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Exercice 1. Point-set topology appetizer.
Recall that a space X is normal if any pair of disjoint closed subsets have disjoint neighbourhoods.

1. Show that a compact Hausdorff space is normal.

2. If X is a compact Hausdorff space covered by open subsets Ui, show that there are compact
subspaces Ki ⊆ Ui covering X.

Proof. 1. First prove that if F ⊆ X is a closed subset and x /∈ F , we can find disjoint open
subsets U, V ⊆ X such that x ∈ U and F ⊆ V : for each y ∈ F , can find disjoint opens Uy, Vy
with x ∈ Uy and y ∈ Vy. Then F ⊆

⋃
y∈F Vy, and because F is compact, we can find a finite

subcover V =
⋃n

i=1 Vyi ⊇ F . Now letting U =
⋂n

i=1 Uyi , we have that U is an open containing
x. So U, V are disjoint opens with the desired properties.

Then apply the lemma to each x ∈ F ′ and use the same strategy: for each x ∈ F ′, can find
disjoint opens Ux, Vx such that x ∈ Ux and F ⊂ Vx. Again F

′ is compact and F ′ ⊆
⋃

x∈F Ux,
so we can find a finite subcover U =

⋃m
i=1 Uxi

⊇ F ′. Now V =
⋂m

i=1 Vxi
is an open disjoint

from U and containing F .

2. We use the following fact : if X is normal and F ⊆ X is closed, with open neighbourhood
F ⊆ U , then there exists an open set V ⊆ X such that F ⊆ V ⊆ V ⊆ U . Indeed, U c is
closed and disjoint from F , so there are disjoint open neighbourhoods F ⊆ V and U c ⊆ W .
Therefore V ⊆ W c and since W c is closed, we get V ⊆ W c, hence the conclusion. Now to
prove the claim, since X is compact we can assume the cover to be finite. We use induction
on the number of opens. If X = U1 ∪ U2, then U c

i ⊆ Uj, (i ̸= j) so by the lemma above,
there are opens Vi such that U c

j ⊆ Vi ⊆ Vi ⊆ Ui. Since V
c
1 ∩ V c

2 is closed and contained in the

open U1 ∩ U2, we can find an open W such that V c
1 ∩ V c

2 ⊆ W ⊆ W ⊆ U1 ∩ U2. Now take
K1 = V1 and K2 = V2 ∪W . They are both closed hence compact, and Ki ⊆ Ui. Moreover
K1 ∪K2 = X. This proves the base case n = 2.

Now suppose the result has been proven for a cover ofX by n open sets. Suppose U1, · · · , Un+1

is an open cover of X. Then U =
⋃n

i=1 Ui and Un+1 cover X, so by the preceding question,
we can find compact sets K ⊂ U and Kn+1 ⊆ Un+1 that cover X. Now K is covered by the
Ui ∩K, i ≤ n. Applying the induction hypothesis to this open cover of K, we find compact
sets Ki ⊂ Ui ∩K for i ≤ n. Then K1, · · · , Kn+1 are compact sets that cover X with Ki ⊆ Ui.

Exercice 2. Map(X, Y ) inherits some topological properties of Y .

1. If Y is Hausdorff and X is any space, show that Map(X, Y ) is Hausdorff.

2. If X is compact and Y is metrizable, show that Map(X, Y ) is metrizable.



Proof. 1. Take continuous maps f, g : X → Y with f ̸= g. Then f(x) ̸= g(x) for some x ∈ X.
Because Y is Hausdorff, we can chose disjoint opens U, V ⊆ Y with f(x) ∈ U and g(x) ∈ V .
Writing B(K,U) = {h : X → Y | h(K) ⊆ O} for K ⊂ X and O ⊂ Y , the subsets B({x}, U)
and B({x}, V ) are disjoint opens of Map(X, Y ) that contain f and g respectively.

2. Define a metric on Map(X, Y ) by d(f, g) = supx∈Xd(f(x), g(x)). This is well defined because
X is compact. Indeed the continuous function d(f, g) : X → R, x 7→ d(f(x), g(x)) has
compact image, hence the supremum supx∈Xd(f(x), g(x)) is reached by some x ∈ X (it is a
maximum). Then show that the metric topology and compact open topology on Map(X, Y )
are both finer than each other. Proof in Hatcher Prop. A.13.

♢ Exercice 3. Map(−,−) is a bifunctor on locally compact Hausdorff spaces.
Let X, Y, Z be locally compact Hausdorff spaces.

1. Show that the composition operation

− ◦ − :Map(X, Y )×Map(Y, Z) →Map(X,Z)

is continuous.

2. Given f : X → Y , show that the map − ◦ f :Map(Y, Z) →Map(X,Z) is continuous.

3. Given g : Y → Z, show that the map g ◦ − :Map(X, Y ) →Map(X,Z) is continuous.

Proof. 1. Let f ∈ Map(X, Y ), g ∈ Map(Y, Z), K ⊆ X be a compact set of X and U ⊆ Z be
an open in Z such that

(g ◦ f)(K) ⊆ U.

In other words g ◦ f ∈ B(K,U).

In order to prove that − ◦ − is continuous at g ◦ f , we will find an open W ⊆ Y such that:

(a) its closure W is compact,

(b) f ∈ B(K,W ) and g ∈ B(W,U),

(c) B(W,U) ◦B(K,W ) ⊆ B(K,U).

We are going to construct the open W , using the fact that Y is locally compact1. To do this,
we need the following observation:

For each y in f(K) there is a neighborhood y ∈ Vy such that V y is compact and V y ⊆ g−1(U).

We observe that g−1(U) is a neighborhood of y. Since Y is locally compact, there is some
compact neighborhood y ∈ Ky ⊆ g−1(U). Being a neighborhood, it contains some open set
Vy such that

y ∈ Vy ⊆ Ky ⊆ g−1(U)

1We use the following definition of locally compact: For every point y ∈ Y and open neighborhood y ∈ U ⊆ Y ,
there is some compact neighborhood x ∈ K ⊆ U ⊆ Y .



Since Y is Hausdorff and Ky compact, the latter must be closed. This yields

y ∈ Vy ⊆ Vy ⊆ Ky ⊆ g−1(U)

As closed subsets of compact spaces are compact, we get that Vy is compact, which concludes
the proof of the observation.

We now are able to construct the desired open subset W .
Since f(K) is compact, and {Vx}x∈f(K) is an open cover to f(K), there is x1, · · · , xn ∈ f(K)
such that

f(K) ⊆
n⋃

i=1

Vxi
.

We then define W :=
⋃n

i=1 Vxi
, which yields f ∈ B(K,W ). Clearly W is compact and

W =
n⋃

i=1

V xi
⊆ g−1(U).

The other properties (b) and (c) follow by construction.

2. The map − ◦ f is the restriction of (− ◦ −) to {f} ×Map(Y, Z), hence is continuous.

3. Similarly g ◦ − is the restriction of (− ◦ −) to Map(X, Y )× {g}.

Exercice 4. Compact-open topology vs. product topology.
Recall that for sets X, Y there is a bijection of sets HomSet(X, Y ) ∼=

∏
x∈X Y = Y X .

1. Show that here is a homeomorphism Map(∗, X) ∼= X for any space X. Here ∗ denotes the
one point space.

2. If X is discrete and Y is any space, show that there is a homeomorphism Map(X, Y ) ∼=∏
x∈X Y (the compact-open topology coincides with the product topology).

Proof. 1. There is a bijection φ : X →Map(∗, X) defined by φ(x) = cx where cx : ∗ → X is the
constant map with cx(∗) = x. It suffices to show that φ and its inverse are continuous. A basic
open ofMap(∗, X) is of the form B(∗, U) where U ⊆ X is open. But φ−1(B(∗, U)) = U which
is indeed open in X, so φ is continuous. For the inverse ψ = φ−1, have ψ−1(U) = B(∗, U)
which is open in Map(∗, X) for any open U ⊆ X, so ψ is also continuous.

2. If X is discrete, there is a homeomorphism X ∼=
∐

x∈X ∗, so

Map(X, Y ) ∼= Map(
∐
x∈X

∗, Y ) ∼=
∏
x∈X

Map(∗, Y ) ∼=
∏
x∈X

Y.

♢ Exercice 5. Mapping space into a product.
Let X be a Hausdorff space.



1. Show that there is a homeomorphism Map(X, Y × Z) ∼= Map(X, Y ) ×Map(X,Z) for any
spaces Y, Z.

2. Generalize the previous result to describe the mapping spaceMap(X,
∏

i Yi) for any collection
of spaces {Yi}i∈I .

Proof. 1. There is already a bijection of sets given by φ : f 7→ (f1, f2) = (π1 ◦ f, π2 ◦ f). One
only needs to check that it is continuous and open. Because X is Hausdorff, by a lemma seen
in class subsets of the form B(K,U×V ) form a sub-basis for the topology onMap(X, Y ×Z)
where U ⊆ Y and V ⊆ Z are open. One concludes by noticing that

φ−1(B(K,U)×B(L, V )) = B(K,U × Z) ∩B(L, Y × V );

φ(K,U × V ) = B(K,U)×B(K,V );

for all compact K,K ′ ⊆ X compact and open U ⊆ Y , V ⊆ Z.

2. Same strategy, but keeping in mind that an open in an infinite product
∏

iXi is of the form∏
i Ui where Ui ⊆ Xi is open and all but finitely many Ui satisfy Ui = Xi.

♢ Exercice 6. Space of homeomorphisms.
LetX be a compact Hausdorff space and consider the subspace Homeo(X) ofMap(X,X) consisting
of all homeomorphisms.

1. Show that composition turns Homeo(X) into a group.

2. Show that the inverse is a continuous map ι : Homeo(X) → Homeo(X).

3. Show that the multiplication m : Homeo(X)× Homeo(X)
−◦−−−→ Homeo(X) is continuous.

Proof. 1. In any category C, you can check that the set of automorphisms AutC(c) ⊆ C(c, c) at
any object c ∈ C is a group.

2. Let f ∈ Homeo(X) and B(K,U) an open neighborhood of ι(f) = f−1 in Homeo(X). This
means that

f−1(K) ⊆ U ⇐⇒ K ⊆ f(U) ⇐⇒ f(U)c = F (U c) ⊆ Kc.

Since X is compact, the closed set U c is compact as well, and therefore f ∈ ι−1(B(K,U)) =
B(U c, Kc) which is open.

3. We showed in exercise 3 that Map(X,X)×Map(X,X) →Map(X,X) is continuous. Hence
the restriction to Homeo(X)× Homeo(X) is continuous as well.

Exercice 7. Free loop spaces.
Given a space X, write ΛX =Map(S1, X) for the free loop space of X.

1. Show that the map X → ΛX defined by x 7→ (θ 7→ x) is continuous.



2. Show that the map S1 × ΛX → ΛX defined by (θ, f) 7→
(
θ′ 7→ f(θ + θ′)

)
is continuous.

Proof. 1. If B(K,U) is a basic open of ΛX and we denote c : X → ΛX the map, then
c−1(B(K,U)) = U which is open in X by assumption, so c is continuous.

2. We give two proofs, one is categorical, while the other is a direct, hands on, use of the
definitions.

• Consider the sum + : S1 × S1 → S1, (θ, θ′) 7→ θ + θ′, which is clearly continuous.
Applying the functor Map(−, X) : Top → Top to this + map, and using the enriched
adjunction homeomorphism we obtain a continuous map

Map(S1, X)
Map(+,X)−−−−−−→Map(S1 × S1, X) ∼= Map(S1,Map(S1, X)),

given by f 7→ (θ 7→ (θ′ 7→ f(θ + θ′))). But this map is adjoint to the continuous map

S1 ×Map(S1, X) →Map(S1, X)

given by (θ, f) 7→ (θ′ 7→ f(θ + θ′)), as desired.

• Let ψ : S1 ×ΛX → ΛX the map and let B(K,U) be a basic open of ΛX, together with
(θ, f) such that ψ(θ, f) ∈ B(K,U). Then f(θ +K) ⊆ U , so f ∈ B(θ +K,U). We can
suppose K to be an interval, say K = [s, t]. Because K is closed and contained in the
open f−1(U), we can find ε > 0 such that [s− ε, t+ ε] + θ ⊆ f−1(U). Now let

O = ]θ − ε
2
, θ + ε

2
[×B([s− ε

2
, t+

ε

2
] + θ, U).

Then O is open in S1×ΛX and contains (θ, f) by the choice of ε. Moreover if (θ′, g) ∈ O,
then

ψ(θ′, g)(K) = g(θ′ + [s, t]) ⊆ g
(
]s− ε

2
, t+

ε

2
[+θ

)
⊆ U

which precisely mean that (θ′, g) ∈ ψ−1(B(K,U)). This shows that f ∈ O ⊆ ψ−1(B(K,U)),
i.e. ψ is continuous at (θ, f).

♢ indicates the weekly assignments.


