0. So B(0, r) ⊂ K for r > 0
sufficiently small. But then B(0, r

2
) ⊆ K is a closed subset of K compact, hence compact.

This is a contradiction: a closed ball in R∞ is not compact. To prove, say, that B(0, 1) is not
compact, it suffices to prove that it is not sequentially compact. But the sequence of basis
vectors {en}n≥0 has no convergent subsequence.

2. Since arbitrary colimits can be formed by disjoint unions and quotients, it suffices to show
that a quotient of a locally compact space is compactly generated. We prove that a quotient
of a compactly generated space is still compactly generated. Since locally compact spaces are
compactly generated, we get the result.



If q : X → Y is a quotient map and X is compactly generated, let kY be the space Y with the
following topology U ⊆ Y is k-open if and only if U ∩K is open for any compact set K ⊂ Y .
Since X is compactly generated, the map q induces a continuous map q : X → kY defined by
x 7→ q(x). Take A ⊆ Y to be open for the k-topology. We wish to show that A is an actual
open of Y . Since q is continuous we have that q−1(A) ⊆ X is open. But q−1(A) = q−1(A).
Because q is a quotient, we find that A is open in Y .

♢ indicates the weekly assignments.


