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(OExercise 1. Some computations of homotopy fibers.

1. Given a pointed space (X, z), turn the map = : * — X into a fibration and compute the

homotopy fiber.

. Same problem with (x,1) : Y — X x Y.

. Same problem with a constant map X — Y.

. Use the Hopf fibration to prove that Q052 ~ St x Q53.

. Givenmaps f: X Y andg: W — Z, turn f x g: X x W — Y X Z into a fibration and
identify the homotopy fiber.

Proof. 1. The homotopy fiber can be computed by turning = : * — X into a fibration by the

path fibration PX — X where (PX = {w: I — X|w(0) = z}), and taking the strict fiber,
which is Q,X.

. Since the functor — x Y preserves fibrations (one can lift homotopies on each product com-
ponent), PX XY — X x Y is a fibration replacement of our map. Its fiber is Q,X.

. Our map is equal to the composition X — x — Y. Taking the homotopy fiber of the
composition is the same as taking the homotopy fiber of the second map, yielding €2, and
followed by the homotopy fiber with the first map, yielding €2,Y x X. This can be visualized
in the following pasting of pullbacks:

X x QY > QY PY

|’ |
> Y

X S %

. Consider the Hopf fibration S* — S* — S%. From the Puppe sequence for fibrations (Sheet
7, exercise 4) we know that the homotopy fiber of S* — S? is Q52. But any map S — S3 is
nullhomotopic, i.e. homotopic to a constant map. From the previous point we deduce that its
fiber is 252 x S!. Since homotopy fibers are unique up to equivalence, we obtain the result.

. The product of two fibrations is a fibration, since we can lift the homotopies on each product
component (we used it in the second point). It follows that the second map in X x W ~
P(f) x P(g) — Y x Z is a fibration. Its strict fiber computes the desired homotopy fiber,
which is given by the product of the homotopy fibers.

]

(OExercise 2. The fibers of a fibration are homotopy equivalent.
Let p: E — B be a fibration. For each b € B, denote F, = p~!({b}) the fiber of p at b.



1. Let w : I — B be a path in B from b to b’. Use the HLP for F to define a map o, : F, = Fy
between the corresponding fibers.

2. If u ~ v are homotopic paths in B, show that ¢, ~ ¢, are homotopic maps F, — Fy. In
particular show that the homotopy class of ¢, is well-defined.

3. Deduce that Fy ~ Fy for any b,b' € B that are in the same path component.
Proof. 1. Consider the following homotopy lifting problem:

Fb%E

A
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FyxI — B
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Since the square commutes, there exists a lift L, : F}, x I — E which, restricted to Fj, x {1},
corestricts to a map ¢, : F, — Fp by commutativity of the lower triangle.

2. Let Ly, L, : F, — E be the homotopies ending at ¢, and ¢, respectively, andlet H : IxI — B
be a homotopy from u = H(0,—) tov = H(1, —) relative to the endpoints. In class we showed
that we have a homeomorphism of pairs (I x I, x {0} = (I x I,I x {0} UOJI x I). Taking
the product by X on both sides, we obtain a homeomorphism of pairs

(X XIxI,XxIx{0})=(XxIxI,XxIx{0}UX x0dl xI),

from which we deduce that fibrations have solutions for lifting problems on the second pair.
Hence consider the following lifting problem

(£, x I x{0}) U (F, x 01 x I) — b

(FyxI)x1I »IxI] —— B

™

where the above map is defined by to be the projection of F, on Fy, x I x {0}, L, on F, x {0} x 1,
and L, on F, x {1} x I. Those are compatible on intersections since the homotopies L,, and L,
start at the the projections of Fy. The square commutes by definition of the homotopies L,
and L,, so there exists a solution L : F, x [ x [ — E. Let K = L|Fbx1x{1} :Fyx I — E. The
commutativity of the lower triangle implies that the homotopy K corestricts to K : Fp, x [ —
Fy, while the commutativity of the upper triangle implies that K is a homotopy ¢, =~ ¢, as
desired.

If L, and L!, are two choices of homotopies defining ¢, and ¢/, this shows that ¢, ~ ¢!, so
the mapping u +— ¢, is well defined up to homotopy.

3. If b,V are in the same path connected component, there exists a path u : I — B from b to b'.
There exists an inverse path @ from b’ to b such that ux@ ~p; cst, and Uxu ~y; csty (relative
to endpoints). We obtain maps ¢, : F, — F} and ¢z : Fyy — F}, which we show are homotopy
inverse of each other. This follows since we can choose .., = Idr, and @cs,, = Idp,, and
Yust = Pz © @, For the last one, we consider L : Fj, x I — E defined by
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which renders
Fb — > F
of 7 l
/
Fb X I ——

(u*u) o7r2

commutative, and such that ¢y.z := L|p, 13 = @z © @u, as desired.

Exercise 3. The fundamental group and its action on the fibers.

Let p: E — B be a fibration and b € B. As before denote Fj the fiber of p over b € B. The
interval I is given basepoint 0. Define hAut(Fy) to be the set of (unpointed) homotopy classes of
(unpointed) homotopy equivalences. It is the subset of [F},, Fy] = moMap(Fy, F,) on the maps that
are homotopy equivalences.

1.

2.
3.

Proof.

Use the previous exercise to show that hAut(F},) is a group and define a group morphism
m(B,b) — hAut(Fy).

Define an action of 7 (B,b) on the set of path connected component mo(F}).
Identify this action when p is the path fibration Map.(I, B) — B.

1. It is clearly a group. Define the morphism by [u], +— [¢z] which is well defined by
the previous exercise. It is a group homomorphism since .y, ~ Idp,, and Q. >~ @, © @,.
Note that the order of composition is reversed since we concatenate from left to right, while
we compose functions from right to left, hence the introduction of the inverse [¢z] = [p, '] =

[Spu]_l-

If f~g:F, — F, are homotopic map, then mo(f) = mo(g) : mo(Fp) — mo(Fp) are equal. If
f ~ g are homotopy equivalence, then the induced map on path connected components are
bijections. This shows that the mapping [f] — 7o(f) defines a map hAut(F,) — Bij(mo(Fy)),
which is a group homomorphism by functoriality of my. Hence we can compose the two homo-
morphisms we have in hand to obtain the desired action m (B, b) — hAut(Fy,) — Bij(m(Fyp)).

The fiber is the loop space F, = ,B, so we obtain an action of m(B,b) on itself since
mo(2B) = m (B, b). Given aloop u : b — b, one can explicitly construct the lift L, : Q,BxI —
Map. (I, B) appearing in the first point of the previous exercise by (A, ) = A * u|j. This
implies that ¢,(\) = A % u and thus the action is [u] - [A] = [\ x 7]

O

Exercise 4. A fiber sequence induced by a pair of composable maps.
Let f: X - Y and ¢g: Y — Z be two composable pointed maps.

1.
2.

Show that there is an induced map between the homotopy fibers a: Fib(g o f) — Fib(g).

Show that the homotopy fiber of « is homotopy equivalent to Fib(f).



Proof. 1. Consider the following pasting of homotopy pullbacks:

P— X

Lo b

* —— 7

The first pullbacks gives the homotopy fiber of f by definition. By the pasting law for
homotopy pullbacks, P is equivalent to the homotopy pullback of the composition go f. This
vields a map Fib(go f) ~ P — Fib(g).

2. By the pasting law for homotopy pullbacks, the homotopy fiber of « is equivalent to the
homotopy fiber of f.
O

Exercise 5*. The fundamental groupoid and its action on the fibers.

Given a space X the fundamental groupoid of X is the following category denoted I1X : the objects
are points x € X, and morphisms x — y in [1X are homotopy classes (with fixed endpoints) [u] of
paths u : I — X with u(0) = z and u(1) = y.

1. Show that IIX is a category in which every morphism is an isomorphism (a groupoid).
2. What is the set of endomorphisms Hompx(z,x) of an object x in I1X7?

Given a fibration p : £ — B, define a category J as follows: the objects are the different fibers
Fy = p ' ({b}) of p, and Homg(F;, Fyy) = [F}, F}] is the set of homotopy classes of maps Fj, — Fy.

3. Define composition of maps and show that J is a category.
4. Use the preceding exercise to define a functor (IIB)”? — F.

Remark. This functor is a truncated version of a very important functor in homotopy theory.
Notice that from this functor alone, one can not recover the fibration p. The failure of (1-)category
theory to be invariant under the homotopy relation (such as pullbacks/pushouts) can be repaired
by working in higher (oco—)category theory. In this framework, one can associate to any map
p: E — B an oo-functor (II,.B)®? — F,. From this functor one can actually recover the map
p: E' — B, and this forms an equivalence of (0co0)-groupoids (T'op/B)~ ~ Map((Iloc B)%?, Fs)-

Proof. 1. By construction.
2. Tt is m (X, z).
3. By definition.

4. On objects: b— F, and on morphisms by [u] — [@,].

() indicates the exercises to be presented in class.



