

○ **Exercise 1. The Hurewicz theorem for $n = 1$.**

The goal of this exercise is to show that for any connected space X , there is an isomorphism $\pi_1(X, x)^{\text{ab}} \cong H_1(X)$ for any choice of basepoint $x \in X$. Here $G^{\text{ab}} = G/[G, G]$ is the abelianization of a group G , obtained by factoring the subgroup $[G, G] = \{ghg^{-1}h^{-1} \mid g, h \in G\}$ of commutators.

1. Define the Hurewicz morphism $Hu: \pi_1(X, x) \rightarrow H_1(X)$.
2. Show that the commutator subgroup $[\pi_1(X, x), \pi_1(X, x)]$ is contained in the kernel of Hu .
3. Identify the morphism Hu when $X = S^1$ and $X = \bigvee_{i=1}^n S^1$.
4. Show that it is enough to prove the statement in the case where X is a connected CW complex of dimension 2.
5. Prove the statement using a diagram chase.

Hint : Use the cofiber sequence defining X , apply the functors π_1 and H_1 and relate them using the map Hu .

Exercise 2. The relative Hurewicz map.

Define an analogue of the Hurewicz map for a pair (X, A) , and show it is a group homomorphism for $n > 1$.

Exercise 3. Eilenberg-MacLane spaces and cohomology.

1. Show that the space $K(\mathbb{Z}, n)$ can be constructed as a Postnikov section of S^n , and show such a space is determined by its homotopy groups up to weak homotopy equivalence.
2. Show that $\Omega K(\mathbb{Z}, n+1) \simeq K(\mathbb{Z}, n)$.
3. Show that $[-, K(\mathbb{Z}, n)]_*$ defines a (contravariant) functor $\text{Top}_*^{\text{op}} \rightarrow \text{Ab}$ from the category of pointed spaces to that of abelian groups. Here $[-, -]_*$ denotes homotopy classes of pointed maps. Show that this functor sends homotopy equivalences to isomorphisms.
4. Show that a cofibration $A \hookrightarrow X \rightarrow X/A$ induces a long exact sequence of abelian groups
$$\cdots \leftarrow [A, K(\mathbb{Z}, n)]_* \leftarrow [X, K(\mathbb{Z}, n)]_* \leftarrow [X/A, K(\mathbb{Z}, n)]_* \leftarrow [A, K(\mathbb{Z}, n+1)]_* \leftarrow \cdots.$$
5. Show that there are natural isomorphisms $[X, K(\mathbb{Z}, n)]_* \cong [\Sigma X, K(\mathbb{Z}, n+1)]_*$.

○ **Exercise 5. Construction of a Moore space $M(A, n)$.**

In this exercise we construct a Moore space of type $M(A, n)$, given an abelian group A and integer $n \geq 1$. This is a space X with the property that $H_n(X) \cong A$ and $\tilde{H}_i(X) = 0$ for $i \neq n$.

1. Find a short exact sequence of groups $0 \rightarrow K \xrightarrow{\varphi} F \rightarrow A \rightarrow 0$ where K, F are free abelian groups.
2. Construct a map of spaces f between two wedges of n -spheres such that $\pi_n(f) = H_n(f) = \varphi$.
3. Show that the homotopy cofiber of f is a Moore space of type $M(A, n)$.
4. Construct $K(A, n)$ as a Postnikov section of a Moore space of type $M(A, n)$.

○ indicates the exercises to be presented in class.