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○Exercise 1. Join of topological spaces.
Define the join of two spaces X and Y to be the quotient X × Y × I/ ∼ where the equivalence
relation is generated by (x, y, 0) ∼ (x′, y, 0) and (x, y, 1) ∼ (x, y′, 1) for x, x′ ∈ X and y, y′ ∈ Y .

1. Show that X ∗ Y ≃ hocolim(X ← X × Y → Y ) where both maps collapse one wedge
component. Draw the case X = Y = S0.

2. Find a cofibration X ∗ Y ↪→ CX × CY .

3. Show that the maps X → X ∗ Y and Y → X ∗ Y are nullhomotopic.

4. Discuss the case of two spheres and identify Sn ∗ Sm.

5. Can you define a pointed version of the join? How does it differ from its unpointed version?

Proof. 1. Turn the projection pX : X × Y → X into a cofibration to get the mapping cylinder
MpX = X×Y × I/ ∼ where the relation is generated by (x, y, 0) ∼ (x, y′, 0) for all x ∈ X and
y, y′ ∈ Y . The strict pushout of (MPX

← X × Y → Y ) is X × Y × I/ ∼ where the relation
is that of the join. This computes the desired homotopy pushout. We observe by a drawing
that S0 ∗ S0 = S1.

2. Consider the two cofibrations X ↪→ CX and Y ↪→ CY and notice that X × Y ↪→ X × CY
turns pX into a cofibration. Indeed this is in fact exactly the mapping cylinder construction:

X × CY ∼= X × Y × I/(x, y, 0) ∼ (x, y′, 0) ∼= MpX .

Notice that the pushout of X × CY ←↩ X × Y ↪→ CX × Y is a reparametrized join, i.e.
is homeomorphic to X ∗ Y . But this pushout is precisely the pushout product of the two
cofibrations we started with, hence the canonical map X ∗ Y → CX × CY is a cofibration
(by the lectures).

3. The map is given X ≃ X × CY → X ∗ Y , hence is x 7→ [(x, y, 1)] for any y ∈ Y . Consider
the map ιy0 : X → X ×Y given by the inclusion of some arbitrary point y0 ∈ Y and consider
the following diagram:

X X × Y X

Y X ∗ Y

ιy0 pX

pY iX

iY

which commutes up to homotopy (since it’s a homotopy pushout). The top composition is
equal to the identity, while the composition pY ◦ ιy0 = cy0 is the constant map, hence factors
through the point. It follows that iX = iX ◦ pX ◦ ιy0 ≃ iY ◦ pY ◦ ιy0 = iY ◦ cy0 which factors
through the point, hence is nullhomotopic.



4. Using the next exercise, Sn ∗ Sm ≃ Σ(Sn ∧ Sm) ≃ ΣSn+m ≃ Sn+m+1. With the explicit
construction, we actually have an homeomorphism. Define a map Sn × Sm × I → Sn+m+1 ⊆
Rn+m+2 by (x,y, t) 7→

√
tx +

√
1− ty. This map is surjective, and injectivity fails on the

edges, where it exactly identifies points in the same equivalence classes of the join construction.
Hence it induces a bijection Sn ∗ Sm → Sn+m+1.

5. Define it the same way, using pointed constructions instead. Hence the pointed join becomes
(X ∧ Y )⋊ I/ ∼ with the same identifications as the unpointed join.

Exercise 2. Some practice with homotopy pushouts.
In this exercise, X, Y are well-pointed spaces.

1. Show that hocolim(X ← X ∨ Y → Y ) is contractible.

2. If f : X → Y is a pointed map and g : Y → C(f) its homotopy cofiber, show that C(f) ≃
hocolim(∗ ← X

f→ Y )

3. Show that X ∗ Y ≃ Σ(X ∧ Y ).

Proof. 1. We give two proofs.

(a) We can turn the maps into cofibrations by X ∨ Y ↪→ CX ∨ Y ≃ Y and X ∨ Y ↪→
X ∨CY ≃ Y . The homotopy pushout is equivalent to the strict pushout of (X ∨CY ←↩
X ∨ Y ↪→ CX ∨ Y ), which is CX ∨ CY , a contractible space. This is visual, but you
can check it using fubini’s theorem (for strict pushouts).

(b) We use Fubini’s theorem for homotopy pushouts on

∗ X X

∗ ∗ ∗

Y Y ∗

which directly yields the result.

2. The homotopy colimit can be computed by turning X → ∗ into a cofibration, and then
taking the strict pushout. But X ↪→ CX is such a replacement, and by definition C(f) =
colim(CX ←↩ X → Y ), hence they coincide.

3. This is an application of Fubini’s theorem for homotopy pushouts applied to

∗ X X

∗ X ∨ Y X × Y

∗ Y Y



The homotopy colimit of this square is the homotopy pushout of the homotopy pushout of
the rows, i.e. hocolim(∗ ← X ∧ Y → ∗) ≃ Σ(X ∧ Y ), as well as the homotopy pushout of
the homotopy pushout of the columns, i.e. hocolim(∗ ← ∗ → X ∗ Y ) ≃ X ∗ Y , as desired.
Note that we used the X, Y are well pointed spaces to deduce that X ∨ Y ↪→ X × Y is a
cofibration.

Exercise 3. Examples of joins.

1. Recall that S0 = ∂I is the two point discrete space. What is S0 ∗ S0?

2. Identify Sn ∗ Sm (up to homotopy) for any n,m ≥ 0.

3. Show that X ∗ {∗} ∼= CX for any space X.

Proof. 1. See exercise 1.4

2. See exercise 1.4

3. By definition X ∗ {∗} = X × {∗} × I/ ∼= X × I/ ∼ where the relation is generated by
(x, 0) ∼ (x′, 0). This is precisely CX.

○Exercise 4. Pasting law for homotopy pushouts.

1. Suppose given a homotopy commutative diagram

X Y Z

X ′ Y ′ Z ′

in which the left square XY Y ′Y is a homotopy pushout. Prove that le right square Y ZZ ′Y ′

is a homotopy pushout if and only if the outer square XZZ ′X ′ is a homotopy pushout.

2. Show that the mapping cone (homotopy cofiber) of a nullhomotopic map f : X → Y is
equivalent to ΣX ∨ Y .

3. Show that Σ(X × Y ) ≃ Σ(X ∧ Y ) ∨ ΣX ∨ ΣY for any well-pointed spaces X, Y .

4. Discuss the case of the torus (when X = Y = S1) and compare the cell decomposition of the
torus and the splitting of its suspension.
Hint: Use the pasting law for pushouts repeatedly. Start with the join from Exercise 2.

Proof. 1. By definition, the square XYX ′Y ′ is a homotopy pushout if and only if when one
turns Y → X into a cofibration X ↪→ X̃ ′ ≃−→ X ′ with strict pushout Ỹ ′, there exists a map
X̃ ′ → Y ′, homotopic to X̃ ′ → X ′ → Y ′, making the composition X → X̃ ′ → Y ′ strictly equal
to X → Y → Y ′, and such that the comparison map Ỹ ′ → Y is an equivalence.



By assumption, the left square is a homotopy pushout. We can depict the situation as follows:

X Y Z

X̃ ′ Ỹ ′ Z̃ ′

X ′ Y ′ Z ′

≃
∃

⌟

≃

⌟

Notice that since pushouts preserve cofibrations, the vertical middle composition is the cofi-
bration replacement of Y → Y ′ that we use. We know that the pasting law holds for strict
pushout. Suppose that {second square, third square} = {right square, large square} as sets
(unordered) to fix the terminology. Suppose that the second square is a homotopy pushout,
so that the corresponding strict square is a strict pushout and there exists a second dotted
arrow inducing a comparison map f : Z̃ ′ → Z which is an equivalence. From the second
dotted arrow one can construct a third dotted arrow for the third square, such that the in-
duced comparison map Z̃ ′ → Z is exactly f , hence an equivalence. This proves that the third
square is a homotopy pushout, as desired.

2. A nullhomotopic map X → Y is homotopic to X → ∗ → Y where the second map picks the
apex element of the nullhomotopy. Hence the homotopy cofiber of X → Y is the same as
the homotopy cofiber of the composition X → ∗ → Y (by homotopy invariance of homotopy
pushouts). But by the first point, this is the iterated homotopy pushout

X ∗ Y

∗ ΣX ΣX ∨ Y

⌟ ⌟

Both squares are homotopy pushouts, hence so is the rectangle.

3. Consider the following diagram:

X × Y X ∗

Y Σ(X ∧ Y ) ΣX ∨ Σ(X ∧ Y )

∗ ΣY ∨ Σ(X ∧ Y ) Σ(X ∧ Y ) ∨ ΣX ∨ ΣY.

The top left square is a homotopy pushout by exercise 1 and exercise 2. Since the two
maps X → X ∗ Y and Y → X ∗ Y are nullhomotopic, so using the previous point the top
right and bottom left squares are homotopy pushouts. The bottom right square is a strict
pushout. Since the hooked arrows are cofibrations (X and Y are well-pointed), it is also a
homotopy pushout. But now using the pasting law for homotopy pushouts, the large square
is also a homotopy pushout. By (homotopy) uniqueness of homotopy pushouts, we obtain
Σ(X × Y ) ≃ Σ(X ∧ Y ) ∨ ΣX ∨ ΣY as desired.



4. We have that ΣT = Σ(S1 × S1) ≃ Σ(S1 ∧ S1)∨ΣS1 ∨ΣS1 ≃ S3 ∨ S2 ∨ S2. This equivalence
might seem surprising since the torus is constructed by attaching a 2-cell to S1 ∨ S1 with a
non-trivial path given by aba−1b−1 in π1(S

1∨S1). The above formula tells us that suspending
this construction renders the attaching map trivial, removing this twisted identification of the
boundary of the 2-cell, to obtain an actual copy of S3. The reason is that the suspension of
the attaching map yields the attaching map given by S2 = ΣS1 → Σ(S1∨S1) ∼= ΣS1∨ΣS1 →
S2 ∨ S2, which lives in the abelian group π2(S

2 ∨ S2). Hence the twisted equation aba−1b−1

of the attaching map becomes trivial, rendering it nullhomotopic. The second point of this
exercise tells us that the homotopy pushout, which construct Σ(S1 × S1) b attaching a cell,
is ΣS2 ∨ (S2 ∨ S2), as desired.

○ indicates the exercises to be presented in class.


