
EPFL - Spring semester 2024-2025 J. Scherer
Homotopy theory Sheet 13
Mathematics 20th May 2025

○Exercise 1. The Mittag-Leffler condition.
Given a tower · · · → A2 → A1 → A0 of abelian groups, we say that it satisfies the Mittag-Leffler
condition if for each k, there exists j ≥ k such that im(Ai → Ak) = im(Aj → Ak) for all i ≥ j. We
say that it satisfies the trivial Mittag-Leffler condition if for each k, there exist j ≥ k such that the
map Aj → Ak is zero. In this exercise we show that if a tower {An}n≥0 satisfies the Mittag-Leffler
condition, then lim1An = 0.

1. Show that if all the maps in the tower are surjective, then lim1An = 0.

2. Show that if {An}n satisfies the trivial Mittag-Leffler condition, then lim1An = 0.

3. Show that if {An}n satisfies the Mittag-Leffler condition, then lim1An = 0.
Hint: Introduce the tower {Bn} where Bn = im(Ak → An) for large k.

Proof. 1. Recall that lim1An = coker(id− sh), so we need to show that im(id− sh) =
∏

n An.
Let (bn) ∈

∏
An. Define (an) inductively by a0 = 0, and choose an+1 to be such that

an−fn+1(an+1) = bn (using surjectivity). By construction ((Id−sh)(an))k = ak−fk+1(ak+1) =
bk as desired.

2. Again, we show that (id − sh) is onto, so let (bn) ∈
∏

An. If we work in An and we have
some am ∈ Am for m ≥ n, denote am := (fn+1 ◦ fn+2 ◦ · · · ◦ fm)(am) ∈ An its image in the
group of interest An. Define

an := bn +
∑
k>0

bn+k

which is well defined by the trivial Mittag-Leffler condition. But now we obtain that(
(id− sh)(an)

)
m
= am − fm+1(am+1) = bm +

∑
k>0

bm+k − fm+1(bm+1)−
∑
k>0

fm+1(bm+1+k)

= bm +
∑
k>0

bm+k − bm+1 −
∑
k>0

bm+1+k = bm,

as desired.

3. Define {Bn} as hinted above. By construction the maps in the tower of A• restrict to maps
on {Bn}, to obtain a tower B•, with an inclusion of tower B• ⊆ A• (compatible with the
structure maps). It follows that the quotient tower A•/B• is a well defined tower, so there is
a short exact sequence of towers

0 → B• → A• → (B/A)• → 0.

By the lecture there is an exact sequence lim1B• → lim1A• → lim1(B/A)•. But the first
group is trivial by the first part, and the last group is trivial by the second part. It follows
that lim1A• = 0 as desired.



○Exercise 2. Some consequences of the Whitehead theorem.

1. Let X, Y be simply-connected CW complexes and f : X → Y be a map that induces iso-
morphisms on all homology groups (with integer coefficients). Show that f is a homotopy
equivalence.
Hint: Use the relative Hurewicz theorem.

2. Show that the weak homotopy type of a Moore space M(A, n) is uniquely determined by A
and n, when n > 1.

3. If n > 1, show that Sn × Sn and Sn ∨ Sn ∨ S2n are simply connected spaces with isomorphic
homology groups, but are not homotopy equivalent. Does this fact contradict the theorem
proved above?

4. What can you say about a space X that is simply connected and has the homology of a sphere
Sn for some n > 1?

Proof. 1. As usual we can suppose that f is a cofibration (turn it into one otherwise), so that
we have a good pair (Y,X) in hands. By the long exact sequence in homology, we find that
Hn(Y,X) = 0 for all n ≥ 1. By the long exact sequence in homotopy, we conclude that
the pair is 1-connected. At this point we want to show that π2(Y,X) = 0, and there are
two ways we can go. We can use the relative Hurewicz theorem to deduce that π2(Y,X) =
π2(Y,X)/π1(X) ∼= H2(Y,X) = 0 (we have to mod out the action of π1(X) = 0 since π2(Y,X)
might not be abelian a priori), or observe by the absolute Hurewicz theorem that π2(X) →
π2(Y ) is an isomorphism. Inductively using the relative Hurewicz theorem we find that
πn(Y,X) = 0 for all n. The long exact sequence in homotopy tells us that f is a weak
homotopy equivalence. By the Whitehead theorem, it is a homotopy equivalence.

2. We need to assume that a Moore space M(A, n) is simply connected for n > 1. Otherwise
the uniqueness fails, as witnessed by the ”homology spheres” which have the homology of
spheres, but don’t have the same homotopy type. Let M(A, n) = (

∨
α S

n)∪f (
∨
en+1
β ) be the

construction in the previous exercise sheet, and let M be another simply connected Moore
space. By Hurewicz we find inductively that πk(M) = 0 for k < n, and that πn(M) ∼=
Hn(M) ∼= A. Hence for each α there exists Sn

α → M a generator of πn(M) = A such that

the composition
∨

β S
n f−→

∨
α S

n → M is nullhomotopic (by H say). Hence there exists an
induced map g : M(A, n) → M coming from:

∨
β S

n
∨

α S
n

∨
β D

n+1 M(A, n)

M

f

H

⌟

∃g

Since πn(g) sends generators of A to generators of A, it is an isomorphism. Moreover since
both spaces are (n − 1)-connected, the Hurewicz homomorphisms for both spaces is an iso-



morphism. By naturality, we get a commutative square

πn(M(A, n)) Hn(M(A, n))

πn(M) Hn(M)

∼=

πn(g)∼= Hn(g)

∼=

which shows that Hn(g) is an isomorphism. Hence g induces an isomorphism on homology
groups between simply connected spaces, so it is a homotopy equivalence by the first point.

3. By the cellular approximation theorem, both spaces are simply connected. Moreover by a fast
cellular homology computation, we find that they have the same homology groups, namely Z
in dimension 2n, and Z⊕ Z in dimension n.

To prove that those spaces are not homotopy equivalent, we consider their π2n. First observe
that the pair ((Sn ∨ Sn) × S2n, (Sn ∨ Sn) ∨ S2n) is (3n − 1)-connected by sheet 5, so that
π2n(S

n ∨Sn ∨S2n) ∼= π2n(S
n ∨Sn)× π2n(S

2n) induced by the inclusion. Suppose there exists
f : Sn×Sn → Sn∨Sn∨S2n inducing an isomorphism on π2n. In particular there must exists
α : S2n → Sn × Sn such that the composition

S2n α−→ Sn × Sn f−→ Sn ∨ Sn ∨ S2n ⊆ (Sn ∨ Sn)× S2n π2−→ S2n (1)

is homotopic to the identity. We argue that this cannot happen by showing that

(a) the map α factors through the n-skeleton Sn ∨ Sn ⊆ Sn × Sn;

(b) f sends the n-skeleton to the n-skeleton Sn ∨ Sn ⊆ Sn ∨ Sn ∨ S2n.

When that’s the case, the above composition (1) is the constant map, a contradiction. The
second point (b) is just by the cellular approximation theorem. To show (a), let α = (u, v) ∈
π2n(S

n × Sn) given by maps u, v : S2n → Sn. We claim that α is given by the composition of
the first row of the following diagram:

S2n S2n ∨ S2n Sn ∨ Sn Sn × Sn

S2n Sn Sn

p

1

u∨v

(1,∗) (1,∗) π1

u 1

To prove it, we must show that when projecting the composition to the first factor (respec-
tively the second factor) of Sn × Sn, we obtain u : S2n → Sn (respectively v : S2n → Sn).
But that’s exactly what the rest of the commutative diagram shows! This precisely tells us
that α factors through the n-skeleton Sn ∨ Sn ⊆ Sn × Sn and conclude the proof.

It does not contradict the above theorem, since we need an actual map inducing isomorphisms
on homology groups to prove that the spaces are equivalent.

4. By definition it is a Moore space M(Z, n), so by the first point it is equivalent to the sphere
Sn.



Exercise 3. A noncontractible acyclic space.
The goal of this exercise is to construct a space X that has trivial homology groups (acyclic space)
but is not contractible. This construction is due to Berrick and Casacuberta. Consider the following
diagram of free groups where the index indicates the number of generators:

F1 → F2 → F4 → · · · → F2n → F2n+1 → · · ·

The homomorphism F2n → F2n+1 sends each generator xi of F2n to the commutator [x2i−1, x2i] in
F2n+1 . Denote by P = colimnF2n the colimit of the tower.

1. Describe P and show that P = [P, P ] is a perfect group (equal to its commutator subgroup).

2. Realise this diagram as the π1 of a diagram of wedges of circles. Denote by U the homotopy
colimit (telescope) of the tower.

3. Compute the homotopy groups of U and show that U ≃ K(P, 1).

4. Compute the homology groups Hn(U ;Z) of U .
Hint: Use that U is a CW complex of dimension 2 and the Hurewicz theorem.

5. Conclude that U is acyclic, but not contractible.

Proof. 1. Since every map in the diagram is injective, we find that P is a group with an infinite
(countable) number of generators {x1, x2, . . .}, subject to the relations given by the maps, i.e.
xi = [x2i−1, x2i] for all i ∈ N. By construction every generator xi is a simple commutator,
which implies that P ⊆ [P, P ] as desired.

2. Define the diagram D : (N,≤) → Top on objects by n 7→
∨2n

i=1 S
1, and on morphisms where

D(n ≤ n + 1) is defined for all 1 ≤ i ≤ 2n on the i-th circle by a map S1 →
∨
S1 which

corresponds to [x2i−1, x2i] ∈ π1(
∨2n+1

i=1 S1) = F2n+1 . It has the desired property by construction.

3. Turn this diagram D in an equivalent one D′, where all the maps have been turned into
cofibrations. By the lecture the homotopy colimit U of the diagram D can be computed as
the strict colimit of D′. But since homotopy groups commute with filtered colimit (Sn is
compact so any map Sn → colimiD

′(i) factors through some D(j)), we obtain that

πk(U) ∼= πk(colimnD
′(n)) ∼= colimnπk(D

′(n)) ∼= colimnπk(D(n)) ∼= colimnπk(
2n∨
i=1

S1)

where we used that D′(n) is homotopy equivalent to D(n) by assumption. If k ≥ 2 or k = 0
we find that πk(U) = 0, while π1(U) = colimnF2n = P by definition. By uniqueness of
Eilenberg MacLane spaces, U equivalent to any model of K(P, 1).

4. U is connected, so H̃0(U) = 0. By Hurewicz, we find thatH1(U ;Z) = π1(U)ab = P/[P, P ] = 0.
For k ≥ 2 we use that homology preserves filtered homotopy colimits so that

Hk(U) ∼= Hk(hocolimiD(i)) ∼= colimiHk(D(i)) = colimi0 = 0,

since D(i) is a wedge of circles. To explain that, consider the composition of functors that
defines singular homology:

Top
C•−→ Ch(Ab)

Hk−→ Ab.



The second one preserves filtered colimits (it is a standard exercise). The first one turns
filtered homotopy colimits into filtered colimits. For our case of interest, consider a diagram
X : (N,≤) → Top (instead of an arbitrary filtered diagram). Up to equivalence, we can
suppose it consists of cofibrations only. But now a map ∆k → colimnXn =: X will factor
through some Xm ⊆ X. This construct a map Ck(X) → colimnCk(Xn), which is an inverse
to the canonical map colimnCk(Xn) → Ck(X), and is compatible with the boundaries. This
sketches the proof that C•(hocolimnXn) ≃ colimnC•(Xn).

For k ≥ 3, one can argue that U can be constructed as a mapping telescope of wedges of
spheres, hence U is the gluing of cylinders. In particular, it is a CW-complex of dimension 2,
so that Hk(U) = 0.

5. Combining the previous points.

Exercise 4. A non-null map that is trivial on homotopy and homology groups.
Let η : S3 → S2 be the Hopf fibration and q : T 3 → S3 be the quotient map collapsing the com-
plement of a ball in the 3-dimensional torus T 3 = S1 × S1 × S1 to a point (equivalently, collapsing
the 2-skeleton).

Show that the composite η ◦ q induces the zero map on all homotopy groups and all reduced
homology groups, but is not nullhomotopic. For this last part you can assume a.a. that it is
nullhomotopic and use the fact that the Hopf map is a fibration.

Proof. For k ≥ 2 or k = 0 we have that πk(T
3) = 0, while for k = 1 we have that π1(S

2) = 0.
Also observe that the spheres S2 and S3 have non-trivial reduced homology in distinct degrees.
This argues that the induced map on homotopy and reduced homology groups is trivial. Suppose
however that it was nullhomotopic through a null homotopy H : η ◦ q ≃ cstx. By the homotopy
lifting property, we can lift it to a homotopy L : T 3 × I → S2:

T 3 × {0} S3

T 3 × I S2

q

η∃L

H

such that L0 = q : T 3 → S3, and η ◦L1 = cstx : T 3 → S2 → S3. This last property tells us that L1

has its image in the fiber S1 of η over x, i.e. that L1 factors as T
3 → S1 ⊆ S3. I claim that L0 and

L1 cannot be homotopic. If they were, they would induce equal maps on H3. However L1 is trivial
on H3 since H3(S

1) = 0, while L0 = q is non-trivial. We can see this using the long exact sequence
in homology for the pair (T 3, (T 3)(2)) of the inclusion of the 2-skeleton of T 3:

H3((T
3)(2)) = 0 → H3(T

3)
q−→ H3(S

3) = Z.

This shows that H3(q) is injective, and since H3(T
3) ∼= Z (by cellular homology, or Künneth’s

formula) we conclude that H3(q) ̸= 0.



○ indicates the exercises that will be presented in class.


