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○Exercise 1. Some computations of homotopy fibers.

1. Given a pointed space (X, x), turn the map x : ∗ → X into a fibration and compute the
homotopy fiber.

2. Same problem with (∗, 1) : Y → X × Y .

3. Same problem with a constant map X → Y .

4. Use the Hopf fibration to prove that ΩS2 ≃ S1 × ΩS3.

5. Given maps f : X → Y and g : W → Z, turn f × g : X ×W → Y × Z into a fibration and
identify the homotopy fiber.

Proof. 1. The homotopy fiber can be computed by turning x : ∗ → X into a fibration by the
path fibration PX → X where (PX = {ω : I → X|ω(0) = x}), and taking the strict fiber,
which is ΩxX.

2. Since the functor −× Y preserves fibrations (one can lift homotopies on each product com-
ponent), PX × Y → X × Y is a fibration replacement of our map. Its fiber is ΩxX.

3. Our map is equal to the composition X → ∗ → Y . Taking the homotopy fiber of the
composition is the same as taking the homotopy fiber of the second map, yielding ΩyY , and
followed by the homotopy fiber with the first map, yielding ΩyY ×X. This can be visualized
in the following pasting of pullbacks:

X × ΩY ΩY PY

X ∗ Y

⌟ ⌟

4. Consider the Hopf fibration S1 → S3 → S2. From the Puppe sequence for fibrations (Sheet
7, exercise 4) we know that the homotopy fiber of S1 → S3 is ΩS2. But any map S1 → S3 is
nullhomotopic, i.e. homotopic to a constant map. From the previous point we deduce that its
fiber is ΩS3 × S1. Since homotopy fibers are unique up to equivalence, we obtain the result.

5. The product of two fibrations is a fibration, since we can lift the homotopies on each product
component (we used it in the second point). It follows that the second map in X × W ≃
P (f) × P (g) → Y × Z is a fibration. Its strict fiber computes the desired homotopy fiber,
which is given by the product of the homotopy fibers.

○Exercise 2. The fibers of a fibration are homotopy equivalent.
Let p : E → B be a fibration. For each b ∈ B, denote Fb = p−1({b}) the fiber of p at b.



1. Let u : I → B be a path in B from b to b′. Use the HLP for Fb to define a map φu : Fb → Fb′

between the corresponding fibers.

2. If u ≃ v are homotopic paths in B, show that φu ≃ φv are homotopic maps Fb → Fb′ . In
particular show that the homotopy class of φu is well-defined.

3. Deduce that Fb ≃ Fb′ for any b, b′ ∈ B that are in the same path component.

Proof. 1. Consider the following homotopy lifting problem:

Fb E

Fb × I B

i0 p∃Lu

u◦π2

Since the square commutes, there exists a lift Lu : Fb × I → E which, restricted to Fb × {1},
corestricts to a map φu : Fb → Fb′ by commutativity of the lower triangle.

2. Let Lu, Lv : Fb → E be the homotopies ending at φu and φv respectively, and letH : I×I → B
be a homotopy from u = H(0,−) to v = H(1,−) relative to the endpoints. In class we showed
that we have a homeomorphism of pairs (I × I, I × {0} ∼= (I × I, I × {0} ∪ ∂I × I). Taking
the product by X on both sides, we obtain a homeomorphism of pairs

(X × I × I,X × I × {0}) ∼= (X × I × I,X × I × {0} ∪X × ∂I × I),

from which we deduce that fibrations have solutions for lifting problems on the second pair.
Hence consider the following lifting problem

(Fb × I × {0}) ∪ (Fb × ∂I × I) E

(Fb × I)× I I × I B

p∃

π H

where the above map is defined by to be the projection of Fb on Fb×I×{0}, Lu on Fb×{0}×I,
and Lv on Fb×{1}×I. Those are compatible on intersections since the homotopies Lu and Lv

start at the the projections of Fb. The square commutes by definition of the homotopies Lu

and Lv, so there exists a solution L : Fb × I × I → E. Let K = L|Fb×I×{1} : Fb × I → E. The
commutativity of the lower triangle implies that the homotopy K corestricts to K : Fb× I →
Fb′ , while the commutativity of the upper triangle implies that K is a homotopy φu ≃ φv as
desired.

If Lu and L′
u are two choices of homotopies defining φu and φ′

u, this shows that φu ≃ φ′
u, so

the mapping u 7→ φu is well defined up to homotopy.

3. If b, b′ are in the same path connected component, there exists a path u : I → B from b to b′.
There exists an inverse path u from b′ to b such that u∗u ≃∂I cstb and u∗u ≃∂I cstb′ (relative
to endpoints). We obtain maps φu : Fb → F ′

b and φu : Fb′ → Fb which we show are homotopy
inverse of each other. This follows since we can choose φcstb = IdFb

and φcstb′
= IdFb′

, and
φu∗u = φu ◦ φu. For the last one, we consider L : Fb × I → E defined by

(eb, t) 7→

{
Lu(eb, 2t) 0 ≤ t ≤ 1

2
;

Lu(Lu(eb, 1), 2t− 1) 1
2
≤ t ≤ 1.



which renders
Fb E

Fb × I B

i0 pL

(u∗u)◦π2

commutative, and such that φu∗u := L|Fb×{1} = φu ◦ φu, as desired.

Exercise 3. The fundamental group and its action on the fibers.
Let p : E → B be a fibration and b ∈ B. As before denote Fb the fiber of p over b ∈ B. The
interval I is given basepoint 0. Define hAut(Fb) to be the set of (unpointed) homotopy classes of
(unpointed) homotopy equivalences. It is the subset of [Fb, Fb] = π0Map(Fb, Fb) on the maps that
are homotopy equivalences.

1. Use the previous exercise to show that hAut(Fb) is a group and define a group morphism
π1(B, b) → hAut(Fb).

2. Define an action of π1(B, b) on the set of path connected component π0(Fb).

3. Identify this action when p is the path fibration Map∗(I, B) → B.

Proof. 1. It is clearly a group. Define the morphism by [u]∗ 7→ [φu] which is well defined by
the previous exercise. It is a group homomorphism since φcstb ≃ IdFb

, and φu∗v ≃ φv ◦ φu.
Note that the order of composition is reversed since we concatenate from left to right, while
we compose functions from right to left, hence the introduction of the inverse [φu] = [φ−1

u ] =
[φu]

−1.

2. If f ≃ g : Fb → Fb are homotopic map, then π0(f) = π0(g) : π0(Fb) → π0(Fb) are equal. If
f ≃ g are homotopy equivalence, then the induced map on path connected components are
bijections. This shows that the mapping [f ] 7→ π0(f) defines a map hAut(Fb) → Bij(π0(Fb)),
which is a group homomorphism by functoriality of π0. Hence we can compose the two homo-
morphisms we have in hand to obtain the desired action π1(B, b) → hAut(Fb) → Bij(π0(Fb)).

3. The fiber is the loop space Fb = ΩbB, so we obtain an action of π1(B, b) on itself since
π0(ΩB) ∼= π1(B, b). Given a loop u : b → b, one can explicitly construct the lift Lu : ΩbB×I →
Map∗(I, B) appearing in the first point of the previous exercise by (λ, t) 7→ λ ∗ u|[0,t]. This
implies that φu(λ) = λ ∗ u and thus the action is [u] · [λ] = [λ ∗ u]

Exercise 4. A fiber sequence induced by a pair of composable maps.
Let f : X → Y and g : Y → Z be two composable pointed maps.

1. Show that there is an induced map between the homotopy fibers α : Fib(g ◦ f) → Fib(g).

2. Show that the homotopy fiber of α is homotopy equivalent to Fib(f).



Proof. 1. Consider the following pasting of homotopy pullbacks:

P X

Fib(g) Y

∗ Z

α f

⌟

⌟

g

The first pullbacks gives the homotopy fiber of f by definition. By the pasting law for
homotopy pullbacks, P is equivalent to the homotopy pullback of the composition g ◦f . This
yields a map Fib(g ◦ f) ≃ P → Fib(g).

2. By the pasting law for homotopy pullbacks, the homotopy fiber of α is equivalent to the
homotopy fiber of f .

Exercise 5*. The fundamental groupoid and its action on the fibers.
Given a space X the fundamental groupoid of X is the following category denoted ΠX : the objects
are points x ∈ X, and morphisms x → y in ΠX are homotopy classes (with fixed endpoints) [u] of
paths u : I → X with u(0) = x and u(1) = y.

1. Show that ΠX is a category in which every morphism is an isomorphism (a groupoid).

2. What is the set of endomorphisms HomΠX(x, x) of an object x in ΠX?

Given a fibration p : E → B, define a category F as follows: the objects are the different fibers
Fb = p−1({b}) of p, and HomF(Fb, Fb′) = [Fb, F

′
b] is the set of homotopy classes of maps Fb → Fb′ .

3. Define composition of maps and show that F is a category.

4. Use the preceding exercise to define a functor (ΠB)op → F.

Remark. This functor is a truncated version of a very important functor in homotopy theory.
Notice that from this functor alone, one can not recover the fibration p. The failure of (1-)category
theory to be invariant under the homotopy relation (such as pullbacks/pushouts) can be repaired
by working in higher (∞−)category theory. In this framework, one can associate to any map
p : E → B an ∞-functor (Π∞B)op → F∞. From this functor one can actually recover the map
p : E → B, and this forms an equivalence of (∞)-groupoids (Top/B)≃ ≃ Map((Π∞B)op,F∞).

Proof. 1. By construction.

2. It is π1(X, x).

3. By definition.

4. On objects: b 7→ Fb and on morphisms by [u] 7→ [φu].

○ indicates the exercises to be presented in class.


