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Exercice 1. Point-set topology appetizer.
Recall that a space X is normal if any pair of disjoint closed subsets have disjoint neighbourhoods.

1. Show that a compact Hausdorff space is normal.

2. If X is a compact Hausdorff space covered by open subsets U;, show that there are compact
subspaces K; C U; covering X.

Proof. 1. First prove that if F© C X is a closed subset and = ¢ F, we can find disjoint open
subsets U,V C X such that € U and ' C V: for each y € F, can find disjoint opens U,, V,
with € Uy and y € V. Then I’ C UyeF Vy, and because F'is compact, we can find a finite
subcover V = J;, V,, 2 F. Now letting U = (_, U,,, we have that U is an open containing
x. So U,V are disjoint opens with the desired properties.

Then apply the lemma to each x € F’ and use the same strategy: for each x € F’, can find
disjoint opens U,, V,, such that x € U, and F' C V. Again F’ is compact and I’ C | J,.p Us,
so we can find a finite subcover U = |J;", U,, 2 F'. Now V = (", V;, is an open disjoint
from U and containing F'.

2. We use the following fact : if X is normal and F' C X is closed, with open neighbourhood
I C U, then there exists an open set V' C X such that FF C V C vV CUu. Indeed, U¢ is
closed and disjoint from £, so there are disjoint open neighbourhoods £* C V and U° C W.
Therefore V' C W and since W€ is closed, we get V' C W€, hence the conclusion. Now to
prove the claim, since X is compact we can assume the cover to be finite. We use induction
on the number of opens. If X = U; U Uy, then US C Uy, (i # j) so by the lemma above,
there are opens V; such that U 5 C V; CV; C U,. Since VN Vy is closed and contained in the
open U; N Us,, we can find an open W such that VN Vy C W C W C U, NU,. Now take
Ky =V, and Ky = V, UW. They are both closed hence compact, and K; C U;. Moreover
K1 U Ky = X. This proves the base case n = 2.

Now suppose the result has been proven for a cover of X by n open sets. Suppose Uy, - -+, U, 11
is an open cover of X. Then U = |J;_, U; and U, cover X, so by the preceding question,
we can find compact sets K C U and K,,;1 C Uy, that cover X. Now K is covered by the
U;N K, i <n. Applying the induction hypothesis to this open cover of K, we find compact
sets K; C U;NK fort <n. Then Ky, .-, K, are compact sets that cover X with K; C Uj.

m

Exercice 2. Map(X,Y) inherits some topological properties of Y.
1. If Y is Hausdorff and X is any space, show that Map(X,Y") is Hausdorff.

2. If X is compact and Y is metrizable, show that Map(X,Y") is metrizable.




Proof. 1. Take continuous maps f,g : X — Y with f # g. Then f(z) # g(z) for some x € X.
Because Y is Hausdorff, we can chose disjoint opens U,V C Y with f(x) € U and g(z) € V.
Writing B(K,U) ={h: X - Y | h(K) C O} for K C X and O C Y, the subsets B({z},U)
and B({x},V) are disjoint opens of Map(X,Y') that contain f and g respectively.

2. Define a metric on Map(X,Y') by d(f, g) = sup,cxd(f(z), g(x)). This is well defined because
X is compact. Indeed the continuous function d(f,g) : X — R, = — d(f(x),g(z)) has
compact image, hence the supremum sup,.xd(f(x), g(x)) is reached by some z € X (it is a
maximum). Then show that the metric topology and compact open topology on Map(X,Y)
are both finer than each other. Proof in Hatcher Prop. A.13.

[

O Exercice 3. Map(—,—) is a bifunctor on locally compact Hausdorff spaces.
Let X,Y, Z be locally compact Hausdorff spaces.

1. Show that the composition operation
—o—: Map(X,Y) x Map(Y,Z) — Map(X, Z)
is continuous.
2. Given f: X — Y, show that the map —o f: Map(Y,Z) — Map(X, Z) is continuous.
3. Given g : Y — Z, show that the map go — : Map(X,Y) — Map(X, Z) is continuous.

Proof. 1. Let f € Map(X,Y), g € Map(Y,Z), K C X be a compact set of X and U C Z be
an open in 7Z such that

(go f)K)CU.
In other words go f € B(K,U).

In order to prove that — o — is continuous at g o f, we will find an open W C Y such that:

(a) its closure W is compact,

(b) f € B(K,W)and g € B(W,U),

(c) BW,U)o B(K,W) C B(K,U).
We are going to construct the open W, using the fact that Y is locally compact] To do this,
we need the following observation:
For each y in f(K) there is a neighborhood y € V,, such that V, is compact and V,, C g~ (U).

We observe that ¢g~!(U) is a neighborhood of 3. Since Y is locally compact, there is some
compact neighborhood y € K, C ¢7'(U). Being a neighborhood, it contains some open set
V, such that

yEVngyggil(U)

"'We use the following definition of locally compact: For every point y € Y and open neighborhood y € U C Y,
there is some compact neighborhood r € K CU CY.



Since Y is Hausdorff and K, compact, the latter must be closed. This yields
yeV, CV, C K, Cg7'(U)

As closed subsets of compact spaces are compact, we get that Vy is compact, which concludes
the proof of the observation.

We now are able to construct the desired open subset W.
Since f(K) is compact, and {V }se k) is an open cover to f(K), thereis zy,--- , 2, € f(K)

such that .
c v
i=1

We then define W := (J_, V,,, which yields f € B(K,W). Clearly W is compact and
= _ UV
i=1

The other properties (b) and (c¢) follow by construction.
2. The map — o f is the restriction of (— o —) to {f} x Map(Y, Z), hence is continuous.

3. Similarly g o — is the restriction of (— o —) to Map(X,Y) x {g}.

Exercice 4. Compact-open topology vs. product topology.
Recall that for sets X, Y there is a bijection of sets Homge(X,Y) = [[, Y =YX,

1. Show that here is a homeomorphism Map(*, X) = X for any space X. Here % denotes the
one point space.

2. If X is discrete and Y is any space, show that there is a homeomorphism Map(X,Y) =
[L,ex Y (the compact-open topology coincides with the product topology).

Proof. 1. There is a bijection ¢ : X — Map(*, X) defined by ¢(z) = ¢, where ¢, : x — X is the
constant map with ¢, (%) = . It suffices to show that ¢ and its inverse are continuous. A basic
open of Map(*, X) is of the form B(x,U) where U C X is open. But o~ '(B(x,U)) = U which
is indeed open in X, so ¢ is continuous. For the inverse ¢ = ¢! have v~1(U) = B(x,U)
which is open in Map(*, X) for any open U C X, so 9 is also continuous.

2. If X is discrete, there is a homeomorphism X =[] . *, so
Map(X,Y) = Map( H HMap )%’HY
zeX zeX zeX

¢ Exercice 5. Mapping space into a product.
Let X be a Hausdorff space.



1. Show that there is a homeomorphism Map(X,Y x Z) = Map(X,Y) x Map(X, Z) for any
spaces Y, Z.

2. Generalize the previous result to describe the mapping space Map(X, [[,Y;) for any collection
of spaces {Y; }icr.

Proof. 1. There is already a bijection of sets given by ¢ : f +— (f1, f2) = (m o f,m 0o f). One
only needs to check that it is continuous and open. Because X is Hausdorff, by a lemma seen
in class subsets of the form B(K,U x V') form a sub-basis for the topology on Map(X,Y x Z)
where U C Y and V C Z are open. One concludes by noticing that

¢ Y(B(K,U) x B(L,V)) = B(K,U x Z)N B(L,Y x V):
o(K,U x V) = B(K,U) x B(K,V);

for all compact K, K’ C X compact and open U C Y,V C Z.

2. Same strategy, but keeping in mind that an open in an infinite product [[; X; is of the form
1, U; where U; C X, is open and all but finitely many U; satisfy U; = X;.
m

¢ Exercice 6. Space of homeomorphisms.
Let X be a compact Hausdorff space and consider the subspace Homeo(X') of Map(X, X) consisting
of all homeomorphisms.

1. Show that composition turns Homeo(X) into a group.

2. Show that the inverse is a continuous map ¢: Homeo(X) — Homeo(X).
3. Show that the multiplication m: Homeo(X) x Homeo(X) —— Homeo(X) is continuous.

Proof. 1. In any category C, you can check that the set of automorphisms Aute(c) C C(c, c) at
any object ¢ € C is a group.

2. Let f € Homeo(X) and B(K,U) an open neighborhood of «(f) = f~! in Homeo(X). This
means that

fTUE)CU = K C f(U) <= [(U)"=F(U") C K.

Since X is compact, the closed set U¢ is compact as well, and therefore f € .71 (B(K,U)) =
B(U*¢, K¢) which is open.

3. We showed in exercise 3 that Map(X, X) x Map(X, X) — Map(X, X) is continuous. Hence
the restriction to Homeo(X') x Homeo(X) is continuous as well.
[l

Exercice 7. Free loop spaces.
Given a space X, write AX = Map(S!, X) for the free loop space of X.

1. Show that the map X — AX defined by x +— (6 — z) is continuous.



2. Show that the map S' x AX — AX defined by (0, f) — (9’ — f(0+ (9’)) is continuous.

Proof. 1. If B(K,U) is a basic open of AX and we denote ¢ : X — AX the map, then
¢ 1 (B(K,U)) = U which is open in X by assumption, so c¢ is continuous.

2. We give two proofs, one is categorical, while the other is a direct, hands on, use of the
definitions.

e Consider the sum + : S* x St — St (6,0') — 6 + ', which is clearly continuous.
Applying the functor Map(—, X) : Top — Top to this + map, and using the enriched
adjunction homeomorphism we obtain a continuous map

Map(+,X)
R

Map(S*, X) Map(S' x S', X) = Map(S*, Map(S*, X)),

given by f i+ (0 — (¢ — f(6 +¢'))). But this map is adjoint to the continuous map
St x Map(S*, X) — Map(S*, X)

given by (0, f) — (' = f(0+ ")), as desired.

e Let ¢ : ST x AX — AX the map and let B(K,U) be a basic open of AX, together with
(0, f) such that (0, f) € B(K,U). Then f(6 + K) C U, so f € B(0 + K,U). We can
suppose K to be an interval, say K = [s,t]. Because K is closed and contained in the
open f~1(U), we can find € > 0 such that [s —e,t +¢&] + 60 C f~}(U). Now let

O =10 5.0+ 5[xB(ls— 2,1+ -] +6,0).

Then O is open in S' x AX and contains (6, f) by the choice of €. Moreover if (¢, g) € O,
then

U0, ) (K) = g(0' +[5,8) Cg(Js — 5.t + 5[+6) U

which precisely mean that (¢', g) € ¥~} (B(K,U)). This shows that f € O C v~ *(B(K,U)),

i.e. 1 is continuous at (6, f).

]

¢ indicates the weekly assignments.



