

◊**Exercise 1. Cellular approximation for pairs.**

1. Show that the inclusion $S^{n-1} \times I \cup D^n \times 0 \subset D^n \times I$ is a strong deformation retract.
2. Prove that the inclusion $A \hookrightarrow A \cup_f e^n = X$ verifies the HEP (Homotopy Extension Property) : Given a map $f: X \rightarrow Z$ and a homotopy $G: A \times I \rightarrow Z$ starting at $f|_A$, there exists a homotopy $F: X \times I \rightarrow Z$ starting at f and extending G .
3. Show that every map $f: (X, A) \rightarrow (Y, B)$ of CW pairs is homotopic through maps $(X, A) \rightarrow (Y, B)$ to a cellular map.

Exercise 2. Connectivity of some pairs. A pair (X, A) is n -connected if $\pi_k(X, A, a) = 0$ for all $k \leq n$ and any basepoint $a \in A$. For $k = 0$, we defined $\pi_0(X, A) = \pi_0(X)/i_*(\pi_0(A))$ where $i_*: \pi_0(A) \rightarrow \pi_0(X)$ is induced by the inclusion. The condition says here that A intersects every path component of X .

1. What are the connectivities of the pairs $(S^n, S^k), (\mathbb{R}P^n, \mathbb{R}P^k)$ and $(\mathbb{C}P^n, \mathbb{C}P^k)$ for $n > k$?
2. If X is a CW complex with $X^{(n)} = *$, what can you say about the connectivity of ΣX and of the pair $(\Sigma X, X)$?

◊**Exercise 3. Connectivity of some more pairs.**

1. Show that if X and Y are CW complexes with $X^{(m)} = *$ and $Y^{(n)} = *$, then the pair $(X \times Y, X \vee Y)$ is $(m+n+1)$ -connected, as is the smash product $X \wedge Y$.
2. Prove that the inclusion $S^n \vee S^n \hookrightarrow S^n \times S^n$ induces an isomorphism on π_k for all $k < 2n-1$ (and a surjection if $k = 2n-1$).
3. For X a CW complex, show that the pair $(X, X^{(n)})$ is n -connected. Here $X^{(n)}$ denotes the n -skeleton of X .

◊**Exercise 4. An extension criterion.**

1. Given a CW pair (X, A) and a map $f: A \rightarrow Y$ with Y path-connected, show that f can be extended to a map $X \rightarrow Y$ if $\pi_{n-1}(Y) = 0$ for all n such that $X \setminus A$ has cells of dimension n .
2. Show that a CW complex retracts onto any contractible subcomplex : given a CW pair (X, A) where A is contractible, show that there exist $r: X \rightarrow A$ with $r \circ \iota = id_A$, where $\iota: A \hookrightarrow X$ is the inclusion.

◊**Exercise 5. The degree of a map $S^n \rightarrow S^n$.**

The goal of this exercise is to show that every map $f: S^n \rightarrow S^n$ is homotopic to a multiple of the identity. Thus the degree of such a map determines its homotopy class.

1. Reduce to the case where there is a point $y \in S^n$ such that $f^{-1}(y) = \{x_1, \dots, x_k\}$ and f is an invertible linear map in the neighbourhood of each x_i .
Hint : Use the lemma seen in class on PL approximation of a map $I^n \rightarrow Y$ on a polyhedron $K \subset I^n$.
2. For f as in (1), consider the composition $g \circ f$ where $g: S^n \rightarrow S^n$ collapses the complement of a small ball around y to the basepoint. Use this to reduce to the case where $k = 1$ in (1).

3. Conclude using the fact that $GL_n(\mathbb{R})$ has only two path components (the proof of this fact is not required).

Exercise 6. Functoriality of cellular homology.

1. Recall the definition of cellular homology $H_*^{\text{cell}}(X)$ for a CW complex X .
2. Using cellular approximation, show that a map $f : X \rightarrow Y$ between CW complexes induces well defined group morphisms $f_* : H_*^{\text{cell}}(X) \rightarrow H_*^{\text{cell}}(Y)$.
3. Show that for any pair $X \xrightarrow{f} Y \xrightarrow{g} Z$ of composable maps, we have $g_* \circ f_* = (g \circ f)_*$.

◊ indicates the weekly assignments.