

Exercise 1. A map homotopic to the identity.

Let X be a pointed space. Define a map $f : \Sigma X \rightarrow \Sigma X$ by the formula $\overline{(x,t)} \mapsto \overline{(x, \min(2t, 1))}$. Show that $f \simeq \text{id}_{\Sigma X}$ is homotopic to the identity.

◊Exercise 2. Pushout squares preserve quotients.

Recall that an embedding is an injective map $j : A \rightarrow X$ which induces a homeomorphism $A \cong j(A)$ onto its image. Suppose the left square in the following diagram is a pushout with j an embedding.

$$\begin{array}{ccccc} A & \xrightarrow{j} & X & \xrightarrow{p} & X/A \\ \downarrow f & & \downarrow F & & \downarrow \overline{F} \\ B & \xrightarrow{J} & Y & \xrightarrow{q} & Y/B \end{array}$$

1. Show that J is also an embedding.
2. Define the induced map $\overline{F} : X/A \rightarrow Y/B$ on the quotients.
3. Show that \overline{F} is a homeomorphism.

Remark. If we work with CW-complexes, the cofibers X/A and Y/B are called homotopy cofibers of j and J respectively, and the pushout is a homotopy pushout. We will see that the converse is also true : the left square is a homotopy pushout if and only if the homotopy cofibers are equivalent ! The same is true for homotopy pullback and homotopy fibers.

◊Exercise 3. The h -coaction on the mapping cone.

Let $f : X \rightarrow Y$ be a map of pointed spaces. Write $C(f)$ for the mapping cone of f defined as $CX \cup_f Y$ where $CX = X \wedge I$ where we take 0 to be the basepoint of I . Define a map $\mu : C(f) \rightarrow \Sigma X \vee C(f)$ by

$$\overline{(x,t)} \mapsto \begin{cases} (\overline{(x, 2t)}, *) & \text{if } 0 \leq t \leq \frac{1}{2} \\ (*, \overline{(x, 2t-1)}) & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}$$

and $y \mapsto y$.

1. Show that for any pointed space Z , the map μ induces a left action of the group $[\Sigma X, Z]_*$ on the pointed set $[C(f), Z]_*$. Here $[-, -]_* = \pi_0 \text{Map}_*(-, -)$ denotes homotopy classes of pointed maps.
2. When f is the inclusion $X \hookrightarrow CX$, show that this action can be identified with left multiplication on the group $[\Sigma X, Z]_*$.

◊Exercise 4. The fiber sequence of a map.

(Only questions (1), (2), (3) are part of the assignment)

Let $f : X \rightarrow Y$ be a map of pointed spaces and consider the sequence of iterated mapping fibers (homotopy fibers)

$$\cdots \longrightarrow F(f_2) \xrightarrow{f_3} F(f_1) \xrightarrow{f_2} F(f) \xrightarrow{f_1} X \xrightarrow{f} Y.$$

Here $f_1 : F(f) \rightarrow X$ is the mapping (homotopy) fiber of f , $f_2 : F(f_1) \rightarrow F(f)$ is the mapping (homotopy) fiber of f_1 , and so on.

1. \diamond Describe the elements of $F(f_1)$ and its topology, together with the map $f_2 : F(f_1) \rightarrow F(f)$.
2. \diamond Define maps $\phi_Y : \Omega Y \rightarrow F(f_1)$ and $\psi_Y : F(f_1) \rightarrow \Omega Y$ that form a pointed homotopy equivalence. Write $j := f_2 \cdot \phi_Y : \Omega Y \rightarrow F(f)$.
3. \diamond Deduce that $F(f_2) \simeq \Omega X$ are homotopy equivalent and show that the following diagram is pointed homotopy commutative

$$\begin{array}{ccc} \Omega X & \xrightarrow{-\Omega f} & \Omega Y \\ \phi_X \downarrow \simeq & & \simeq \uparrow \psi_Y \\ F(f_2) & \xrightarrow{f_3} & F(f_1) \end{array}$$

where $-\Omega f = \iota \cdot \Omega f$ and $\iota : \Omega X \rightarrow \Omega X$ is the inversion map $\omega \mapsto \bar{\omega}$.

4. Deduce that the sequence

$$\Omega X \xrightarrow{-\Omega f} \Omega Y \xrightarrow{j} F(f) \xrightarrow{f_1} X \xrightarrow{f} Y$$

is *h*-exact.

5. Deduce that the following sequence is *h*-exact

$$\dots \longrightarrow \Omega^2 F(f) \xrightarrow{\Omega^2 f_1} \Omega^2 X \xrightarrow{\Omega^2 f} \Omega^2 Y \xrightarrow{-\Omega j} \Omega F(f) \xrightarrow{-\Omega f_1} \Omega X \xrightarrow{-\Omega f} \Omega Y \xrightarrow{j} F(f) \xrightarrow{f_1} X \xrightarrow{f} Y.$$

We know make some observations that will help you have new insights on this exercise, once we have developed the theory of fibrations and homotopy pullbacks.

6. Show that the fiber $f_1^{-1}(x_0)$ is homeomorphic to ΩY , and that the inclusion $\Omega Y \subset F(f)$ is the map j (hence j is an embedding). This tells us that the strict fiber of f_1 is also the homotopy fiber.
7. Likewise, show that the fiber $f_2^{-1}((x_0, c_{y_0}))$ is homeomorphic to ΩX and that the inclusion $\Omega Y \subset F(f_1)$ is $f_3 \cdot \phi_X$. However notice that ΩX is definitely not the fiber of $j : \Omega Y \rightarrow F(f)$ (it is its *homotopy* fiber!).

Exercise 5*. Relating fiber and cofiber sequences.

Let $f : X \rightarrow Y$ be a map of pointed spaces. Define a map $\zeta : F(f) \rightarrow \Omega C(f)$ by the formula

$$\zeta(x, \gamma)(t) = \begin{cases} \gamma(2t) & \text{if } 0 \leq t \leq \frac{1}{2} \\ \frac{\gamma(2t)}{(x, 2t-1)} & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}.$$

Define also $\xi : \Sigma F(f) \rightarrow C(f)$ as the adjoint of ζ . That is, $\xi(x, \gamma, t) = \zeta(x, \gamma)(t)$. Recall that the adjunction $\Sigma \dashv \Omega$ provides maps $\eta_X : X \rightarrow \Omega \Sigma X$ and $\varepsilon_X : \Sigma \Omega X \rightarrow X$ natural in X .

In the following diagram, the top row is obtained from the fiber sequence of f by application of the functor Σ , and the bottom row is obtained by applying Ω to the cofiber sequence of f .

$$\begin{array}{ccccccccccc} \Sigma \Omega F(f) & \xrightarrow{\Sigma \Omega p} & \Sigma \Omega X & \xrightarrow{\Sigma \Omega f} & \Sigma \Omega Y & \xrightarrow{\Sigma \alpha} & \Sigma F(f) & \xrightarrow{\Sigma p} & \Sigma X \\ \downarrow \varepsilon_{F(f)} & & \downarrow \varepsilon_X & & \downarrow \varepsilon_Y & & \downarrow \xi & & \parallel \\ \Omega Y & \xrightarrow{\alpha} & F(f) & \xrightarrow{p} & X & \xrightarrow{f} & Y & \xrightarrow{i} & C(f) & \xrightarrow{\pi} & \Sigma X \\ \parallel & & \downarrow \zeta & & \downarrow \eta_X & & \downarrow \eta_Y & & \downarrow \eta_{C(f)} & & \\ \Omega Y & \xrightarrow{\Omega i} & \Omega C(f) & \xrightarrow{\Omega \pi} & \Omega \Sigma X & \xrightarrow{\Omega \Sigma f} & \Omega \Sigma Y & \xrightarrow{\Omega \Sigma i} & \Omega \Sigma C(f) & & \end{array}$$

Show that the diagram is homotopy commutative. Which of the squares commute strictly ?

Hint : there are only two explicit homotopies to write.

◊ indicates the weekly assignments.