

Def. 1.4 Let K be a polyhedron and $f: K \rightarrow \mathbb{R}^k$. We say f is piecewise linear (PL) if there exists a decomposition of K into compact convex polyhedra $K_i \subset K$ s.t. $f|_{K_i}$ affine. A map $f: K \rightarrow \mathbb{R}^k$ is PL if it's so for some forms $\mathbb{R}^k \approx \mathbb{R}^k$.

Construction 1.5 \oplus Let $f: I^n \rightarrow \mathbb{R}^k$ be a map. Consider $B_1 = B(0, 1) \subset B_2 = B(0, 2) \subset \mathbb{R}^k$.

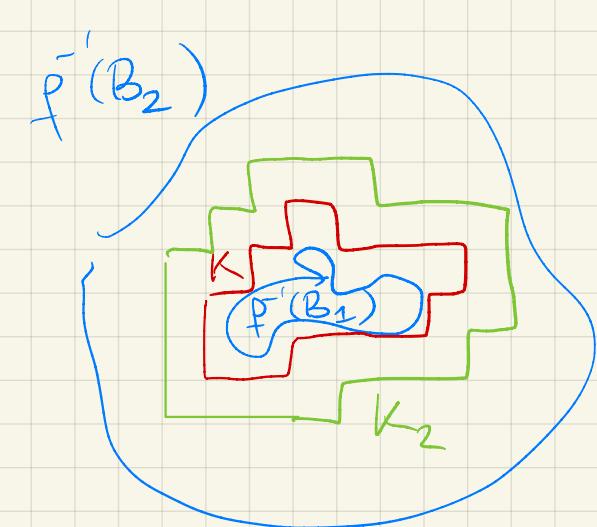
Since I^n is compact and f is continuous, it is uniformly continuous. We choose $\varepsilon > 0$ s.t.

- ① $|x - y| < \varepsilon \Rightarrow |f(x) - f(y)| < \frac{1}{2}$
- ② $\varepsilon < \frac{1}{2} d(f^{-1}(B_1), I^n - f^{-1}(B_2))$

Choose $N \in \mathbb{N}$ s.t. $\text{diam} [0, \frac{1}{N}]^n < \varepsilon$

\oplus Assume B_2 is contained in the image of f .

Next subdivide I^n into small cubes of side $\frac{1}{N}$.



Set $K = \text{union of all small cubes which meet } f'(B_1)$

$$K_2 = \text{_____}$$

K

Every point of K_2 is at distance $\leq \varepsilon$ from K
 so $\text{_____} < 2\varepsilon$ from $f'(B_1)$

$$\text{Hence } K_2 \subset f'(B_2)$$

§ 2. Cellular approximation

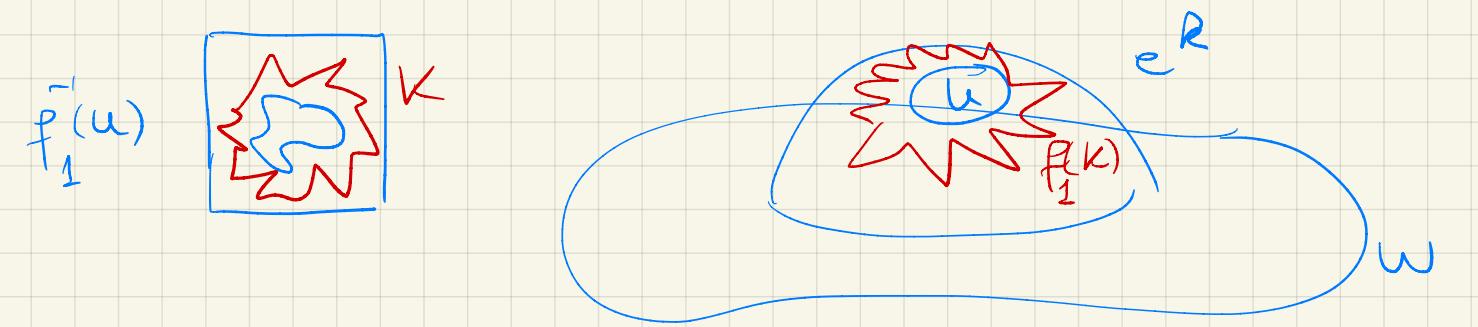
Lemma 2.1

Let $Z = W \cup e^k$ and $f: I^n \rightarrow Z$ a map. Then f is homotopic to a map f_1 , relative to $f'(W)$ st. there exists a polyhedron $K \subset I^n$ and

with $\partial K \subset \text{Im } f$

a) $f_1(K) \subset e^k$ and $f_1|_K$ is PL

b) \exists open $\phi \neq u \subset e^k$ st. $f_1^{-1}(u) \subset K$.



Proof: By Construction 1.5 for $B_1 \subset B_2 \subset \mathbb{R}^n \approx e^{\partial \mathbb{R}^n}$, we find polyhedra $K \subset K_2 \subset I^n$. Let us subdivide any small cube $\left[0, \frac{1}{n}\right]^n$ into n -simplices Δ^n (barycentric subdivision).

Define a map g on K_2 by $g(v) = f(v)$ for any vertex v . We extend linearly to all simplices of K_2 .

Define also a map $q: K_2 \rightarrow I$ with $q|_K \equiv 1$ and $q \equiv 0$ on the boundary of K and make it continuous for example as done for g .

Construct a homotopy $H: K_2 \times I \rightarrow e^{\partial \mathbb{R}^n}$

$$H(-, t) = (1 - t) \cdot q \cdot f + t \cdot q \cdot g$$

$$\text{At } t=0: H(-, 0) = f$$

$$\text{At } t=1: H(-, 1) = (1 - q) \cdot f + q \cdot g, \text{ on } K \text{ it's } g.$$

$$h(x, 1) = g(x) \quad \text{if } x \in K$$

$$h(x, t) = f(x) \quad \text{if } x \in \partial K_2, \quad \forall t \in I$$

Thus we can extend h to a homotopy on I^n by using f constantly on $I^n \setminus K_2$. This defines a homotopy from f to a map f_1 which is g on K , a PL map.

First $f_1(K) \subset B_2 \subset \epsilon^B$ by construction, the rest of the proof consists in finding U . For this we prove that $0 \notin f_1(I^n \setminus K) = C$, a compact subspace of Z , and then choose an ^{open} neighborhood U of 0 disjoint from C .

- On $I^n \setminus K_2$, $f_1 \equiv f$ sends a point outside of B_1
- Let σ be a simplex in $K_2 \setminus K_1$. By construction σ is contained in a small cube of radius $\frac{1}{N}$, $f(\sigma)$ is thus contained in a small ball of radius $\frac{1}{2}$.

To define g we used the same values as f on vertices and the image of cube is convex, so $g(\sigma)$ is contained in the same small ball. Likewise for $h(\sigma, t)$, for any t .

For $t=1$, we get $f_1(\delta)$ is contained in this ball of radius $\frac{1}{2}$ and whose origin is at distance $\geq \frac{1}{2}$ from δ .
Hence $\delta \notin f_1(\delta)$. \square

Theorem 2.2 (Cellular Approximation Theorem)

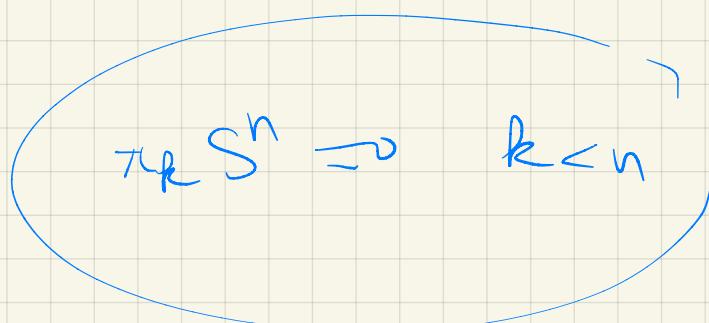
Let $f: X \rightarrow Y$ be a map between CW-complexes is homotopic to a cellular map. If f is already cellular on a sub-CW-complex A , then we can choose the homotopy to be relative A .

J.H.C. Whitehead (1904-1960).

Whitehead Problem: $0 \rightarrow Z \rightarrow A \hookrightarrow B \rightarrow 0$ in Ab

If for fixed B , any such ext. splits,
is B free?

Shelah: undecidable under ZFC



proof: We proceed by induction, skeleton by skeleton. For X_0 , we choose a path from $f(x)$ to a 0-cell y in the path connected component of $f(x) \in Y$, for any $x \in X_0$. This yields a homotopy from $f|_{X_0}$ to a map to cellular on X_0 ; since $X_0 \subset X$ has the HEP, we obtain a map $f_0: X \rightarrow Y$ st. $f|_{X_0}$ is cellular.

Assume now that $f|_{X_{n-1}}$ is cellular and look at one

cell e^n / call $\alpha: S^{n-1} \rightarrow X_{n-1}$ the attaching map:

$$\begin{array}{ccccc} S^{n-1} & \xrightarrow{\alpha} & X_{n-1} & \xrightarrow{f|_{X_{n-1}}} & Y_{n-1} \\ \downarrow & & \downarrow & & \downarrow \\ D^n & \xrightarrow{\text{inclusion}} & X_{n-1} \cup e^n & \xrightarrow{f} & Y \end{array}$$

Since D^n is compact
its image in Y meets
only finitely many cells.

If all D^n have $\dim \leq n$, we're happy, if not let k be the dimension of the largest of them. If f misses a point in e^k we move to the next part of the proof. If not we will use the lemma to make f homotopic to a map f_1 missing a point.

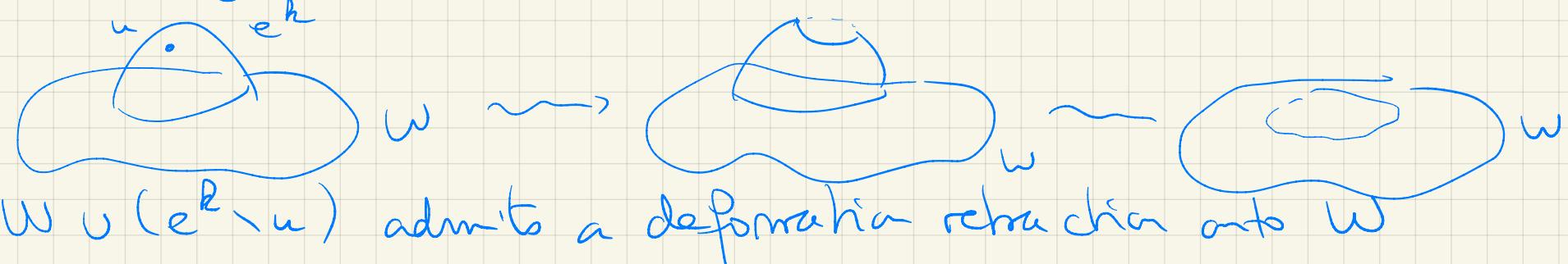
Consider $g: I^n \xrightarrow{\sim} D^n \longrightarrow X_{n-1} \cup e^n \xrightarrow{f} Y$

We replace Y by the sub CW-complex made of the cells in the image of g and call it $Z = W \cup e^k$.

By Lemma 2.1 $g \simeq g_1$ relative to $\bar{g}^{-1}(w)$ and g_1 is PL on a polyhedron $K \subset I^n$...

Since $\partial I^n \subset \bar{g}^{-1}(w)$, so we can extend the homotopy to a homotopy $f \simeq f_1$ relative to X_{n-1} . The map f_1 is PL on $K \subset I^n$ and there is an open $U \subset e^k$ s.t. $f_1^{-1}(U) \subset K$.

Because $\dim K = n < k$, f_1 is PL implies that it is not surjective on U as it hits a finite number of affine subspaces in $R^k \cong \mathbb{R}^k$. Let $u \in U$ be a point not in the image.



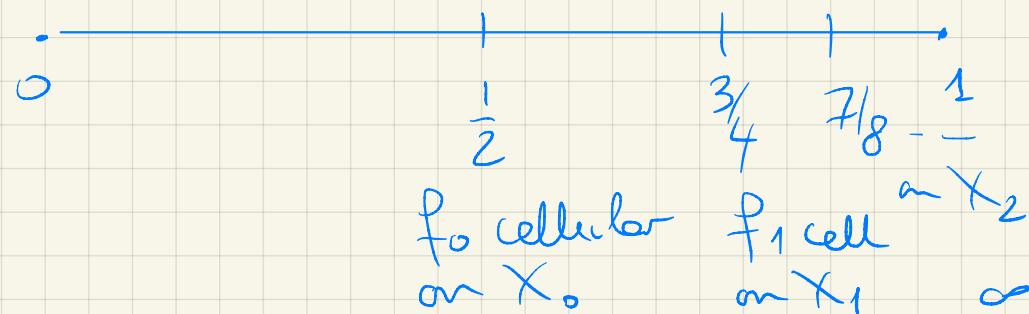
This allows us to construct a homotopy from f to f_1 , then to f_2 which misses the whole cell \mathbb{R}^n .

We iterate this process finitely many times to make f cellular on $X_{n-1} \cup e^n$.

If X_n has more cells, maybe infinitely many, we apply this process simultaneously on all n -cells.

If $\dim X = \infty$, we concatenate the homotopies making f cellular on X_n, X_{n+1}, \dots in the way indicated by

the picture



At $t=1$, f has become cellular on $X = \bigcup_{n=0}^{\infty} X_n$. \square

Corollary 2.4

$$\pi_k S^n = 0 \quad \text{for } k < n$$

Proof: Any map $S^k \rightarrow S^n$ is homotopic to a constant map,
see Example 1.2. \square

Def. 2.5 A space X is n -connected if $\pi_k X = 0$
for any $k \leq n$.

0-connected : path-connected

1-connected : simply connected and path-connected

S^n is $(n-1)$ -connected

Def 2.6 A pair (X, A) is n -connected if
 $\pi_k(X, A) = 0 \quad \text{for } k \leq n$

This mean $\pi_k A \cong \pi_k X$ for $k < n$.
 $\pi_n A \rightarrow \pi_n X$ is surjective,