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(OExercise 1. The Mittag-Leffler condition.

Given a tower --- — Ay — Ay — Ag of abelian groups, we say that it satisfies the Mittag-Leffler
condition if for each k, there exists j > k such that im(A; — Ay) = im(A; — Ay) for all ¢ > j. We
say that it satisfies the trivial Mittag-Leffler condition if for each k, there exist j > k such that the
map A; — Ay is zero. In this exercise we show that if a tower {4, },>¢ satisfies the Mittag-LefHer
condition, then lim' A, = 0.

1. Show that if all the maps in the tower are surjective, then lim* A, = 0.
2. Show that if {A,}, satisfies the trivial Mittag-Leffler condition, then lim'A, = 0.

3. Show that if {A,}, satisfies the Mittag-Lefler condition, then lim'A, = 0.
Hint: Introduce the tower {B,} where B, =im(Ay — A,) for large k.

Proof. 1. Recall that lim' A,, = coker(id — sh), so we need to show that im(id — sh) = [, An.
Let (b,) € [[A,. Define (a,) inductively by ap = 0, and choose a,.; to be such that
ap— fni1(ans1) = by, (using surjectivity). By construction ((Id—sh)(a,))r = ax— frr1(ars1) =
b, as desired.

2. Again, we show that (id — sh) is onto, so let (b,) € [[ An. If we work in A,, and we have
some a,, € A, for m > n, denote @, := (fry1 0 foao0 -0 fi)(am) € A, its image in the
group of interest A,,. Define

an = b, + Zm

k>0

which is well defined by the trivial Mittag-Leffler condition. But now we obtain that

((id — sh) (an))m = am — fm1(Ami1) = b + Zm — frt1(bmy1) — Z S (bmyr4)

k>0 k>0
= bm + § berk - bm+1 - E bm+1+k = bm;
k>0 k>0

as desired.

3. Define {B,} as hinted above. By construction the maps in the tower of A, restrict to maps
on {B,}, to obtain a tower B,, with an inclusion of tower B, C A, (compatible with the
structure maps). It follows that the quotient tower A,/ B, is a well defined tower, so there is
a short exact sequence of towers

0— By — Ay — (B/A)e — 0.

By the lecture there is an exact sequence lim' B, — lim' Ae — lim'(B/A),. But the first
group is trivial by the first part, and the last group is trivial by the second part. It follows
that lim! A, = 0 as desired.

O



(OExercise 2. Some consequences of the Whitehead theorem.

1. Let XY be simply-connected CW complexes and f : X — Y be a map that induces iso-
morphisms on all homology groups (with integer coefficients). Show that f is a homotopy
equivalence.

Hint: Use the relative Hurewicz theorem.

2. Show that the weak homotopy type of a Moore space M (A, n) is uniquely determined by A
and n, when n > 1.

3. If n > 1, show that S x S™ and S™ vV S™ V 8" are simply connected spaces with isomorphic
homology groups, but are not homotopy equivalent. Does this fact contradict the theorem
proved above?

4. What can you say about a space X that is simply connected and has the homology of a sphere
S™ for some n > 17

Proof. 1. As usual we can suppose that f is a cofibration (turn it into one otherwise), so that
we have a good pair (Y, X) in hands. By the long exact sequence in homology, we find that
H,(Y,X) = 0 for all n > 1. By the long exact sequence in homotopy, we conclude that
the pair is 1-connected. At this point we want to show that me(Y, X) = 0, and there are
two ways we can go. We can use the relative Hurewicz theorem to deduce that mo(Y, X) =
mo(Y, X)/m(X) = Ho(Y, X) = 0 (we have to mod out the action of 7 (X) = 0 since m (Y, X)
might not be abelian a priori), or observe by the absolute Hurewicz theorem that mo(X) —
mo(Y') is an isomorphism. Inductively using the relative Hurewicz theorem we find that
(Y, X) = 0 for all n. The long exact sequence in homotopy tells us that f is a weak
homotopy equivalence. By the Whitehead theorem, it is a homotopy equivalence.

2. We need to assume that a Moore space M(A,n) is simply connected for n > 1. Otherwise
the uniqueness fails, as witnessed by the "homology spheres” which have the homology of
spheres, but don’t have the same homotopy type. Let M(A,n) = (V,S™) Us (V egﬂ) be the
construction in the previous exercise sheet, and let M be another simply connected Moore
space. By Hurewicz we find inductively that 7, (M) = 0 for £ < n, and that w,(M) =
H,(M) = A. Hence for each « there exists S!! — M a generator of m,(M) = A such that

the composition \/ 45" EN V., S" = M is nullhomotopic (by H say). Hence there exists an
induced map g : M(A,n) — M coming from:

Vs —L— v, 5

H ~A
T M

Since 7, (g) sends generators of A to generators of A, it is an isomorphism. Moreover since
both spaces are (n — 1)-connected, the Hurewicz homomorphisms for both spaces is an iso-



morphism. By naturality, we get a commutative square

T (M(A,n)) —— H,(M(A,n))

glﬂn (9) lHn (9)

Tn(M) —=—— H, (M)

which shows that H,(g) is an isomorphism. Hence g induces an isomorphism on homology
groups between simply connected spaces, so it is a homotopy equivalence by the first point.

. By the cellular approximation theorem, both spaces are simply connected. Moreover by a fast
cellular homology computation, we find that they have the same homology groups, namely Z
in dimension 2n, and Z & Z in dimension n.

To prove that those spaces are not homotopy equivalent, we consider their m,,. First observe
that the pair ((S™ Vv S™) x §?" (S™ Vv S™) Vv §?") is (3n — 1)-connected by sheet 5, so that
Ton(S™V SV §) =y (S™V S™) X 9, (S?") induced by the inclusion. Suppose there exists
f:8"xS" — 8"V .S"V S inducing an isomorphism on y,. In particular there must exists
a: 5% — S x S™ such that the composition

SQnﬁS"xS"QSn\/S”\/SQ”Q(S"VS”)sznW—2>S2" (1)
is homotopic to the identity. We argue that this cannot happen by showing that

(a) the map « factors through the n-skeleton S™ v S™ C S™ x S™;
(b) f sends the n-skeleton to the n-skeleton S™V S™ C 8™V S" v S,

When that’s the case, the above composition (1) is the constant map, a contradiction. The
second point (b) is just by the cellular approximation theorem. To show (a), let o = (u,v) €
Ton(S™ x S™) given by maps u,v : S?" — S™. We claim that « is given by the composition of
the first row of the following diagram:

G2 Py gy, gn WU Ggny Gn oy gn s gn

Sl el

S2n y S y S

u 1

To prove it, we must show that when projecting the composition to the first factor (respec-
tively the second factor) of S™ x S™, we obtain u : S?" — S™ (respectively v : S?* — S™).
But that’s exactly what the rest of the commutative diagram shows! This precisely tells us
that a factors through the n-skeleton S™ v .S™ C S™ x S™ and conclude the proof.

It does not contradict the above theorem, since we need an actual map inducing isomorphisms
on homology groups to prove that the spaces are equivalent.

. By definition it is a Moore space M(Z,n), so by the first point it is equivalent to the sphere
S,
m



Exercise 3. A noncontractible acyclic space.

The goal of this exercise is to construct a space X that has trivial homology groups (acyclic space)
but is not contractible. This construction is due to Berrick and Casacuberta. Consider the following
diagram of free groups where the index indicates the number of generators:

Fy—F— Fy— - — Fon — Fonp1 — - -+

The homomorphism Fyn — Fhni1 sends each generator x; of Fon to the commutator [x9;_1, ] in
Fyut1. Denote by P = colim,, F5» the colimit of the tower.

1.
2.

d.

Describe P and show that P = [P, P| is a perfect group (equal to its commutator subgroup).

Realise this diagram as the m; of a diagram of wedges of circles. Denote by U the homotopy
colimit (telescope) of the tower.

Compute the homotopy groups of U and show that U ~ K (P, 1).

Compute the homology groups H,,(U;Z) of U.
Hint: Use that U is a CW complezx of dimension 2 and the Hurewicz theorem.

Conclude that U is acyclic, but not contractible.

Proof. 1. Since every map in the diagram is injective, we find that P is a group with an infinite

(countable) number of generators {x1, 22, ...}, subject to the relations given by the maps, i.e.

x; = [x9;_1, 2] for all i € N. By construction every generator z; is a simple commutator,
which implies that P C [P, P] as desired.

. Define the diagram D : (N, <) — Top on objects by n \/22:1 S1, and on morphisms where

D(n < n+1) is defined for all 1 < i < 2" on the i-th circle by a map S' — \/ S which
2n+1

corresponds to [Te;—1, Z2) € m(Vi_; S') = Fher1. It has the desired property by construction.
Turn this diagram D in an equivalent one D', where all the maps have been turned into
cofibrations. By the lecture the homotopy colimit U of the diagram D can be computed as

the strict colimit of D’. But since homotopy groups commute with filtered colimit (S™ is
compact so any map S" — colim; D’ (i) factors through some D(j)), we obtain that

2n
7,(U) = 7y (colim, D' (n)) = colim, 7, (D' (n)) = colim,, 7, (D(n)) = colimnﬂk(\/ Sh
i=1
where we used that D’(n) is homotopy equivalent to D(n) by assumption. If k > 2 or k=0

we find that 7 (U) = 0, while m(U) = colim, Fy» = P by definition. By uniqueness of
Eilenberg MacLane spaces, U equivalent to any model of K(P,1).

U is connected, so Hy(U) = 0. By Hurewicz, we find that H,(U;Z) = 7, (U)* = P/[P, P] = 0.
For k£ > 2 we use that homology preserves filtered homotopy colimits so that

H(U) = Hy(hocolim; D(i)) = colim; H,(D(7)) = colim;0 = 0,

since D(i) is a wedge of circles. To explain that, consider the composition of functors that
defines singular homology:

Top <% Ch(Ab) 2 Ab.



The second one preserves filtered colimits (it is a standard exercise). The first one turns
filtered homotopy colimits into filtered colimits. For our case of interest, consider a diagram
X : (N,<) — Top (instead of an arbitrary filtered diagram). Up to equivalence, we can
suppose it consists of cofibrations only. But now a map A* — colim, X, =: X will factor
through some X, C X. This construct a map Ci(X) — colim,,Cy(X,,), which is an inverse
to the canonical map colim,Cy(X,) — Cx(X), and is compatible with the boundaries. This
sketches the proof that C,(hocolim,, X,,) ~ colim,,Cs(X,,).

For k > 3, one can argue that U can be constructed as a mapping telescope of wedges of
spheres, hence U is the gluing of cylinders. In particular, it is a CW-complex of dimension 2,
so that H(U) = 0.

5. Combining the previous points.

Exercise 4. A non-null map that is trivial on homotopy and homology groups.

Let n : S® — S? be the Hopf fibration and ¢ : T3 — S® be the quotient map collapsing the com-
plement of a ball in the 3-dimensional torus 7% = S* x S x S! to a point (equivalently, collapsing
the 2-skeleton).

Show that the composite n o ¢ induces the zero map on all homotopy groups and all reduced
homology groups, but is not nullhomotopic. For this last part you can assume a.a. that it is
nullhomotopic and use the fact that the Hopf map is a fibration.

Proof. For k > 2 or k = 0 we have that m,(T®) = 0, while for k¥ = 1 we have that m(5?%) = 0.
Also observe that the spheres S? and S® have non-trivial reduced homology in distinct degrees.
This argues that the induced map on homotopy and reduced homology groups is trivial. Suppose
however that it was nullhomotopic through a null homotopy H : no ¢ =~ cst,. By the homotopy
lifting property, we can lift it to a homotopy L : T° x I — S*:

T3 x {0} —L— 53

- /?
j e} in

T3XIT>SQ

such that Lo = ¢ : T3 — S3, and no L, = est, : T® — S? — 3. This last property tells us that L,
has its image in the fiber St of n over z, i.e. that L; factors as T° — S* C S3. I claim that Ly and
Ly cannot be homotopic. If they were, they would induce equal maps on Hs. However L; is trivial
on Hj since H3(S') = 0, while Ly = ¢ is non-trivial. We can see this using the long exact sequence
in homology for the pair (7%, (T®)®?) of the inclusion of the 2-skeleton of T°:

H3((T*)P) = 0 — H3(T?) % Hy(S?) = Z.
This shows that Hz(q) is injective, and since H3(T®) = Z (by cellular homology, or Kiinneth’s
formula) we conclude that Hs(q) # 0.
O



() indicates the exercises that will be presented in class.



