

◊**Exercice 1. Homotopies are paths in a function space.**

A *homotopy* between maps $f, g: X \rightarrow Y$ is a map $H: X \times I \rightarrow Y$ such that $H(-, 0) = f$ and $H(-, 1) = g$. Write $H: f \simeq g$ in such a situation. Given a space X and $x, y \in X$, a path in X between x and y is a (continuous) map $\gamma: I \rightarrow X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. The set of homotopy classes between X and Y , denoted $[X, Y]$, is the set of equivalence classes of maps $X \rightarrow Y$ under the relation \simeq .

1. If X is locally compact Hausdorff, show that there is a bijection between the set of homotopies $f \simeq g$ and the set of paths in $\text{Map}(X, Y)$ between f and g .
2. Under the same hypotheses, show that $[X, Y] \cong \pi_0 \text{Map}(X, Y)$.

Exercice 2. Composition preserves and detects homotopy equivalences.

Let X, Y, Z be locally compact spaces.

1. If $g, g': Y \rightarrow Z$ are homotopic maps, show that $g \circ -$ and $g' \circ -$ are homotopic maps $\text{Map}(X, Y) \rightarrow \text{Map}(X, Z)$.
2. Show that if $g: Y \rightarrow Z$ is a homotopy equivalence, then so is $g \circ -$.
3. Suppose that $g \circ -$ is a homotopy equivalence $\text{Map}(X, Y) \rightarrow \text{Map}(X, Z)$ for any space X . Show that g is a homotopy equivalence.

◊**Exercice 3. The half-smash product.**

Let (X, x) be a pointed space and Y be an unpointed space. Define the half-smash product $X \rtimes Y$ to be the collapse $(X \times Y)/(\{x\} \times Y)$, with base point $\{x\} \times Y$. Define $Y_+ = Y \coprod \{\ast\}$ to be Y with a disjoint basepoint.

1. Prove that $X \rtimes Y \approx X \wedge Y_+$.
2. For spaces X, Y with X unpointed and Y pointed, prove the adjunction identity

$$\text{Map}_*(X_+, Y) \approx \text{Map}(X, Y).$$

3. Suppose X, Z are pointed spaces and Y is locally compact. Prove the adjunction identity

$$\text{Map}_*(X \rtimes Y, Z) \approx \text{Map}(Y, \text{Map}_*(X, Z)).$$

4. Suppose X, Y, Z are pointed spaces with Y locally compact. Prove that

$$\text{Map}_*(X \rtimes Y, Z) \approx \text{Map}_*(X, \text{Map}(Y, Z))$$

where $\text{Map}(Y, Z)$ is assumed to be pointed by the constant map $Y \rightarrow Z$ at the basepoint of Z .

Exercice 4. Some special pullbacks.

1. Let $f: X \rightarrow Y$ be a map and $y \in Y$. Show that the subspace $f^{-1}(y) \subseteq X$ defined by $\{x \in X \mid f(x) = y\}$ makes the following square a pullback of spaces :

$$\begin{array}{ccc} f^{-1}(y) & \hookrightarrow & X \\ \downarrow & & \downarrow f \\ \{y\} & \hookrightarrow & Y \end{array}$$

2. Let $f: X \rightarrow Y$ be a map and $A \subseteq Y$. Define a subspace $B \subseteq X$ by $\{x \in X \mid f(x) \in A\}$. Find the map $g: B \rightarrow A$ that makes the following square a pullback of spaces :

$$\begin{array}{ccc} B & \longrightarrow & X \\ g \downarrow & & \downarrow f \\ A & \longrightarrow & Y \end{array}$$

(once you have identified the map g , you also have to show that the square is a pullback)

Exercice 5. Some preservation properties of adjoint functors. Let \mathcal{C}, \mathcal{D} be categories and let $F: \mathcal{C} \rightarrow \mathcal{D}$, $G: \mathcal{D} \rightarrow \mathcal{C}$ be adjoint functors $F \dashv G$. Show that F preserves pushouts squares and that G preserves pullback squares. For example for F , you have to show that if

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ g \downarrow & & \downarrow h \\ C & \xrightarrow{k} & D \end{array}$$

is a pushout square in \mathcal{C} , then

$$\begin{array}{ccc} F(A) & \xrightarrow{F(f)} & F(B) \\ F(g) \downarrow & & \downarrow F(h) \\ F(C) & \xrightarrow{F(k)} & F(D) \end{array}$$

is a pushout square in \mathcal{D} . By a similar argument you can show that a left adjoint preserves any colimit, and a right adjoint preserves any limit (such as pullbacks and products).

◊**Exercice 6. The Sierpiński space.**

Denote by S the Sierpiński space, defined as follows : the underlying set is $\{0, 1\}$, with open sets $\emptyset, \{1\}, \{0, 1\}$. If $A \subset X$ is an inclusion of spaces, denote by $\chi_A: X \rightarrow \{0, 1\}$ the *characteristic function* of A , defined by $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ otherwise.

- Given a space X , identify the set $mor_{\text{Top}}(X, S)$ of continuous maps $X \rightarrow S$.
- For X compact Hausdorff, show that the singleton $\{\chi_X\}$ is open in $Map(X, S)$.

Denote by \mathcal{T}_X the topology on X . For a subset $A \subset X$, write $\mathcal{O}_A = \{U \in \mathcal{T}_X \mid A \subset U\}$.

- Show that $\{\mathcal{O}_K \mid K \subset X \text{ compact}\}$ is the basis for a topology on \mathcal{T}_X . Write $\mathcal{O}(X)$ for the topology it generates and $Open(X)$ for the space $(\mathcal{T}_X, \mathcal{O}(X))$.
- Show that there is a homeomorphism $Map(X, S) \cong Open(X)$.

Exercice 7*. Problem with locally compact spaces.

- Show that the category of locally compact spaces is not cocomplete.
Hint : Consider for example the sequence of inclusions $\mathbb{R} \hookrightarrow \mathbb{R}^2 \hookrightarrow \mathbb{R}^3 \hookrightarrow \dots$
- Show that a colimit of locally compact spaces is compactly generated.

◊ indicates the weekly assignments, a stared exercise (such as 7*) means it goes beyond the content of this course.