

Exercise 1. Different homotopy types that have the same homotopy groups.

Define $\mathbb{R}P^\infty$ as the union $\bigcup_{n \geq 0} \mathbb{R}P^n$ where the inclusion $\mathbb{R}P^n \hookrightarrow \mathbb{R}P^{n+1}$ is induced by the inclusion $S^n \hookrightarrow S^{n+1}$ given by $(x_0, \dots, x_n) \mapsto (x_0, \dots, x_n, 0)$.

Show that $\mathbb{R}P^2$ and $S^2 \times \mathbb{R}P^\infty$ have the same homotopy groups, but are not homotopy equivalent.

Exercise 2. Wedge of cofibrations is a cofibration.

If $i : A \rightarrow X$ and $j : B \rightarrow Y$ are cofibrations of pointed spaces, show that $i \vee j : A \vee B \rightarrow X \vee Y$ is a cofibration.

◊**Exercise 3. Making the identity laws of an H -space strict.**

1. If X and Y are finite CW complexes, show that $X \vee Y \rightarrow X \times Y$ is a cofibration.
Remark : The conclusion still holds when X and Y are only assumed to be well-pointed.
2. Let (X, x) be an H -space and a pointed CW complex. Show that the multiplication $\mu : X \times X \rightarrow X$ is homotopic to a map m for which the basepoint is a strict identity.
3. Apply this strictification to ΩX (no explicit formula is expected).
4. There is another more explicit way to do this. Define the Moore loop space $\Omega_M X$ as the subspace of $\text{map}_*([0, \infty), X) \times [0, \infty[$ consisting of those pairs (α, t) where α is a path starting at x_0 and t is such that $\alpha(s) = x_0$ for all $s \geq t$, i.e. α becomes constant at x_0 after some time t . Show that $\Omega X \simeq \Omega_M X$, and define a product on $\Omega_M(X)$ such that the identity law is strict.

Remark. The composition law you defined is also strictly associative.

◊**Exercise 4. Cofibrations and the extension problem.** Let $i : A \hookrightarrow X$ be a cofibration, and $f \simeq g : A \rightarrow Z$ two homotopic maps.

1. Show that f extends to a map $X \rightarrow Z$ if and only if g does.
2. Let $\varphi : Z \xrightarrow{\sim} Z'$ be a homotopy equivalence. Show that f extends to a map $X \rightarrow Z$ if and only if $\varphi \circ f$ extends to a map $X \rightarrow Z'$.
3. Let $f_0, f_1 : X \rightarrow Z$ be maps that agree on A , ie. $f_0|_A = f_1|_A$. Show that if $\varphi \circ f_0 \simeq \varphi \circ f_1$ rel. A , then $f_0 \simeq f_1$ rel. A .

Exercise 5. Cofiber sequence induced by a composable pair.

Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be pointed maps. Write $C(f)$ for the mapping cone of a map f .

1. Define canonical maps $\alpha : C(f) \rightarrow C(g \circ f)$ and $\beta : C(g \circ f) \rightarrow C(g)$.
2. Show that $C(f) \xrightarrow{\alpha} C(g \circ f) \xrightarrow{\beta} C(g)$ is a cofiber sequence, ie. that β is the mapping cone of the map α .

◊ indicates the weekly assignments.