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Introduction

This is a Master’s course taught for the first time in the Fall semester 2021. The

following sequence of courses taught at the Bachelor’s level constitute the natural

background for the ideas we study here. In “Metric and Topological Spaces” the

notion of topological space is introduced as a generalization of that of a metric space,

the fundamental group is defined and computed for the circle. In my own course

“Topology” the whole semester is spent around this important homotopy invariant

and two different aspects are highlighted. The Seifert-van Kampen Theorem allows

us to compute fundamental groups of spaces constructed by assembling elementary

pieces, in particular in the case of quotient spaces, and the theory of coverings gives

a more geometrical meaning to the fundamental group by identifying its elements

as deck transformations. Finally, the course “Algebraic Topology” makes use of

homological algebra and introduces homology groups as a new homotopy invariant,

both in the form of singular homology and that of cellular homology, a version better

suited for computations when the spaces one works with are CW-complexes.

In this course we focus mainly on higher homotopy groups. Several excellent

textbooks serve as inspiration for this course. We do not claim any originality and

rely often on the approach and technical tools presented in May, etc.
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CHAPTER 1

Topological complements

In this short chapter we cover a subject which could have been part of the topol-

ogy course, but as it has not been done there, we have to do it now. We know

that (topological) spaces and (continuous) maps form a category, and we will see

that its structure is even richer as the set of morphisms between two spaces comes

equipped with a nice topology, so we have in fact a space of maps. This topology,

called compact-open for obvious reasons, is designed so that several desirable prop-

erties hold, such as the exponential law. These properties hold unfortunately only

for a restricted class of spaces and we will focus on them in this chapter. In the last

section we indicate how to deal more seriously with this issue, but will not give full

proofs.

1. Compact-open topology

We follow Hatcher’s book [3, Appendix A]. Our aim is to introduce and study a

(good) topology for the set of all maps. To distinguish this mapping space from the

set of all maps we will use a different notation. The set mor(X, Y ) of all maps will

thus become a space map(X, Y ). We will also use the notation Y X for the set of all

non necessarily continuous maps X → Y .

Definition 1.1. Let X, Y be two spaces, K ⊂ X be compact and U ⊂ Y open.

We define B(K,U) = {f : X → Y | f(K) ⊂ U}. The compact-open topology is

defined on the set of all maps f : X → Y by the subbasis B(K,U) where K runs

over all compact subspaces of X and U over all open subspaces of Y . The space

map(X, Y ) of all maps is called mapping space.

Therefore a basis for the compact-open topology is given by finite intersections

of B(K,U)’s.

7



8 1. TOPOLOGICAL COMPLEMENTS

Definition 1.2. Let X, Y be two spaces, n ≥ 1 an integer, Ki be compact

subspaces of X and Ui be open subspaces of Y for all 1 ≤ i ≤ n. We define

B(K•, U•) = {f : X → Y | f(Ki) ⊂ Ui for all 1 ≤ i ≤ n} for a basis of the

compact-open topology.

Finally recall that an arbitrary open subset of map(X, Y ) is an arbitrary union

of basic open subsets. Many important examples will have a compact source.

Example 1.3. When X = ∗ is a singleton, the evaluation at this unique point

provides a homeomorphism map(∗, Y ) ≈ Y . More generally, when X = [n] =

{1, . . . , n} is a finite discrete space, we have a homeomorphism map([n], Y ) ≈ Y n.

Example 1.4. When X = I = [0, 1] equipped with the subspce topology of the

metric space R, one can choose a simpler basis for the compact-open topology on

map(I, Y ), the space of all paths in Y . For any choice of 0 ≤ t0 < t1 < · · · < tn−1 <

tn ≤ 1 and open subsets U1, . . . , Un in Y we ask that f([ti−1, ti]) ⊂ Ui.

Example 1.5. When X = S1 we call ΛY = map(S1, Y ) the space of free loops

in Y since an element in λY is a loop λ : S1 → Y starting at any point y = λ(1).

2. The exponential law

One of the main features for the compact-open topology is an exponential law.

Let us recall here the set theoretic version. Let X, Y, Z be sets. Then ZX×Y ∼=
(ZY )X . We will use the explicit form of this bijection:

f : X × Y → Z corresponds to φ = a(f) : X → ZY , x 7→ f(x,−)

This isomorphism is natural in Y , so we have an adjunction (X × −) ⊣ Z(−). This

explains the name a(f) for the adjoint of the morphism f .

Now we move to the topological version of this adjunction. The set of maps

map(X×Y, Z) is a subset of ZX×Y and likewise (ZY )X contains map(X,map(Y, Z)).

In order to control the behavior of the adjoint map, we will need to assume that one

space is locally compact, i.e., every neighborhood of a given point contains a compact

neighborhood.
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Lemma 2.1. Let X be a locally compact space. Then the evaluation map

ev: map(X, Y )×X → Y,

defined by ev(f, x) = f(x), is continuous.

Proof. Let V be an open subset in Y and consider a pair (f, x) in the domain

such that ev(f, x) ∈ V . Since f is continuous, the preimage f−1(V ) is open in X

and by assumption there exists a compact neighborhood x ∈ K ⊂ f−1(V ). Thus

f(K) ⊂ V . We choose therefore the basic open subset B(K,V ) in the mapping

space and K as a neighborhood of x in X.

Then ev(g, k) = g(k) ∈ V for all g ∈ B(K,V ) and k ∈ K, which shows that the

evaluation map sends the neighborhood B(K,V )×K of (f, x) to V . □

Proposition 2.2. Let Y be a locally compact space. Then a map f : X×Y → Z

is continuous if and only if its adjoint a(f) = φ : X → map(Y, Z) is so.

Proof. Notice first that the restriction f |x×Y of a continuous map f is again

continuous for any x ∈ X. This justifies the fact that the map a(f) belongs to the

set of set theoretic morphisms X → map(Y, Z) and not only to (ZY )X .

Assuming that f is continuous, we have to show that so is a(f). Given L ⊂ Y

compact and W ⊂ Z open, let us check that a(f)−1(B(L,W )) is open in X. This

inverse image consists of those x ∈ X such that f(x× L) ⊂ W . Sor for each such x

we have to find an open neighborhood U such that f(U) ⊂ B(L,W ).

Now, since W is open, so is f−1(W ) and it contains x× L. By definition of the

product topology there exists inside f−1(W ) a union of open boxes Ui×Vi containing
x×L. Because L is compact, a finite number of such boxes suffices and we can choose

U = ∩Ui as an open subset in X, and V = ∪Vi.
What we have achieved is that x × L ⊂ U × V ⊂ f−1(W ). Therefore U is an

open neighborhood of x and a(f)(U) ⊂ B(L,W ).

To prove the other implication, assume now that a(f) is continuous and consider

the composite

X × Y a(f)×Y−−−−→ map(Y, Z)× Y ev−→ Z
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This is a continuous map as the evaluation map is continuous by Lemma 2.1 and

one checks that it coincides with f . Notice that we have used here the assumption

on Y to be locally compact. □

In order to establish the topological exponential law, we will pick better suited

subbases for the mapping spaces coming into play. We start with the following

lemma where no locally compactness needs to be assumed.

Lemma 2.3. Let X and Y be Hausdorff spaces and Z be any space. Then

map(X ×Y, Z) admits as a subbasis for the compact-open topology all B(K ×L,W )

for K compact in X, L compact in Y , and W open in Z.

Proof. In principle we should use all compact subsets in A ⊂ X × Y , not

only boxes K ×L as we claim here. So let us consider f ∈ B(A,W ) for an arbitrary

compact subset A. We will prove that this subbasic open subset can also be described

as an open subset for the topology generated by the more restrictive choice.

Since A is compact, so are its projection AX and AY on X, respectively on Y .

However if f(A) ⊂ W , it is not true in general that the image of this larger box,

f(AX × AY ) is also contained in W . For any (x, y) ∈ A we have f(x, y) ∈ W .

Let us choose open neighborhoods x ∈ Ux in AX and y ∈ Uy in AY such that

f(Ux × Vy) ⊂ W such that f(Ux × Vx) ⊂ W .

By assumption the space AX is Hausdorff, and compact, thus normal, and we

can separate x from the closed subset AX \Ux by an open x ∈ U such that U ⊂ Ux.

Likewise y ∈ V with V ⊂ Vy. The compact subspaces U × V cover A, we extract

now a finite cover Ui × Vi. We have done that so as to make sure f(Ui × Vi) ⊂ W ,

thus f ∈ ∩B(Ui × Vi,W ). This shows that any f ∈ B(A,W ) admits a (basic) open

neighborhood for the topology described by the choices in the lemma. □

Now that we have a more suitable description of the compact-open topology on

map(X×Y, Z), we observe that the set theoretical exponential sends B(K×L,W ) to

B(K,B(L,W )) by Proposition 2.2. We show next that such special subbasic subsets

also form a subbasis for the compact-open topology on map(X,map(Y, Z)).
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Lemma 2.4. Let X be a Hausdorff space and B a subbasis for the topology of a

space Y . Then B(K,B), for compact K ⊂ X form a subbasis of the compact-open

topology on map(X, Y ).

Proof. Similarly to the previous proof of Lemma 2.3 we consider f ∈ B(K,V ),

a subbasic open subset in map(X, Y ) and will exhibit a finite number of compact

subset Ki ⊂ X and subbasic Bi ∈ B such that f ∈ ∩B(Ki, Bi) ⊂ B(K,V ).

Let us write V as a union of basic subsets Vα, i.e. each Vα is a finite intersection

∩Vα,j for some Vα,j ∈ B. Since f(K) ⊂ V , the f−1(Vα)’s cover K, and we immedi-

ately extract a finite cover V1, . . . , Vm. We can choose (as we will see in an exercise)

compact subsets Ki ⊂ f−1(Vi) such that K = ∪Ki.

We have done this so that f(Ki) ⊂ Vi, i.e. f ∈ B(Ki, Vi) for all 1 ≤ i ≤ m. We

conclude by expressing each

B(Ki, Vi) = B(Ki,∩Vi,j) = ∩B(Ki, Vi,j)

This means precisely that f ∈
⋂
i,j B(Ki, Vi,j), a finite intersection of the desired

form, contained in B(K,V ). □

We are finally ready for our main result. We will go through the steps hinted at

in the previous preparatory lemmas.

Theorem 2.5. Let X, Y be Hausdorff spaces and Y locally compact. We have a

natural homeomorphism map(X × Y, Z) ≈ map(X,map(Y, Z)) for any space Z.

Proof. We have seen in Proposition 2.2 that a map f : X×Y → Z corresponds

to a continuous adjoint a(f) and vice-versa because Y is locally compact. This

provides a bijection between these mapping spaces. It is a homeomorphism since the

topology on map(X × Y, Z) is defined by the subbasis B(K × L,W ) (we use here

that X and Y are Hausdorff and apply Lemma 2.3), and the operation a sends them

to B(K,B(L,W )) which form a subbasis of map(X,map(Y, Z)) by Lemma 2.4 (here

we need X Hausdorff). □

Remark 2.6. What the exponential law tells us is first is that the functors −×Y
and map(Y,−) form a pair of adjoint functors from topological spaces to topological



12 1. TOPOLOGICAL COMPLEMENTS

spaces. Here we use the compact-open topology on map(Y, Z), but only remark that

we have a natural bijection of sets:

mor(X × Y, Z) ∼= mor(X,map(Y, Z))

But the exponential law tells us even more since these sets of morphisms can be given

a topology in a way that the corresponding spaces of maps become homeomorphic.

This yields a so-called enriched adjunction.

3. Some remarks on possible improvements

The assumption that all spaces are Hausdorff is a mild one. It is quite common

to work with Hausdorff spaces, say in any course about metric spaces, or in algebraic

topology when dealing with CW-complexes.

The second assumption we have made to prove the exponential law is not so harm-

less. Finite CW-complexes are compact, but in general arbitrary CW-complexes are

not, and even worse, not locally compact. In fact a CW-complex is locally compact

if and only if every open cell meets only finitely many closed cells. Hence, infinite

dimensional projective spaces, infinite wedges of spheres are useful spaces that do

not verify the assumptions made in the previous section.

We follow May’s [4, Chapter 5] to indicate briefly a possible fix. In principle

since, as we will see later, every space is “weakly” equivalent to a CW-complex, we

would be happy to work with CW-complexes only. Two problems occur at least.

The first one is that CW-complexes do not form a (co)complete category, sometimes

(co)limits of CW-complexes give spaces which are not CW-complexes. The second

one is related to the description of mapping spaces and the exponential law we have

studied in the previous sections. Milnor as one of the leading mathematicians who

suggested to work with CW-complexes. He proved that map(X, Y ) is homotopy

equivaéent to a CW-complex if X and Y are CW-complexes and X is compact. If

not, there are examples where the resulting mapping space fails to be equivalent to

a CW-complex. This category of spaces is hence not Cartesian closed.

Nowadays there are different ways to fix this problem. The solution I will describe

in these notes consists in working with a nice subcategory of topological spaces, called

compactly generated spaces. Another way around is to work in a different category,
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namely that of simplicial sets, a more combinatorial version of spaces which can be

shown to have the same homotopy theory as spaces, in the sense of Quillen’s theory

of model categories, [7]. This is the topic of Kathryn’s Hess course on abstract

homotopy theory.

Definition 3.1. A space X is weak Hausdorff if any map g : K → X from a

compact space K has a closed image g(K) ⊂ X.

If X is Hausdorff, then the image g(K) being compact, it must be closed. This

shows that Hausdorff is a stronger property than weak Hausdorff.

Definition 3.2. A subspace A ⊂ X is compactly closed if, for any map g : K →
X from a compact space K, the preimage g−1(A) is closed.

We give a characterization, without proof, of compactly closed subspaces in weak

Hausdorff spaces.

Proposition 3.3. If X is weak Hausdorff, A ⊂ X is compactly closed if and

only if the intersection A ∩ L is closed in X for any compact L ⊂ X.

We finally arrive to the notion of k-space, where the letter k stands for ‘kompakt”

in German.

Definition 3.4. A space X is a k-space if every compactly closed subspace is

closed in X. It is compactly generated if it is a weak Hausdorff k-space.

Hurewicz studied this kind of spaces first, in the 1930’s, but it was much later, I

believe in 1960’s, that people realized formally the Cartesian closed property, see [6].

One reason why I don’t wish to deal with this is that one has to change products

into k(X × Y ) the k-ification of the product, where all compactly closed subspaces

are closed. Likewise the mapping space with its compact-open tiopology has to be

replaced by its k-ification .

4. Pointed mapping spaces

It would be cleaner and easier to work with simplicial sets or compactly generated

spaces, but as we did not develop the theory, we will content ourselves to work in
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a more restricted setting, or admit when really needed that the solution described

in the previous section provides in particular an exponential law that holds in full

generality.

In this section we work with pointed spaces (X, x0), (Y, y0), etc., and it is natural

to consider thus pointed (based) maps.

Definition 4.1. Let (X, x0) and (Y, y0) be pointed spaces. The space of pointed

maps or pointed mapping space map∗((X, x0), (Y, y0)) or map∗(X, Y ) for short is the

subspace of map(X, Y ) consisting of all maps f : X → Y such that f(x0) = y0.

The space of pointed maps map∗(X, Y ) is often considered as a pointed space

itself, where we choose the constant map cy0 as base point. Recall that the constant

map cy0 sends every point x ∈ X to the base point y0 ∈ Y .

We will develop now the theory for locally compact Hausdorff spaces, starting

with some preliminaries. All results admit a generalization to compactly generated

spaces, as is done for example in Strom’s book [11, Chapter 3].

Lemma 4.2. Let Y be a Hausdorff space and consider the left hand side pushout

square of locally compact Hausdorff spaces

A B map(D, Y ) map(C, Y )

C D map(B, Y ) map(A, Y )

f

g h

i∗

h∗ g∗

i f∗

Then the right hand side square is a pullback square.

Proof. To verify that the square of mapping spaces is a pullback square we

simply check that it enjoys the universal property. Given maps κ : X → map(C, Y ),

adjoint to k : X ×C → Y , and β : X → map(B, Y ), adjoint to b : X ×B → Y , such

that g∗ ◦κ = f ∗ ◦β we have to prove that there is a unique map δ : X → map(D, Y )

making the appropriate diagram commutative.

The composite map b ◦ (X × f) is adjoint to f ∗ ◦ β, and likewise for k ◦ (X × g)
and g∗ ◦ κ. Since two different adjunctions come into play here, say for the first

claim, whose left adjoint are respectively −×A and −×B, we need to use the fact



4. POINTED MAPPING SPACES 15

that they are conjugate via − × f and f ∗ : map(B,−) → map(A,−). More details

can be found for example in Mac Lane’s [5, Theorem IV.7.2]

This means that the solid arrow diagram below commutes:

X × A X ×B

X × C X ×D

Y

X×g

X×f

X×h
b

X×i

k

d

Since X × − is a left adjoint, it preserves pushouts. This means that the above

square is a pushout square, hence the dashed arrow d exists and is unique. Its

adjoint δ : X → map(D, Y ) solves the problem. □

This applies in particular to quotients and helps us understand mapping spaces

out of such quotient spaces.

Corollary 4.3. Let (A, a0) be a subspace of a locally compact Hausdorff space

(X, a0), and (Y, y0) be another locally compact Hausdorff space. Then map∗(X/A, Y )

is homeomorphic to the subspace of map(X, Y ) of all maps f : X → Y such that

f |A= cy0.

Proof. The left hand side square below is a pushout square by definition of the

quotient X/A, and it explains how this space becomes pointed:

A X map(X/A, Y ) map(⋆, Y )

⋆ X/A map(X, Y ) map(A, Y )

p p∗

Therefore the righthand square is a pullback by Lemma 4.2. The projection map

p induces on mapping spaces the inclusion of constant maps via the identification

map(⋆, Y ) ≈ Y . A point y ∈ Y corresponds to the map sending ⋆ to y, and the

latter is sent by p∗ to the composition A
p−→ ⋆

y−→ Y .

The pullback consists then of pairs (f, y) ∈ map(X, Y )× Y such that f |A= cy.

The space of such pairs is homeomorphic to a subspace of map(X, Y ) and when

y = y0 is the basepoint, we get precisely the desired subspace. □
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A particular case of a quotient space is the smash product X∧Y = X×Y/X∨Y .

Corollary 4.4. Let X, Y and Z be locally compact Hausdorff spaces. Then

map∗(X ∧ Y, Z) is homeomorphic to the subspace of map(X × Y, Z) of all maps

sending the wedge X ∨ Y to the base point z0 ∈ Z. □

We finally arrive to the pointed exponential law.

Theorem 4.5. Let X, Y and Z be locally compact Hausdorff spaces. Then we

have a homeomorphism map∗(X ∧ Y, Z) ≈ map∗(X,map∗(Y, Z)), natural in Y .

Proof. By Corollary 4.4 we may identify map∗(X ∧ Y, Z) with the subspace of

map(X × Y, Z) of all maps f sending the wedge X ∨ Y to the base point z0 ∈ Z.
Under the unpointed exponential law this subspace corresponds to a subspace of

map(X,map(Y, Z)) namely those a(f) such that a(f)(x) = f(x,−) sends y0 to the

base point z0 for all x ∈ X, i.e., a(f)(x) is a pointed map, and a(f)(x0) is the

constant map cz0 , i.e. the adjoint map a(f) itself is a pointed map. Thus the

unpointed adjunction a restricts to a map

map∗(X ∧ Y, Z)→ map∗(X,map∗(Y, Z))

The inverse unpointed homeomorphism restricted to map∗(X,map∗(Y, Z)) provides

the inverse map, establishing the pointed version. □

Corollary 4.6. The smash product X ∧− converts pushouts into pushouts, the

pointed mapping space map(Y,−) converts pullbacks into pullbacks, and the pointed

mapping space map∗(−, Z) converts pushouts into pullbacks.

Proof. The first statements are direct consequences from the fact that the func-

tors are respectively left and right adjoints. For the third one, beware of the con-

travariance. Consider a pushout square □ and map∗(□, Z). To prove it is a pullback

we have to verify the universal property for a diagram of maps out of X. By ad-

junction this corresponds to a diagram of maps from X ∧ □ into Z. As we have

proved above that this square is also a pushout square we can conclude by adjoining

back. □
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Remark 4.7. In this section we have followed a traditonal approach to prove the

pointed adjunction, relying on the previously established result on unpointed maps.

Surprisingly, a direct proof of the adjunction − ∧ Y ⊣ map∗(Y,−) has appeared in

print in 1996 only to my knowledge, in an article by Cagliari, [2].

5. Loop and suspension

In the final short section of this chapter we specialize to the case when the space

Y is the circle.

Definition 5.1. Let X be a pointed space. The loop space ΩX is the space of

pointed maps map∗(S
1, X).

Definition 5.2. The reduced suspension SX of a pointed space X is the smash

product X ∧ S1.

To be very explicit the smash product X ∧S1 is by definition the quotient space

X × S1/X ∨ S1 and since S1 itself is the quotient I/0 ∼ 1, we identify SX with the

quotient

X × I/(x, 0) ∼ (x, 1), (x0) ∼ (x0, 0), (x0, t) ∼ (x0, 0)

Taking this double quotient in the reverse order we see that SX is homeomorphic

to the quotient ΣX/x0 × I. For a well-pointed space this quotient obtainied by

contracting a segment does not change the homotopy type and hence ΣX ≃ SX.

The advantage of the latter is that it has a well-defined and canonical base point,

namely the class of x0 × I.

Proposition 5.3. There is a natural homeomorphism map∗(X,ΩY ) ≈ map∗(SX, Y ).

Corollary 5.4. There is a bijection [X,ΩY ]∗ ∼= [SX, Y ]∗.

Proof. Since paths in a mapping space correspond to homotopies we apply π0,

the set of path connected components to the homeomorphism in Proposition 5.3. □





CHAPTER 2

Homotopy groups

We introduce higher homotopy groups for pointed spaces, as a generralization

of the fundamental group, a.k.a. the first homotopy group. We show that these

higher analogs are always abelian, in two different ways. One classical way describes

explicit homotopies between the sums f+g and g+f , the other is more categorical in

nature, we introduce the notion of (co)-H-spaces and (c)-H-groups. We also establish

the existence of long exact sequences of homotopy groups, similar to the long exact

sequences in homology we already know.

1. Higher homotopy groups

We have seen in the Topology course that π0X, the set of path connected compo-

nents of a pointed space (X, x0) can be identified with the set of pointed homotopy

classes of maps [(S0, 1); (X, x0)]∗, which we often write [S0, X]∗ for short when the

base point is understood from the context. We also identified the group of homotopy

classes of based loops, where the group law is induced by concatenation of loops,

with [S1, X]∗. We have also reinterpreted concatenation in a more diagrammatic

way using the pinch map on the circle p : S1 → S1 ∨ S1. This is nothing but the

quotient map that identifies 1 and −1, and if we are given two loops f, g : S1 → X,

the product of their homotopy classes is represented by

S1 p−→ S1 ∨ S1 f∨g−−→ X ∨X ∇−→ X

where ∇ is the fold map.

Remark 1.1. Any group G can be realized as fundamental group of a space.

This is a consequence of the Seifert-van Kampen Theorem since we can choose a

presentation of G by generators gα and relators rβ living in the free group F (gα).

The fundamental group of the wedge
∨
α S

1 is isomorphic to this free group and

we just need to attach one 2-cell for each relator r/beta so as to construct a space

19
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X = (
∨
α S

1)∪ (
⋃
β e

2) whose fundamental is isomorphic to the quotient of F (gα) by

the normal subgroup generated by the rβ’s, i.e. G.

Definition 1.2. Let (X, x0) be a pointed space and n ≥ 1. The n-th homotopy

group πnX = πn(X, x0) = [Sn, X]∗.

It is also the pinch map, on Sn which justifies the name and yields a group

structure. We also denote by p the collapse map by the equatorial sphere Sn−1

in Sn.

Lemma 1.3. Let X be a pointed space. The pinch map on Sn induces a group

structure on πnX. For two pointed maps f, g : Sn → X the sum [f ]+[g] is represented

by the the composition f ⋆ g : Sn
p−→ Sn ∨ Sn f∨g−−→ X ∨X ∇−→ X.

Proof. This goes exactly the same way as when n = 1. The constant map

cx0 represents the neutral element because the collapse of an hemisphere Dn
+ ⊂ Sn

is homotopic to the identity up to identifying the quotient Sn/Dn
+ with Sn. The

operation ⋆ is associative up to homotopy, hence strictly associative on homotopy

classes of maps. This follows from the observation (analogous to what we have done

for the fundamental group by looking at trisections of an interval) that pinching the

tropic of cancer and the equator or pinching the tropic of capricorn and the equator

are different maps, but they are homotopic, the homotopy moving slowly, in one

second, and continuously the latter up by 25.5 degrees.

Finally, given a pointed map f : Sn → X, let us view Sn as the reduced suspension

SSn−1, whose elements are classes [x, t] for x ∈ Sn−1 and t ∈ [0, 1]. The inverse of

[f ] is then represented by the map [x, t] 7→ f [x, 1− t]. □

Here comes the first proof of the commutativity of higher homotopy groups.

Instead of providing explicit formulas for the homotopies we show hopefully helpful

drawings in the case n = 2.

Proposition 1.4. For any n ≥ 2 πnX is abelian and we write + for ⋆.

Proof. We represent a map from a sphere S2 by a map from a square that is

constant on its boundary (it factors thus through the quotient (I×I)/∂(I×I) ≈ S2).

Therefore the map f⋆g is picturally described by the first drawing below, even though
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I would prefer to see f on top of g since my model for the suspension has a vertical

interval in my mind, but stealing the drawing from Najib Idrissi on stackexchange

does not allow me to complain:

The parts of the drawing with an f or a g inside indicate simply a reparametrization

of the map on a homeomorphic square or rectangle, the parts without a letter support

a constant map. □

We do not provide any proofs yet, but indicate a few elementary computations.

Example 1.5. (1) π2S
2 ∼= Z, where a generator is the homotopy class of

the identity on the sphere;

(2) πnS
1 = 0 for all n ≥ 2 using the theory of covering spaces;

(3) π3S
2 ∼= Z, where a generator is the Hopf map η : S3 → S2.

2. H-spaces and co-H-spaces

We follow [8, Section 7.2]. To prove the previous proposition, there is a categorical

argument, called the Eckmann-Hilton argument (see also Topologie, Série 7, for a

version of this trick).

Definition 2.1. A pointed space (X, x0) is an H-space if it is equipped with a

multiplication map m : X ×X → X such that the following diagram commutes up

to pointed homotopy:

X X ×X X

X

i1

id
m

i2

id

This means that we dot not require the multiplication to be strict, but the base

point plays the role of a neutral element, up to homotopy. For the moment we do

not require m to be associative, even up to homotopy. But these are features an

H-space could have of course.
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Definition 2.2. An H-space X is homotopy associative if m ◦ (m ×X) ≃ m ◦
(X ×m) and it is homotopy commutative if m ◦ T ≃ m where T : X ×X → X ×X
is the interchange map T (x, y) = (y, x).

In terms of diagrams homotopy associativity means that

X ×X ×X X ×X

X ×X X

X×m

m×X m

m

commutes up to pointed homotopy and homotopy commutativity means that the

following triangle commutes up to pointed homotopy:

X ×X X ×X

X

T

m m

Definition 2.3. A homotopy associative H-space X is an H-group if there is an

inverse map ι : X → X such that the composition X
∆−→ X ×X X×ι−−→ X ×X m−→ X

is homotopically constant.

Hence, in an H-group m(x, ιx) is not equal to the base point x0, but continuously

deformable into cx0 .

Among the following examples, the first two are historically significant, the last

one is important in this course.

Example 2.4. (1) Any topological group is an H-group. For example S1 =

U(1) ∼= SO(2), S3 = SU(2), or other compact Lie groups like SO(n), SU(n),

are H-groups.

(2) The only other sphere, except S0, S1, S3, which can be given the structure

of an H-space is S7, the unit octonionic sphere, but it fails to be an H-group

because the multiplication is no associative. We will not be able to give a

proof of this deep theorem in this course.

(3) Any loop space ΩX = map∗(S
1, X) is an H-group. Multiplication is con-

catenation of loops, which is homotopy associative as we have seen in the
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Topology class, the inverse map ι corresponds to reversing the parametriza-

tion of loops. Notce that ΩX is not homotopy commutative in general

because of the next observation.

Lemma 2.5. Let X be an H-group. Then π0X inherits a group structure, which

is commutative if X is homotopy commutative.

Proof. The group axiom hold up to pointed homotopy in X, they thus hold

strictly in π0X. □

This lemma is just a particular case of the following result (we have not used at

all that the source is S0 above).

Proposition 2.6. Let X be an H-group. Then [W,X]∗ inherits a group structure

◦ for any pointed space W , which is commutative if X is homotopy commutative.

Proof. The multiplication m induces product ◦ on [W,X]∗. Given two pointed

maps f, g : W → X, we define the product f ◦ g by

W
∆−→ W ×W f×g−−→ X ×X m−→ X

We also write [f ] ◦ [g] for the product defined on homotopy classes. □

Remark 2.7. There is a notion of H-map betwen H-spaces, where we require the

obvious compatibility between the multiplications.

The whole theory dualizes from multiplications to comultiplications.

Definition 2.8. A pointed space (X, x0) is an co-H-space if it is equipped with

a comultiplication map ψ : X → X ∨X such that the following diagram commutes

up to pointed homotopy:

X

X X ∨X X

idid ψ

p1 p2

The maps p1 and p2 collapse respectively the second and first wedge summand

to the base point. In terms of universal properties, p1 is the unique map whose

restriction to the first wedge summand is the identity and the restriction to the
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second is constant. In terms of explicit formulas, seeing X ∨ X as a subspace of

X×X the map p2 is defined by p2(x;x0) = x0 and p2(x0;x) = x, so its the restriction

of the projection onto the second factor.

The analogous notions of homotopy coassociative, homotopy cocommutative, co-

H-group, are easy to formulate and are left to the reader.

Proposition 2.9. Let X be a co-H-group. Then [X,Z]∗ inherits a group struc-

ture ⋆ for any pointed space Z, which is commutative if X is homotopy cocommuta-

tive.

Proof. The comultiplication ψ induces product ⋆ on [X,Z]∗. Given two pointed

maps f, g : X → Z, we define the product f ⋆ g by

X
ψ−→ X ∨X f∨g−−→ Z ∨ Z ∇−→ Z

We also write [f ] ⋆ [g] for the product defined on homotopy classes. □

Our main source of examples for co-H-spaces is given by the reduced suspension.

Example 2.10. Let SX = S1 ∧ X be the reduced suspension of any pointed

space X. The pinch map defines a comultiplication

S1 ∧X p∧X−−→ (S1 ∨ S1) ∧X ≈ (S1 ∧X) ∨ (S1 ∧X)

We have used here that − ∧X is a left adjoint on pointed spaces, thus it preserves

pushouts, in particular wedges.

The inverse ι is induced by reversing the parametrization S1 → S1, which sends

eit to e−it.

3. The Eckmann-Hilton argument

When X is a co-H-space and Y is an H-space, one can define two a priori different

group structures on [X, Y ]∗, which we denoted by ◦ and ⋆ in the previous section.

We will prove that they coincide and give the set of pointed homotopy classes the

structure of an abelian group.

Here comes the famous Eckmann-Hilton Lemma.
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Lemma 3.1. Let (G, 1) be a set equipped with two unital composition laws ◦ and
⋆ that satisfy the interchange law

(a ⋆ b) ◦ (c ⋆ d) = (a ◦ c) ⋆ (b ◦ d)

for all a, b, c, d ∈ G. Then ◦ = ⋆ and a ◦ d = d ◦ a for all a, d ∈ G.

Proof. We perform two simple computations where we will see the importance

of the fact that both laws share the same neutral element. First

a ◦ d = (a ⋆ 1) ◦ (1 ⋆ d) = (a ◦ 1) ⋆ (1 ◦ d) = a ⋆ d

shows that ◦ and ⋆ coincide. Second

a ◦ d = (1 ⋆ a) ◦ (d ⋆ 1) = (1 ◦ d) ⋆ (a ◦ 1) = d ⋆ a = d ◦ a

which concludes the proof. □

Theorem 3.2. Let X be a co-H-group and Y be an H-group. The group structures

they define on [X, Y ]∗ coincide and are abelian.

Proof. We have already seen that the homotopy class of the constant map cy0

is a common unit, so we only to check that ⋆ and ◦ satisfy the interchange law

and conclude by the Eckmann-Hilton argument, see Lemma 3.1. Consider thus four

pointed maps a, b, c, d : X → Y and the following diagram allowing us to compare

both fourfold products:

X X ∨X (X ×X) ∨ (X ×X) (Y × Y ) ∨ (Y × Y ) Y ∨ Y

X ×X (X ∨X)× (X ∨X) (Y ∨ Y )× (Y ∨ Y ) Y × Y Y

ψ

∆ ∆

∆∨∆ a×c∨b×d m∨m

∇ ∇

ψ×ψ a∨b×c∨d ∇×∇ m

By definition of ⋆ and ◦ the upper composite of solid arrows going all the way from

X to the bottom right Y represents (a ⋆ c) ◦ (b ⋆ d) whereas the bottom composition

represents (a ◦ b) ⋆ (c ◦ d).
Let us complete the diagram by adding the two vertical dashed arrows. They

render the left, respectively right, square strictly commutative (which has nothing

to do with the fact that ψ and m are (co)multiplications). We are thus left with the

middle rectangle.
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Both ways to compose maps correspond to maps from a wedgeX∨X to a product

Y × Y . By the universal property for a coproduct in the category of pointed spaces,

it is thus enough to compare the restriction to both wedge summands. Let us follow

for example a point of the form (x, x0):

∇◦(a×c∨b×d)◦(∆∨∆)(x, x0) = ∇◦(a×c∨b×d)(x, x, x0, x0) = ∇(a(x), c(x), b(x0), d(x0))

Since b and d are pointed maps, this is ∇(a(x), c(x), y0, y0) = (a(x), c(x)). Let

us finally follow the other comnposition through the left and bottom part of the

rectangle:

(∇×∇)◦(a∨b×c∨d)◦∆((x, x0) = (∇×∇)◦(a∨b×c∨d)((x, x0, x, x0) = (∇×∇)(a(x), y0, c(x), y0)

Again we find (a(x), c(x)), on the nose! We have thus shown that the diagram

commutes strictly and this finishes the proof. □

Let us pause here to remark that the strict equality of the interchange law, before

passing to homotopy classes of maps, does not imply that we have a group structure

on the mapping space map∗(X, Y ) or even the set of morphisms mor∗(X, Y ) since

the unit and associativity do not hold strictly, but only up to homotopy.

The following corollaries are now consequences of this very general principle.

Corollary 3.3. Let X and Y be two pointed spaces. The two group structures

on [SX,ΩY ]∗ coming from the pinch map on SX and loop concatenation on ΩY

coincide and are abelian.

Corollary 3.4. Let X be a pointed spaces. For any n ≥ 2 the group πnX is

abelian.

Proof. We use the previous result for Sn−1 = SSn−2 and the loop-suspension

adjunction. □

4. Relative homotopy groups

Just like homology groups, homotopy groups admit a relative version for pairs of

spaces (X,A) where A ⊂ X is a subspace of X containing the base point x0 = a0.

We will establish the existence of a long exact sequence and start with a warning
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about the model we use. Homotopy classes of maps from spheres to some space are

replaced by homotopy classes of maps from the pair (Dn, Sn−1) but some authors

prefer the homeomorphic pair (In, ∂In) which has some advantages related to the

parametrization.

Definition 4.1. Let (X,A) be a pair of pointed spaces and n ≥ 1. The n-th

relative homotopy group πn(X,A) is equal to the set of pointed homotopy classes of

pairs [(Dn, Sn−1), (X,A)]∗.

Thus, elements in πn(X,A) are represented by pointed maps f : Dn → X whose

restriction to Sn−1 land into A. Homotopies are to be taken in the pointed sense

and restrict to homotopies from Sn−1 × I into A.

The pinch map on Sn−1 extends to a map on the n-dimensional ball Dn by

collapsing the whole equatorial disc. We need n ≥ 2 to do so.

Lemma 4.2. The pinch map on Dn gives πn(X,A) a group structure for n ≥ 2.

Relative homotopy groups generalize the notion of (absolute) homotopy groups.

Lemma 4.3. For any n ≥ 1 we have a bijection πn(X, x0) ∼= πnX.

Proof. A map of pairs f : (Dn, Sn−1)→ (X, x0) is a map which is constant on

Sn−1 so that it corresponds, by the universal property of the quotient to a pointed

map f̄ : Dn/Sn−1 ≈ Sn → X. Likewise relative homotopies which are constant on

Sn−1 factor through (Dn/Sn−1)× I. □

We have already met the category of pairs in an exercise last week, so the next

proposition should not come as a surprise.

Proposition 4.4. For any n ≥ 1 the n-th relative homotopy group is a functor

from the category of pairs to the category of pointed sets, or groups if n ≥ 2.

Proof. A realtive pointed map f : (X,A) → (Y,B) induces a map on relative

homotopy groups by (post)composition. □

In order to set up the long exact sequence for homotopy groups, we introduce a

homomorphism connecting homotopy groups in two adjacent degrees.
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Definition 4.5. Let (X,A) be a pair of pointed spaces and n ≥ 1. The con-

necting homomorphism ∂ : πn(X,A) → πnA sends the homotopy class of a map of

pairs a : (Dn, Sn−1)→ (X,A) to the homotopy class of the restriction a |Sn−1 .

Remark 4.6. This conencting homomorphism is well-defined since by definition

a homotopy H of pairs a ≃ a′ restricts to a homotopy on Sn−1 × I whose image lies

in the subspace A.

When n ≥ 2 this map is indeed a homomorphism because the pinch map on the

ball Dn restricts to the pinch map on its boundary sphere. However, when n = 1 we

are looking at π1(X,A), (pointed) homotopy classes of maps a : (I, {0; 1})→ (X,A),

i.e. paths in X starting at the base point and whose end point belongs to A. The

connecting morphism sends a to its end point a(1), or rather its class in π0A.

Before proving that the connecting homomorphisms are part of a long exact

sequence, we establish the so-called Compression Lemma, which is interesting in its

own right since it tells us what it means for a map of pairs to be homotopically

trivial, which is not as transparent as in the absolute setting. We say that two maps

f, g : X → Y are homotopic relative to a subspace A ⊂ X is there exists a homotopy

H : X × I → Y from f to g which is constantly equal to f |A= g |A during the

homotopy, i.e. H(a, t) = f(a) for all a ∈ A. This is stronger than to require that we

have a homotopy of pairs for maps out of (X,A).

Lemma 4.7. A map a : (Dn, Sn−1) → (X,A) represents the neutral element in

πn(X,A) if and only if it is homotopic to a map, relative to Sn−1, whose image lies

entirely in A.

Proof. If a is homotopic to a map b : Dn → A ⊂ X, then, by contractibility of

Dn, we can retract Dn to its base point so that [b] = [cx0 ].

Conversely, assume that a is homotopic to the constant map cx0 in the relative

sense, i.e., there exists a homotopyH : Dn×I → X such thatH(−, 0) = a, H(s, 1) =

x0 for all s ∈ Dn and H restricts on Sn−1× I to a homotopy entirely contained in A.

Consider the subspaces Dt = Dn× t∪Sn−1× [0, t] ⊂ Dn× [0, 1]. For all 0 ≤ t ≤ 1

they are homeorphic to a disc whose boundary is Sn−1 × 0. Viewing the homotopy

H as a continuous deformation from a = H |D0 to b = H |D1 we have indeed a
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homotopy from a to a map b which is constantly equal to a |Sn−1 on the boundary.

The image of b is entirely contained in A. □

To fix some notation let us write i : A → X for the subspace inclusion of a pair

of pointed spaces (X,A), and j : (X, x0) → (X,A) for the inclusion of pairs. When

talking about exact sequences of pointed sets we simply mean that “the image equals

the kernel”, or more precisely that the image consists of homotopy classes of maps

that are sent to the homotopy class of the constant map.

Theorem 4.8. For any pair of pointed spaces (X,A) there is a long exact se-

quence

· · · → πn+1(X,A)
∂−→ πnA

i∗−→ πnX
j∗−→ πn(X,A)

∂−→ · · · → π0X

where the last three homotopy classes only form pointed sets.

Proof. Part 1. We prove first exactness at πnX. Since j∗ ◦ i∗ = (j ◦ i)∗ we

deduce from the Compression Lemma 4.7 that this composition is zero: Indeed,

given a map a : (Dn, Sn−1)→ (A, x0), the composition with (A, x0) ⊂ (X,A) yields

precisely a map whose image lies in A.

To show that Kerj∗ = Imi∗ consider now a map b : (Dn, Sn−1) → (X, x0) such

that j∗[b] = 0. By the Compression Lemma again this means that j ◦ b is homotopic,

relative to Sn−1 to a map b′ : (Dn, Sn−1)→ (X,A) whose image lies in A, and since

the homotopy is constant on Sn−1, also b′ |Sn−1 is constant. In particular b′ can be

seen as a map a : (Dn, Sn−1)→ (A, x0). Then i ◦ a = b′ so i∗[a] = [b′] = [b].

Part 2. We move to exactness at πn(X,A) and compute ∂ ◦ j∗. Given a map of

pairs b : (Dn, Sn−1) → (X, x0), by Definition 4.5 of the connecting homomorphism,

the class ∂(j∗[b]) is represented by the restriction j ◦ b |Sn−1 , which is constant. So

∂(j∗[b]) = 0.

To prove exactness we consider now a map f : (Dn, Sn−1)→ (X,A) and assume

that ∂[f ] = 0, i.e. f |Sn−1 is nullhomotopic as pointed map to A, via a homotopy

F : Sn−1 × I → A. We define a new map g on Dn ≈ Dn × 1 ∪ Sn−1 × I by using F

on the cylinder and our map f on Dn × 1. Observe that f and g are homotopic as
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maps of pairs since F takes place entirely inside A. But g is map which is constant

on its boundary, it defines thus a map (Dn, Sn−1)→ (X, x0). Now j∗[g] = [f ].

Part 3. We end with the exactness at πn−1A. Given f : (Dn, Sn−1) → (X,A),

the class i∗(∂[f ]) is represented by the restriction f |Sn−1 composed with i. But f

itself can be seen as a nullhomotopy for this map. Therefore i∗ ◦ ∂ = 0.

To conclude let us consider a map a : Sn−1 → A with i∗[a] = 0, i.e. i ◦ a is

homotopic to the constant map cx0 via a homotopy H. As usual such a nullhomotopy

can be parametrized by a map on Dn, by collapsing Sn−1 × 1 to a point. This gives

us a map H : Dn → X whose restriction to Sn−1 is equal to the map a we started

with. Considering H as a map of pairs we have ∂[H] = [a]. □

Example 4.9. Let CX be the cone on a space X and consider the long exact

sequence in homotopy for the pair (CX,X):

0 = π2CX → π2(CX,X)
∂−→ π1X → π1CX → π1(CX,X)

∂−→ π0X → π0CX = ∗

We conclude from the contractibility of CX that the connecting homomorphism

induces an isomorphism πn+1(CX,X) ∼= πnX for all n ≥ 1. At the end of the

sequence we have to be more careful because this is only an exact sequence of sets.

The map of sets ∂ : π1(CX,X) → π0X is surjective (its image coincides with the

kernel of the “zero map”. We also know that ∂ has its kernel reduced to the class of

the trivial map (D1, S0)→ (CX,X). Let us see if it is a bijection. The elements of

π1(CX,X) are homotopy classes of paths I ≈ D1 → CX whose endpoint lies in X.

Choosing a point x in a connected component of X we claim that any two paths in

CX ending at x are homotopic as relative maps. For the connected component of

the base point this follows from the “injectivity”, and for other components any such

relative path must go through the top of the cone.

Example 4.10. Let X be a reduced CW-complex (having a single 0-cell), so

its 1-skeleton X(1) is a wedge of circles ∨αS1. A wedge of circles has trivial higher

homotopy groups (because its universal cover is contractible, it is a Cayley graph

of a free group). The long exact sequence in homotopy then shows that πnX ∼=
πn(X,X

(1)) for any n ≥ 3 and let us again look more closely at the end of the
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sequence:

0→ π2X ∼= π2(X,X
(1))

∂−→ π1X
(1) → π1X → π1(X,X

(1))→ ∗

Here π1X
(1) is a free group projecting onto π1X so π1(X,X

(1)) = ∗.





CHAPTER 3

The cellular approximation

In this chapter we will show that any map between CW-complexes can be de-

formed, up to homotopy, into a map which is cellular: it sends n-dimensional cells to

the n-skeleton. There will be a technical part in the proof, but as a reward we will

be able to deduce the value of some very important homotopy groups of spheres, and

other highly connected complexes. We follow quite closely [3, Chapter 4], which has

almost been covered in Christian Urech’s course “Algebraic Topology”, so we should

be quite familiar with the notation and the techniques.

1. CW-complexes and polyhedra

We write X(n) for the n-skeleton of a CW-complex X.

Definition 1.1. Let X, Y be CW-complexes. A map f : X → Y is cellular if

f(X(n)) ⊂ Y (n) for any n ≥ 0.

The following example already shows why it will be quite handy to be able to

deform any map into a cellular one.

Example 1.2. Let us use the standard cell structure on Sn = e0 ∪ en, where
the attaching map for the n-cell is the only one there is, namely the constant map

Sn−1 → e0 = ∗. This means that this model for an n-dimensional sphere has all its

skeleta (Sn)(k) reduced to a point for k < n.

Let m > n. A map f : Sn → Sm is cellular if and only if it is constant.

The main technique to control what a map does on a cell will be to homotope it

to a piecewise linear map on a polyhedron. For us polyhedra will always be finite,

so we do not mention it explicitly in the terminology.

Definition 1.3. A convex polyhedron in Rn is a finite intersection of half-spaces

whose boundaries are hyperplanes defined by an affine equation
∑
aixi = b.

33
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A subspace K ⊂ Rn is a polyhedron if it is a finite union of compact convex

polyhedra.

Example 1.4. A quadrant in R2 is a convex polyhedron, but it is not compact,

so we will not work with such polyhedra here. Any triangle in R2 is compact convex

polyhedron, a not necessarily convex hexagon is a polyhedron. The standard simplex

in Rn+1, convex hull of the endpoints of the standard basis, is a polyhedron.

Definition 1.5. LetK be a polyhedron. A map f : K → Rkj is piecewise linear,

or PL for short, if there exists a decomposition of K into compact convex polyhedra

Ki ⊂ K such that f |Ki
is affine.

A map f : K → e̊k is piecewise linear if it so after composing with some homeo-

morphism e̊k ≈ Rk.

Example 1.6. Every cube In is a polyhedron and it can be given the structure

of a simplicial complex, either by taking barycentric subdivision, or by doing it

inductively, starting from the segment I which is a simplicial complex, continuing

with the square, which can be cut into two triangles diagonally, etc.

For further use we introduce now a construction.

Construction 1.7. Let f : In → Rk be any map. Consider two closed balls

B1 = B(0; 1) ⊂ B2 = B(0; 2) in Rk. Since f is continuous on a compact cube, it is

uniformly continuous. There exists ε > 0 such that

(1) If |x− y| < ε then |f(x)− f(y)| < 1/2;

(2) ε < 1
2
d(f−1(B1); I

n \ f−1(B̊2))

Choose an integer N such that the diameter of the small cube [0; 1/N ]n is smaller

than ε and subdivide the big cube In into small cubes of side 1/N . Set K to be the

union of all small cubes meeting f−1(B1) and make it somewhat fatter by setting

K2 to be the union of all cubes meeting K.

Observe that every point of K2 is at a distance from K smaller than the diameter

of a small cube, so smaller than ε. Then, since K contains the preimage of B1, the

distance to f−1(B1) is smaller than 2ε. Moreover, by choice of ε, the polyhedron K2

is containes in f−1(B2).
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2. Cellular approximation

Our proof will go by induction on the cells in the source, so we need first a result

about a map from one cell. All technical issues are contained in this result. We will

need to deal with maps which do not miss any point in the interior of large cells (if

there is a point not in the image of f one can retract the cell down to its boundary).

Lemma 2.1. Let f : In → Z = W ∪ ek be a map where the interior e̊k is entirely

contained in the image of f . Then f is homotopic to a map f1, relative to f−1(W ),

such that there exists a polyhedron K ⊂ In with

(a) f1(K) ⊂ ek and f |K is PL;

(b) There is a non-empty open subset U ⊂ ek such that f−1
1 (U) ⊂ K.

Proof. Let us fix a homeomorphism e̊k and apply Construction 1.7 to the unit

ball B1, the larger ball B2 in Rk. This allows us to find a polyhedron K ⊂ K2 in

In on which we will define a PL map g and then homotope it to f using the extra

space between K and K2.

Since K2 is made of little cubes, we can use Example 1.6 to view it as simplicial

complex, i.e. a union of standard simplices. We define the map g by starting on the

vertices (0-simplices) by using the map f , so we set g(v) = f(v) for any v ∈ (K2)
(0).

We then extend the map linearly to all simplices of K2. This map g coincides with

f on vertices, but not on the whole boundary of K2 so we need to alter it between

K and this boundary to be able to glue it with f on the complement of K2.

To do so we find first a map φ : K2 → [0; 1] which is constant, equal to 1 on K

and zero on ∂K2. We can use the same technique as above to make it continuous by

extending it linearly. Next we construct a homotopy

H : K2 × I → ek, (x; t) 7→ (1− tφ(x)) · f(x) + tφ(x) · g(x))

At time t = 0 we start with H(x, 0) = f(x) and at the other end, t = 1 we have

H(x, 1) = (1 − φ(x)) · f(x) + φ(x) · g(x)), a map which coincides with g on K.

As mentioned above the last important property is that for x ∈ ∂K2 \ K we have

H(x, t) = f(x) since φ(x) = 0 here. This means that we can extend H continuously

to a homotopy on the whole cube In which is constantly equal to f outside K2. This

yields a homotopy H ′ from f to a map f1 = H ′(−, 1) which is PL on K.
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Let us now verify the properties (a) and (b). Property (a) is immediate by

construction, so we need only to find the open set U from claim (b). Consider the

compact subspace C = f1(In \K) ⊂ W ∪ ek.
Claim. The point 0, i.e., the center of the open disc e̊k we have identified with

Rk, does not belong to C.

Proof of the Claim. On In \K2 the map f1 coincides with f and the latter sends

a point there outside B1 since f−1(B1) ⊂ K ⊂ K2. For points on the boundary, we

proceed as follows. Any maximal dimensional n-simplex σ in K2 but not in K is

contained in a small cube of side 1/N , hence its image f(σ) is contained in a ball of

radius 1/2 by choice of ε. However, to construct g we kept the same value as f on

vertices and since a ball is convex, g(σ) is contained in the same ball of radius 1/2.

In fact the formula defining H shows that H(σ, t) is also contained in that same ball

(convex hull). In particular so is f1(σ). The center of this ball is at distance > 1/2

from the origin, if not f(σ) would be entirely contained in B1, but we chose σ with

vertices outside K. This shows that 0 /∈ C, proving the claim.

We thus choose U to be a neighborhood of 0 such that f1(In \K)∩U = ∅. This
is what we wanted: f−1

1 (U) ⊂ K. □

We are ready now for the proof of the Cellular Approximation Theorem. We will

only do the non-relative version of the following, to keep it as simple as possible, but

it does not involve much more to actually prove a version where one deforms a given

map f only outside a subcomplex on which the map is already cellular. The main

idea is to apply the previous lemma so as to deform a map in such a way that images

of small cells do not entirely cover the large cells they meet in the image, because this

will allow us to contract those large cells down to their boundary. This should be

reminiscent of the proof we saw in Topology that π1S
2 = 1: some loops in S2 could

fill S2, but up to homotopy we can make it affine in a small neighborhood and since

a finite number of affine functions can never fill a square, we chose a point not in the

image, prick the sphere at the point and contract it down to a point continuously.
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Theorem 2.2. Let f : X → Y be a map between CW-complexes. Then f is

homotopic to a map g which is cellular. Moreover, if f is cellular on a sub-CW-

complex A ⊂ X, then we can choose the homotopy relative to A.

Proof. We study this question cell by cell, and to do so, we start with 0-

dimensional cells where the solution is easy (we do not need Lemma 2.1).

Each 0-cell is a vertex v ∈ X, sent to a point f(v) that belongs to some path

component of Y . A path in this component defines a homotopy from f |X(0) to a

cellular map if the end point of this path is a vertex in Y . We extend this homotopy,

that is only defined on the 0-skeleton, to higher cells by induction, using the fact

that the inclusion Sn−1 × I ∪ Dn × 0 ⊂ Dn × I is a strong deformation retract, so

it admits a homotopy inverse r : Dn × I → Sn−1 × I ∪Dn × 0. Let us spell out the

details for 1-cells and leave it for later to do this properly for higher cells, since this

is a property that so-called cofibrations have in general (we will see that inclusions

of subcomplexes are cofibrations). As promised let us look at a 1-cell e1 attached to

the 0-skeleton by an attaching map a : S0 → X(0). We have a homotopy H(0) defined

on X(0)× I and f itself is already given on X(0) ∪a e1. Observe that (X(0) ∪a e1)× I
is the pushout of

(X(0) ∪a e1)× 0 ∪ (X(0) × I)← (D1 × 0) ∪ (S0 × I) ↪→ D1 × I

The universal property of the pushout tells us it is enough to define a map on D1×I
compatible with H(0). To do so we use the retraction and compose with the map we

already have. We continue by induction on all cells.

Let us thus assume that f is already cellular on X(n−1) and consider the attaching

map for a single n-cell en, call it again a : Sn−1 → X(n−1). We will also call f

the restriction to X(n−1) ∪a en and have the following situation represented in the

following diagram:

Sn−1 X(n−1) Y (n−1)

Dn X(n−1) ∪a en Y

a f |
X(n−1)

f

where the left hand square is a pushout square. Since Dn is compact, so is its image,

which thus meets only a finite number of cells in Y . If all these cells have dimension
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≤ n there is nothing to do, f would already be cellular, but if not let us consider a

maximal dimensional cell ek in Y that is hit by f , with k > n. So the image of f is

contained in a subcomplex Z of Y containing Y (n−1), plus a finite number of cells,

including ek. Let us call W = Z \ e̊k so Z = W ∪ ek. If the interior of this cell ek is

not entirely contained in the image of f we can move directly to the second part of

the algorithm, but let us suppose first that ek is entirely contained in the image of

f . Consider next the composite

g : In
≈−→ Dn → X(n−1) ∪a en

f−→ Z

We are in good position to apply Lemma 2.1 and find a map g1 ≃ g relative to

g−1(W ) which is PL on a polyhedron K ⊂ In whose image lies in e̊k. Since g sends

the boundary of the cube to W , it has not moved during the (relative) homotopy,

and we can extend this homotopy constantly outside so as to get a map f1 ≃ f

with f1 |en is given by g. Since the dimension of the (compact) polyhedron K is

strictly smaller than k, its image f1(K) only hits a finite number of affine subspaces

of Rk ≈ e̊k in a neighborhood we called U in the lemma. Therefore there is a point

u in U which does not belong to the image of f1.

We have thus managed to be in the situation where the map f hits the cell ek

but misses an interior point. The space W ∪ (ek \u) admits a deformation retraction

down to W since a pricked disc retracts to its boundary sphere. This yields a map

f2 ≃ f1 ≃ f which misses the cell ek. If needed, we repeat this argument, finitely

many times, for all large cells in the image of f , obtaining in the end a homotopic

map which is cellular.

But this map has only been constructed for one extra cell in X. In general

X(n) has been constructed from the (n− 1)-skeleton by attaching many cells, maybe

infintely many. We apply the same procedure simultaneously to all cells, so as to get

a map fn defined on X(n), we extend the homotopy to a homotopy defined on the

whole space X just as we did for the 0-cells in the first step of this proof.

To conclude we need to assemble the successive homotopies we have constructed

skeleta by skeleta. Because X might be infinite dimensional, we concatenate possibly

an infinite number of homotopies. To do so let us spend half a second to perform

the homotopy yielding a map which is cellular on the 0-skeleton, then one quarter
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of a second to have it cellular on the 1-sekelton, one eighth of a second to continue

to the 2-sekeleton, etc. This defines a homotopy from f to f∞ which is is cellular on

X. □

As promised in Example 1.2 we cash in right away the benefits for our hard work.

Corollary 2.3. For any 0 ≤ n < k we have πnS
k = 0.

Proof. Any map f : Sn → Sk is homotopic to a cellular map, but the latter is

constant. □

This property that all lower homotopy groups are trivial is important enough to

deserve a name.

Definition 2.4. A space X is n-connected if πkX = 0 for all k ≤ n and any

choice of base point. A pair (X,A) is n-connected if πk(X,A) = 0 for all k ≤ n and

any choice of base point.

Example 2.5. A space X is 0-connected if π0X is reduced to a point, i.e. X

is path-connected. A space is 1-connected if moreoever π1X = 1, i.e. it is simply

connected. We have seen that the n-sphere is (n− 1)-connected and we will see that

more generally spaces built from large cells are highly connected, more precisely, any

CW-complex whose n-skeleton is reduced to a point is n-connected.

Remark 2.6. For a pair (X,A) the long exact sequence in homotopy tells us

that being n-connected means that the first homotopy groups of A and X agree:

πkA ∼= πkX for k < n and the next one πnA→ πnX is an epimorphism.

3. CW-approximation

In the previous section we proved that any map between CW-complexes can be

chosen to be cellular, up to homotopy. In this section we deal with arbitrary spaces

and show that one can replace them with CW-complexes, up to weak equivalence.

Definition 3.1. An unpointed map f : X → Y is a weak homotopy equivalence

if it induces isomorphisms f∗ : πn(X;x0)→ πn(Y ; f(x0)) for all x0 ∈ X.
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This means that X and Y have the same number of path-connected components

and on each of them f induces an isomorphism on all homotopy groups. We have

met examples of weak (homotopy) equivalences which are not homotopy equiva-

lences, such as the inclusion of a point in the Warsaw circle, but of course homotopy

equivalences are weak equivalences since an inverse up to homotopy induces an in-

verse isomorphism on homotopy classes.

Before getting to the proof of the CW-approximation Theorem, we state and

prove two small lemmas about certain highly connected pairs appearing in our con-

structions.

Lemma 3.2. The pair (X∨Sn, X) is (n−1)-connected and the inclusion i : X ↪→
X ∨ Sn induces an isomorphism on πn−1.

Proof. The wedge summand inclusionX ↪→ X∨Sn admits a retraction, namely

the collapse of the sphere. Therefore i∗ is injective in any degree. Moreover, when

k < n, the Cellular Approximation Theorem 2.2 (or rather its relative version for

pairs) tells us that any map (Dk, Sk−1) → (X ∨ Sn, X) factors through the pair

(X,X) up to homotopy when k < n. As πk(X,X) = 0, this shows the triviality of

the relative homotopy groups in degrees k < n and the surjectivity of i∗ by inspection

of the long exact sequence in homotopy for the pair (X ∨ Sn, X). □

In the above lemma we could do a little better than for an arbitrary attaching map

because the n-cells we added were attached with a trivial attaching map, yielding a

wedge. In general we can say the following.

Lemma 3.3. Let a : Sn → X be any map. The pair (X∪aen+1, X) is n-connected.

In particular the inclusion X ↪→ X ∪a en+1 induces an isomorphism on all πk for

k < n.

Proof. The triviality of πk(X∪aen+1, X) for k ≤ n is provided as in the previous

proof by the Cellular Approximation Theorem (for pairs). The long exact sequence

in homotopy allows us to conclude. □

Theorem 3.4. Any space X admits a CW-approximation, i.e. a weak equiva-

lence f : Z → X from a CW-complex Z.
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Proof. We assume that X is path connected and otherwise we apply the fol-

lowing construction on each path-connected component. The construction is an

inductive process on the dimension of the cells.

We choose Z(0) = ∗ to be a point and define f (0) : ∗ → X by sending this point

to our favorite point x0 ∈ X. This induces a bijection on π0 by assumption. The

construction to obtain an isomorphism on the next homotopy group, is done in two

steps. We first obtain a surjection and then correct it by killing the kernel.

Let us attach 1-cells to our point ∗ so as to construct Z(1) which is a wedge

of circles ∨i∈IS1
i . Here I is a set in bijection with a choice of generators αi of

π1(X;x0). We represent the αi’s by pointed maps ai : S
1 → X and assemble them

to define f (1) : Z(1) → X (the restriction to S1
i is ai). On fundamental groups this

induces a homomorphism π1(∨S1) ∼= F (I) → π1X. The fundamental group of

a wedge of circles is a free group whose generators we call xi, for i ∈ I, by the

Seifert-van Kampen Theorem, and by construction xi is sent to αi. In particular

this homomorphism is surjective and we call the kernel K = Ker(f (1))∗.

In our second step we choose generators βj of this kernel, where j ∈ J and quickly

represent them by maps bj : S
1
j → Z(1) = ∨IS1). By definition of K they have the

property that f (1) ◦ bj are all null-homotopic. Choose a null-homotopy Bj defined on

S1
j ×I with Bj(s, 1) = ∗ for all s ∈ S1

j . By the universal property of the quotient, the

homotopy Bj induces a map on the space obtained by collapsing the top lid S1
j × 1.

Let us call hj : D
2
j ≈ (S1

j × I)/(S1
j × 1)→ X.

Let us define Y (2) = X(1) ∪ (∨D2
j ) where the j-th 2-cell is attached via Bj. This

allows us to complete the following diagram with the dotted arrow since the interior

square is a pushout square by construction and the bended arrows make the outer

square commute:

∨JS1
j Z(1)

∨JD2
j Y (2)

X

∨bj

f (1)

∨hj

g(2)
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We show now that our new map g(2) induces an isomorphism on the fundamental

group. Apply the functor π1 to the whole diagram and identify with the correspond-

ing free groups the fundamental groups of wedges of spheres:

F (J) F (I)

1 π1Y
(2)

π1X

(f (1))∗

(g(2))∗

By the Seifert-van Kampen Theorem, the inner square is a pushout diagram of

groups and (g(2))∗ is an isomorphism. We continue by induction adding 2-cells to

obtain a surjection on π2 and rectifying this by adding 3-cells, etc.

So, let us assume that we have constructed an n-dimensional CW-complex Y (n)

and a map g(n) : Y (n) → X inducing an isomorphism on homotopy groups πk for

k < n. Just as before we will first add n-cells to obtain a surjection on πn and

then rectify it to get an isomorphism. One reason we went through the argument

for π1 separately is that we had the Seifert-van Kampen to perform the explicit

computation of the fundamental group, but there is no higher version we can use

now.

Using abusive notation, let us call (again) αi chosen generators for πnX and

ai : S
n → X some representatives, for i ∈ I. Form a wedge of spheres

∨
I S

n
i and

define Z(n) = Y (n) ∨
∨
I S

n. We deduce from Lemma 3.2 that the inclusion Y (n) ↪→
Z(n) induces an isomorphism on πk for all k < n. We then extend g(n) to a map

f (n) : Z(n) → X by using ai on S
n
i . This induces a surjection on πn since composite

maps

Sn
ιi−→ ∨JSni ↪→ Y (n) ∨

∨
J

Sn
fn)

−−→ X

is equal to ai. In order to construct Y (n+1) we choose generators βj of the kernel K

of (f (n))∗ : πnZ
(n) → πnX and represent them by maps bj : S

n → Z(n). Just as above

we choose null-homotopies hj : D
n+1
j → X and define Y (n+1) to be the pushout in
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the small square below

∨JSnj Z(n)

∨JDn+1
j Y (n+1)

X

∨bj

f (n)

∨hj

g(n+1)

The dotted map g(n+1) is induced by the universal property of the pushout. By

Lemma 3.3 we know that the pair (Y (n+1), Z(n)) is n-connected. All together, these

considerations about the connectivity of the pairs imply that πkY
(n) → πkZ

(n) →
πkY

(n+1) are isomorphisms for all k < n. As we assumed that these homotopy groups

agreed with those ofX we conclude that g(n+1) induces isomorphism πkY
(n+1) → πkX

for all k < n.

Let us finally look at the effect of g(n+1) on πn. The easy part is surjectivity since

(f (n))∗ : πnZ
(n) → πnX is so by construction and this surjection factors through

(g(n+1))∗. Injectivity follows from a less direct argument. Let κ belong to the kernel

of (g(n+1))∗ and represent it by a map k : Sn → Y (n+1). We have seen that the pair

(Y (n+1), Z(n)) is n-connected, so k lifts up to homotopy to a map k′ : Sn → Z(n).

Therefore (g(n+1))∗(κ) is represented by the composite map f (n) ◦ k′. We picked κ in

the kernel, so κ′ = [k′] belongs to the kernel K.

This kernel is an abelian group (being a subgroup of a higher homotopy group),

it is thus a finite sum of generators βj or their opposites −βj. This means that up

to homotopy k′ factors through the wedge ∨JSnj : if we need to introduce ℓ times βj

for ℓ ∈ N, we pinch the corresponding sphere ℓ times and use p : Sn → ∨ℓSn, and
if ℓ is negative we precompose with the degree −1 map (changing the sign of one

coordinate for example). This shows, looking at the pushout diagram above, that k

factors through the wedge of discs, which is contractible. Thus k is null-homotopic

and we are done.

The CW-approximation is completed by setting Z = ∪Z(n) and using the com-

patible maps f (n) to define f on Z. It induces an isomorphism on all homotopy

groups. Focusing on one of them, πn say, we have shown that f (n+1) induces an
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isomorphism on πn and from there on, attaching higher cells does not change this

homotopy group. □

Remark 3.5. There is a more general version of the CW-approximation Theo-

rem, relative to a subspace A ⊂ X to which one attaches cells so as to construct as

relative CW-complex (Z,A), weakly equivalent to the pair (X,A).

All together what we have seen in the first sections of this chapter is that, up to

weak homotopy equivalence, one can replace any space by a CW-complex, and then

any map between such nice spaces by a cellular map. This retricts our study to a

manageable class of spaces and maps where the methods of the Algebraic Topology

course apply nicely.

What we have not done yet (and promise to come back to later) is to show

that the CW-approximation of a space is unique up to weak homotopy equivalence.

We will need mapping cylinders for that. Then we will show that in fact a weak

equivalence between CW-complexes is a homotopy equivalence.

4. Postnikov sections

The technique we have seen in Section 3 will be applied next not to rebuild the

correct homotopy groups of a CW-approximation, but to kill all higher homotopy

groups, thus obtaining more complicated spaces from the cellular construction, but

simpler from the point of view of homotopy groups. We will actually construct a

tower of spaces X[n] living under X (together with maps X → X[n]) and differing

from one to the next in a single homotopy group. Spaces with a single non-trivial

homotopy group are important enough to get a name, or rather two.

Definition 4.1. Let A be a group and n ≥ 1. A path-connected space X such

that πkX = 0 for all k ̸= n and πnX ∼= A is called an Eilenberg-Mac Lane space of

type K(A, n).

For now, as we do not require a K(A, n) to be a CW-complex, there is no reason

why such Eilenberg-Mac Lane spaces should be unique up to homotopy.

Example 4.2. We have already met a few Eilenberg-Mac Lane spaces. When

n = 1 they correspond to spaces with contractible universal cover:
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(1) The circle S1 is a K(Z, 1).
(2) The torus S1 × S1 is a K(Z× Z, 1).
(3) The wedge S1 ∨ S1 is a K(Z ∗ Z, 1).
(4) The infinite real projective space RP∞ is a K(Z/2, 1).
(5) The infinite complex projective space CP∞ is a K(Z, 2), but this is harder

to prove...

We start right away with the construction of Postnikov sections, and as a partic-

ular case we will be able to construct K(A, n)’s for all n and all groups A (abelian

when n ≥ 2).

Proposition 4.3. Let X be a path-connected space and n ≥ 1. There exists

a space X[n] and a map ℓn : X → X[n] such that (ln)∗ : πkX → πkX[n] is an

isomorphism for all k ≤ n and πkX[n] = 0 for k > n.

Proof. We choose a set of generators αi ∈ πn+1X and represent them by maps

ai : S
n+1 → X. We then construct the pushout

∨ISn+1
i X

∨IDn+2
i X ′

∨ai

We know from Lemma 3.3 that the pair (X ′, X) is (n + 1)-connected as we attach

cells of dimension n + 2. This implies that the inclusion induces isomorphisms

πkX ∼= πkX
′ for k ≤ n and an epimorphism on πn+1. But any map Sn+1 → X ′

factors through its (n + 1)-st skeleton (X ′)(n+1) = X(n+1) up to homotopy, so its

homotopy class comes from a class in πnX. These classes become null-homotopic by

construction, so πn+1X
′ = 0.

We iterate this construction and kill πn+2X
′ by constructing a space X ′′ from X ′

by attaching (n + 3)-cells. The union of these spaces X ⊂ X ′ ⊂ X ′′ ⊂ . . . is called

X[n] and enjoys the desired properties. □

With this construction X[0] is a weakly contractible space (all its homotopy

groups are trivial), and X[1] is a K(π1X, 1).

We can assemble all Postnikov sections into a tower.
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Theorem 4.4. Let X be a path-connected space. There is a tower of maps

· · · → X[n+ 1]
pn−→ X[n]→ · · · → X[1]→ X[0] such that pn ◦ ℓn = ℓn+1.

Proof. In order to construct the map pn : X[n+1]→ X[n], we use the construc-

tion from the proof of Proposition 4.3. Our aim is to extend the inclusion X ⊂ X[n]

to a map on X[n + 1]. The latter space has been constructed by attaching cells of

dimension ≥ n+ 3, the lowest dimensional ones having been used to kill πn+2X.

Instead of doing the full inductive argument on all cells, let us only look at one

of these cells en+3 and its attaching map b. We have a pushout square as below:

Sn+2 X

Dn+3 X ∪b en+3

X[n]

b

ℓn

B

p

where the map B is a nullhomotopy for ℓn ◦ b, which exists since πn+2X[n] = 0. The

diagram therefore commutes and the universal property of the pushout provides the

dashed arrow p. We could have done that for a wedge of spheres, and then iterate

so as to construct pn. □

Example 4.5. Since S2 is simply-connected, we have a weakly contractible first

Postnikov section S2[1]. We also know that π2S
2 ∼= Z, so S2[2] is a K(Z, 2). The

next Postnikov section is more interesting. The Hof map generates π3S
2 ∼= Z, so

S2[3] is a space with two non-trivial homotopy groups, in degree 2 and 3, both being

isomorphic to Z. We will see that this space is not a product K(Z, 2)×K(Z, 3), the
Eilenberg-Mac Lane spaces are glued together in a “twisted way”.



CHAPTER 4

Fibrations and cofibrations

In the previous chapter we have given concrete constructions that allow us to

work with nice spaces (CW-complexes) and nice maps (cellular maps). Now we take

some time to study a formal setup in which it is convenient to do homotopy theory.

Two classes of maps play a central role in this theory, hinting at the structure of a

model category, a notion due to Quillen, [7]. This notion is one of the main topics

covered in the course Homotopical Algebra, so one of our objectives will be to present

one way to do homotopy theory with spaces in a way that can be seen as a guideline

to generalizations.

We will also study long exact sequences associated to fibrations and cofibrations.

1. Mapping cylinders and mapping cones

We follow Sections 1 and 6 from [12, Chapter 4]. The mapping cylinder construc-

tion will be very useful to “turn a map into a cofibration”. We have not defined yet

what it means to be a cofibration, but let us think about a nice subspace inclusion,

like a sub-CW-complex.

Definition 1.1. . Let f : X → Y be a map. The mapping cylinder Cyl(f) is

the space (X × I)
∐
Y/(x, 0) ∼ f(x).

Remark 1.2. The cylinder construction actually defines a functor on the cate-

gory of maps (morphisms are commutative squares). If the map is pointed and we

wish to stay in the pointed category, then we would use the pointed version of the

cylinder X⋊I so the cylinder has a canonical base point. We will not systematically

develop the whole theory in both settings, but it is usually quite obvious to adapt

the unpointed version to the pointed one. In this chapter we will concentrate in fact

on the pointed version since we are mostly interested in pointed homotopy classes

of maps.

47
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Lemma 1.3. Let f : X → Y be a map. The collapse map r : Cyl(f) → Y is a

homotopy equivalence.

Proof. The collapse map is defined by r(x, t) = (x, 0) = f(x) for all x ∈
X, t ∈ I, and r(y) = y for all y ∈ Y . We have already seen this argument in the

topology course: The inclusion i : Y ↪→ Cyl(f) has r as a strong deformation retract.

Obviously r ◦ i is the identity and i ◦ r is homotopic to the identity relative to Y via

the homotopy

H : Cyl(f)× I −→ Cyl(f)

((x, t), s) 7−→ (x, st)

(y, s) 7−→ y

This homotopy collapses slowly the cylinder on X down to its base in 1 second. □

We define now the mapping cone of a map f as above as the target space to

which we attach a cone on X. We have already met this kind of spaces in topology

to attach what we called X-cells.

Definition 1.4. Let f : X → Y be a map. The mapping cone C(f) is the

quotient space Cyl(f)/X × 1.

In topology the sequence X
f−→ Y → C(f) behaves really like an exact sequence.

Let us thus introduce the terminology and prove this in the next lemma.

Definition 1.5. A sequence of pointed spaces A
f−→ B

g−→ C is h-coexact if for

any pointed space Z the sequence [C,Z]∗
g∗−→ [B,Z]∗

f∗−→ [A,Z]∗ is exact in pointed

sets, i.e. (f ∗)−1[cz0 ] = Img∗.

Lemma 1.6. The sequence A
f−→ B

i−→ C(f) is h-coexact.

Proof. Since i ◦ f is the inclusion of A at the bottom of the cone on A, this

composition is null-homotopic, so f ∗ ◦ i∗ is constant. Conversely, by definition of the

cone of a map, we have a pushout square defining C(f) and we add to the picture a
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map b : B → Z such that f ∗[b] = [cz0 ]:

A B

CA C(f)

Z

f

i
b

H

c

Since b ◦ f is homotopic to the constant map, there is a null-homotopy H defined

on the cone of A. It deforms continuously b ◦ f at the bottom of the cone to the

constant map defined on the top of the cone, which means that the diagram above

commutes. Therefore the dashed arrow c exists, making the whole diagram commute.

In particular c ◦ i = b, hence i∗[c] = [b]. □

Now that we have started constructing an h-coexact sequence from any map,

we can iterate the construction. So we wish to construct the cone of the inclusion

f1 : B ↪→ C(f), i.e. take C(f) and attach a cone on B. This would be nice maybe,

but not so interesting if we were not able to identify the homotopy type of C(i) in

terms of the previous data.

Lemma 1.7. The cone C(f1) is homotopy equivalent to the suspension ΣA.

Proof. The idea is that the cone of B we attach to C(f1) is even larger than

the second cone on A we would attach to CA to construct the suspension. More

precisely, let us look at the following commutative diagram starting with two pushout

squares on the left and completing then with quotient maps on the right:

A CA CA/A = ΣA

B C(f) C(f)/B

CB C(f1) C(f1)/CB

f ≈

f1 p

≈

q

where p and q denote the quotient maps. Since we started with pushout squares,

the right hand side vertical maps are homeomorphisms, so in particular the induced

map ΣA→ C(f1)/B is a homeomorphism. To conclude we show that the map q is
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a homotopy equivalence. For the sake of readability, we will not write bars over the

pairs of the form (x, s) representing elements in cones and suspensions.

Define s(f) : ΣA→ C(f1) by sending the upper cone C+A to CA via s(f)(a, s) =

(a, 2s) and the lower cone C−A to CB via s(f)(a, s) = (f(a), 2(1 − s)). When

s = 1/2, we send (a, 1/2) to the base of the cone CA, that is on (a, 1) (the top of

the cone is the class of (a, 0)), and this is identified with (f(a), 1) in the base of the

cone on B.

Let us write down now an explicit homotopy contracting CB to a point.

H : C(f1)× I −→ C(f1)

(a, s, t) 7−→

{
(a, (1 + t)s) if (1 + t)s ≤ 1

(f(a), 2− (1 + t)s) else

(b, s, t) 7−→ (b, (1− t)s)

To check that this piecewise formula gives a continuous map, we just have to check

that if (1 + t)s = 1, both formulas (a, (1 + t)s) = (a, 1) and (f(a), 2 − (1 + t)s) =

(f(a), 1) define the same element, which is the case by definition of C(f1), and

moreover two elements (a, s, t) and (b, s, t) in the same class have the same image

underH. This happens for b = f(a) and s = 1, where both formulas give (f(a), 1−t).
So continuity is established.

We check now what happens at t = 0 and t = 1. When t = 0, we haveH(a, s, 0) =

(a, s) and H(b, s, 0) = (b, s), this is the identity. At t = 1 we get on the one hand

H(b, s, 1) = (b, 0), so H(−, 1) is the constant map on the cone on B. On the other

hand

H(a, s, 1) 7−→

{
(a, 2s) if 2s ≤ 1

(f(a), 2− 2s) else

This is exactly s(f). In other words, H(−, 1) = s(f) ◦ q, we first collapse the cone

on B to a point and continue with s(f). This shows that s(f) ◦ q is homotopic to

the identity on C(f1).
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To conclude we still need to check the other composition, namely q ◦ s(f). When

s > 1/2, we see that s(f)(a, s) = (f(a), 2(1 − s)) is an element in the cone on B,

which is collapsed by q, so the lower cone C−A is sent to the base point of ΣA. On

the upper cone, s ≥ 1/2, we have

(q ◦ s(f))(a, s) = q(a, 2s) = (a, 2s)

This composition simply collapses the lower cone. This is also homotopic to the

identity, a homotopy is given by collapsing only the part A× [0, t] of the lower cone

(A× [0, 1])/(A× 0). □

Before continuing even one step further, let us look again at the h-coexact se-

quence we constructed from f , and completed by constructing the cone on f1:

A
f−→ B

f1−→ C(f)
f2−→ C(f1)

From the previous lemma we learn that we can replace C(f1) by ΣA and the map

f2 by the simpler map p : C(f) → ΣA collapsing the bottom cone CB. After this

slow start, let us continue and identify C(p)! We will see a minus sign appearing in

a map between suspensions: this is given by precomposing with ι, the inverse for the

co-H-group structure we have seen in 2.10.

Proposition 1.8. The space C(p) is homotopic to ΣB and the inclusion map

ΣA ↪→ C(p) is then replaced −Σf : ΣA→ ΣB.

Proof. The first claim about the homotopy type of C(p) follows directly from

Lemma 1.7, the surprising part is maybe the minus sign appearing when one identifies

the map ΣA→ ΣB. Just as we have replaced C(f1) by ΣA via the collapse map q,

we replace C(f2) by ΣB via a collapse map q′. More explicitly this means that in

C(f2) = C(f1) ∪ C(C(f)) we collapse the whole cone C(C(f)):

B C(f) C(f1) C(f2)

ΣA ΣB

p

f2

q

f3

p′
q′

−Σf
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We complete the diagram with the diagonal map p′ = q′ ◦ f3. The second claim will

then follow if we prove that the middle triangle commutes up to homotopy. Instead

of proving that directly, we precompose with the map s(f) : ΣA→ C(f1) constructed

in the previous proof. We have seen that q ◦ s(f) is homotopic to the identity, so we

wish to show that p′ ◦ s(f) is homotopic to −Σf . Let us compute this composition.

For an element in the upper cone C+A, the image s(f)(a, s) = (a, 2s) belongs to

the cone on C(f) so it is sent to the base point under the collapse map p′. For an

element on the lower cone C−A, we have p
′[s(f)(a, s)] = p′(f(a), 2(1−s)). This goes

twice as fast, but is homotopic to the map (a, s) 7→ (f(a), 1 − s), which is nothing

but Σf ◦ ι since we reversed the orientation of the cylinder. □

We finally iterate one more time to get back the suspension of C(f). To sum up

we can splice up h-coexact sequences so as to get a long Puppe sequence.

Theorem 1.9. Let f : A→ B be a pointed map. The sequence

A
f−→ B

f1−→ C(f)
p−→ ΣA

−Σf−−→ ΣB
−Σf1−−−→ ΣC(f)

−Σp−−→ Σ2A
Σ2f−−→ . . .

is then h-coexact.

Proof. We only need to observe that ι◦ι is homotopic to the identity to identify

the second iteration of maps between double suspensions. □

Remark 1.10. Taking [−, Z]∗ for any space Z yields a long exact sequence of

pointed sets. As soon as we are deakling with suspensions, we know that this is an

exact sequence of groups, and starting from the sixth term, we are looking at abelian

groups. In fact one can saya little more at the place where we move from sets to

groups. The pinch map µ : C(f) → ΣA ∨ C(f) pinching the copy A × 1/2 at half

height on the cone on A provides a map

[ΣA,Z]∗ × [C(f), Z]∗ ∼= [ΣA ∨ C(f), Z]∗ → [C(f), Z]∗

which is a group action. Two elements in [C(f), Z]∗ have the same image in [B,Z]∗

if and only if they belong to the same orbit under the action of the group [ΣA,Z]∗.
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2. Path spaces and loop spaces

In this section we dualize the theory and construct a certain h-exact sequence.

Cones will be replaced by path spaces, suspensions by loop spaces, the rest is formal.

Definition 2.1. A sequence of pointed spaces X
f−→ Y

g−→ Z is h-exact if for any

pointed space A the sequence [A,X]∗
f∗−→ [A, Y ]∗

g∗−→ [A,Z]∗ is exact in pointed sets,

i.e. (g∗)
−1[cz0 ] = Imf∗.

As indicated above the role of the cone is played by a path space.

Definition 2.2. Let X be a pointed space. The path space FX is the space

map∗(I,X) where 0 is the base point of the interval I.

Just like A is nicely contained in the cone CA as a subspace, and this cone

is a contractible space, we have dually a “nice” surjection ev1 : FX → X from a

contractible path space (one can contract every path down to the base point). This

duality is also illustrated by the fact that a map f : A→ X is nullhomotopic if and

only if it admits an extension to the cone A ⊂ CA, or dually if and only if it admits

a lift to FX → X. This is immediate by adjunction, but is very useful to have in

mind.

Definition 2.3. Let f : X → Y be a pointed map. The mapping fiber F (f) is

the pullback of the diagram X
f−→ Y

ev1←−− F (Y ). We write f 1 : F (f) → X for the

map provided by this pullback construction.

Hence, points of F (f) are pairs (x, ω) consisting of a point x ∈ X and a path

ω : I → Y starting at y0 such that ω(1) = x.

We will now only state the dual statements to those from the previous section.

The proofs are ... dual.

Lemma 2.4. The sequence F (f)
f1−→ X

f−→ B is h-exact.

Proposition 2.5. The space F (f 1) is homotopic to ΩY , the space F (f 2) is

homotopic to ΩX and the map f 3 is homotopic to −Ωf : ΩX → ΩY .
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Theorem 2.6. Let f : X → Y be a pointed map. The sequence

· · · → Ω2X
Ω2f−−→ Ω2Y

−Ωp−−→ ΩF (f)
−Ωq−−→ ΩX

−Ωf−−→ ΩY
p−→ F (f)

q−→ X
f−→ Y

is then h-exact.

Example 2.7. An h-exact sequence yields an exact sequence of pointed sets of

homotopy classes for any pointed space used as a source. A particularly interesting

choice is S0 since [S0,ΩnX]∗ ∼= [Sn, X]∗ = πnX by adjunction. We thus get a long

exact of homotopy groups

· · · → π2X → π2Y → π1F (f)→ π1X → π1Y → π0F (f)→ π0X → π0Y.

This time we have not bothered to indicate the relevant minus signs since image and

kernel of a map or its opposite are equal.

To conclude this short section, let us try to understand what the homotopy

groups of the mapping fiber represent. The elements of πnF (f) are homotopy classes

of pointed maps Sn → F (f) and since F (f) is defined as apullback, they correspond

to compatible pairs of maps Sn → X and Sn → F (Y ). The adjoint of the latter is

a map Sn ∧ I ≈ Dn+1 → Y , i.e. a homotopy from f ◦α to a constant map. In other

words, when f is a subspace inclusion X ⊂ Y , then we are looking at πn+1(Y,X).

3. The homotopy extension property

Now that we have seen how gluing cones, or dually assembling mapping fibers,

yields “exact sequences up to homotopy”, we are ready to introduce the homotopy

extension property that lies at the heart of the notion of cofibration.

Definition 3.1. A map i : A→ B has the homotopy extension property, or HEP

for short, with respect to a space Z if for each solid arrow commutative diagram

A B

A× I B × I

Z

i0

i

i0 f

H

F

there exists a homotopy F extending H and starting at f .
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In other words, we are given a homotopy H on A and know how to extend the

map H(−, 0) to B. We wish to extend this homotopy H to a space B, which we

think of as a larger space containing A.

Definition 3.2. A map i : A ↪→ B is a cofibration if it has the homotopy exten-

sion property with respect to all spaces.

Example 3.3. The inclusion i : Sn−1 ⊂ Dn is a cofibration. This is the argument

we have already used in the Cellular Approximation Theorem 2.2. The extension

problem we have to solve is described in Definition 3.1. With the same notation let us

thus assume that we have a map f : Dn → Z and a homotopy H : Sn−1×I starting at
f |Sn−1 . By the universal property of the pushout this means that f and H assemble

to yield a map H̃ defined on an “empty cylinder” Cyl(i) = (Dn × 0) ∪ (Sn−1 × I).
We claim this map extends to a map on the full cylinder Dn × I and the reason

is that the inclusion Cyl(i) ⊂ Dn × I admits a strong deformation retract r defined

as follows. We choose a point, say (O; 2) where O is the center of the ball Dn and

for each point (x; t) ∈ Dn × I we define r(x; t) to be the intersection of the line

passing through (x; t) and (O; 2) with Cyl(i). The points on the empty cylinder are

obviously fixed by r and the homotopy, which we will not really use in this argument,

is provided by moving linearly on the segment between (x; t) and its image r(x; t) in

one second. We simply choose F = H ◦ r.

The argument in the previous example shows that in general the HEP only

depends on the way the cylinder of i : A→ B is included in B × I.

Lemma 3.4. A map i is a cofibration if and only it has the HEP with respect to

the cylinder Cyl(i).

Proof. The direct implication is obvious, so let us assume that i has the HEP

with respect to Cyl(i) and let us solve an arbitrary homotopy extension problem

as indicated in the following diagram where we have added the cylinder on i (it is
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important to remember that Cyl(i) is the pushout of the diagram A× I i0←− A
i−→ B):

A B

A× I B × I

Cyl(i)

Z

i0

i

i0

f

H

r

H̃

The solid arrow square ending at the cylinder on i is the pushout square we have

mentioned above, so the map H̃ exists by the universal property. By assumption

i enjoys the HEP with respect to Cyl(i) so r exists by definition of the HEP. We

conclude by choosing F = H̃ ◦r as our homotopy starting at f and extending H. □

The statement of the lemma could have been made even more precise since we

have only used one specific lifting problem in the course of the proof, namely that

the inclusion Cyl(i) ⊂ B × I admits a retraction. We allow ourselves to talk about

an inclusion here since cofibrations are necessarily embeddings, i.e. injective maps

inducing a homeomorphism onto their image.

We continue with some basic properties of cofibrations, all of which will guide

our intuition when (and if!) we will develop an abstract way of doing homotopy

theory with so-called Quillen model categories.

Lemma 3.5. An arbitrary coproduct of cofibrations is again a cofibration.

Proof. The cylinder construction commutes with coproducts, being a left ad-

joint. Hence a homotopy extension problem for a coproduct is equivalent to a collec-

tion of homotopy extension problems. They all have a solution by assumption and

we can use the coproduct of these homotopies to solve the original problem. □

Proposition 3.6. The pushout of a cofibration along any map is a cofibration.
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Proof. Consider a cofibration i : A→ B and a map f : A→ X. We call Y the

pushout and use the names of the natural maps as in the following diagram:

A B

X Y

A× I B × I

X × I Y × I

Z

i

f

i0

i0

g

j

i0
φ

i×I

f×I g×I
F

j×I

i0

Ψ

Φ

The map we claim is a cofibration is j and the homotopy lefting problem is given

by the map φ and the homotopy Ψ. If f = φ ◦ g and H = Ψ ◦ (f × I), then the

associated homotopy lifting problem does admit a solution F since i is a cofibration.

Next, we use the fact that −× I preserves pushouts because it is a left adjoint,

see Theorem 2.5. Thus, the universal property of the bottom pushout face of the

cube provides a unique map Φ: Y × I → Z. By construction this homotopy extends

the homotopy Ψ and we only have to verify that it indeed starts at φ. This comes

from the fact that both φ and Φ ◦ i0 are maps out of Y that agree on B with φ ◦ g
and on X with φ ◦ i. We conclude by the universal property of the top pushout face

of our cube. □

After having checked that cofibrations are stable under pushouts (sometimes

called cobase change), we verify that they are also stable under composition.

Lemma 3.7. The composition of two cofibrations is a cofibration.
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Proof. Let i : A → B and j : B → C be two composable cofibrations. The

result is transparent from the following diagram:

A B C

A× I B × I C × I

Z

i0

i

i0

j

i0 f

H

G
F

The solid arrow diagram shows which homotopy extension problem we wish to solve.

The dashed arrow G exists by the HEP the first cofibration i enjoys, then we find F

because j also is a cofibration. □

Proposition 3.8. Let A be a filtered space with ∪An = A. If the inclusion

in : An ↪→ An+1 is a cofibration for any n ≥ 0, then the inclusion i : A0 → A is again

a cofibration.

Proof. Recall that −× I is a left adjoint, it therefore commutes with colimits.

In particular A×I = ∪(An×I). To solve a homotopy extension property for A0 ↪→ A

we solve it for A0 ↪→ A1 and proceed inductively. □

After all these formal results we can use the elementary Example 3.3 to get a

large class of very important cofibrations.

Theorem 3.9. Let (X,A) be a relative CW-complex. The inclusion A ⊂ X is

then a cofibration. In particular the skeletal inclusions X(n) ⊂ X(n+1) and X(n) ⊂ X

are cofibrations for any CW-complex.

Proof. A coproduct
∐
Sn−1 ↪→

∐
Dn of cofibrations is again a cofibration,

therefore the process of attaching cells yields yet another cofibration A ↪→ A∪(
⋃
en)

by Proposition 3.6. We conclude by Proposition 3.8. □

A particular example of the above procedure is given by the inclusion of a point

in a sphere ∗ ↪→ Sn as this map is the pushout of our prototypical cofibration

Sn−1 ↪→ Dn along Dn → ∗.
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4. Turning maps into cofibrations and applications

Another important feature of cofibrations is that any map can be turned into

such a nice inclusion, without changing the homotopy type of the target. With

this trick in our pocket we will be ready to come back to the CW-approximation

Theorem 3.4 and prove it is unique.

Let f : X → Y be any map. Without surprise the way to realize this is to use

the cylinder Cyl(f).

Proposition 4.1. Any map f admits a factorization X
i−→ Cyl(f)

p−→ Y into a

cofibration i and a homotopy equivalence p.

Proof. We have already seen that the map p, collapsing the cylinder X×I onto
its baseX×0 is a strong homotopy retraction of the inclusion B ↪→ Cyl(f). The map

i is given by i(x) = (x, 1) and we prove it is a cofibration by applying Lemma 3.4.

To construct a retraction Cyl(f)× I → Cyl(i), we collapse first Y × I down to Y ×0

and continue by working on X×I×I which we project onto (X×I×0)∪(X×1×I).
Since the bottom part X × 0× I has been collapsed down to X × 0 when we started

with Y × I, we have to project X × I × 1 in two parts. The bottom X × [0, 1/2]× 1

is dilated by a factor two and sent to X× I×0 whereas the top part X× [1/2, 1]×1

is also dilated by a factor two and sent to X × 1× I. An explicit formula could be

given, but a picture is probably more helpful. □

Our first application is to CW-approximation. We only state the absolute version

(it says that two CW-approximations of the same space are weakly equivalent) but

note, as with other results, that a relative version also holds.

Proposition 4.2. Let f : Z → X and f ′ : Z ′ → X be two CW-approximations

of the same pointed space X. There exists then a weak equivalence h : Z → Z ′ such

that f and h ◦ f ′ are homotopic in the pointed category. This map h is unique up to

pointed homotopy.

Proof. Since CW-approximation is done path connected component by path

connected component, we only deal with path connected spaces. We will also assume

that Z is constructed by starting with a single 0-cell, this is how we have done it
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Theorem 3.4. We turn f ′ into a cofibration as we have learned to do in Proposition 4.1

(using the pointed version of the cylinder Z ′ ⋊ I). Consider the diagram

Z X

Z ′ Cyl(f ′) X

f

j

id

i r

Since Z(0) is a point and f is a pointed map we can consider j ◦ f as a map of pairs

(Z,Z(0))→ (Cyl(f ′), Z ′). We prove now by induction that it can be homotoped into

Z ′, so let us assume that we have already managed to change j ◦ f into a homotopic

map hn which sends the n-skeleton Z(n) into Z ′. Consider next the following diagram∨
α S

n
α Z(n) Z ′

∨
αD

n+1
α Z(n+1) Cyl(f ′)

∨gα j◦f

i

∨Gα hn

Here the maps gα are the attaching maps for the (n + 1)-dimensional cells and we

use abusively the same name for a map and its restriction to a subspace. For each

index α we have a relative map (Dn+1, Sn)→ (Cyl(f ′), Z ′).

Now we use the fact that f ′ is a CW-approximation, it induces isomorphisms on

all homotopy groups. So does the homotopy equivalence r and hence the cofibration

i is also a weak homotopy equivalence. In particular the relative homotopy group

πn+1(Cyl(f
′), Z ′) = 0, so that the Compression Lemma 4.7 allows us to change the

map of pairs into one to (Z ′, Z ′) relative to Snα. The homotopies for all cells being

constantly equal to gα on the boundaries, they assemble into a homotopy on Zn+1),

from hn to a map hn+1 only defined on Z(n+1) for the moment.

We define hn+1 on the entire space Z by extending the homotopy, defined now

only on Z(n+1) × I, to Z × I by the HEP since the inclusion of a skeleton is a

cofibration by Theorem 3.9. The map h is then defined on the entire CW-complex

Z by setting h(z) = hn(z) if z belongs to the n-skeleton Z(n). Since h is homotopic

to j ◦ f , which is a weak equivalence, so if h.

We move on finally to the proof of the uniqueness of h. Suppose we have two

maps h1, h2 : Z → Z ′ such that i ◦ h1 and i ◦ h2 are both homotopic to j ◦ f . There
is then a pointed homotopy H : (Z × I, z0× I ∪Z × ∂I)→ (Cyl(f ′), Z ′). The target
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pair is composed of an inclusion which is a weak equivalence. The same argument

as above with the help of the Compression Lemma 4.7 allows us to conclude that we

can replace H by a homotopy H ′ entirely contained in Z ′. □

We arrive at an important observation about CW-complexes. It seems up to now

that we would like to work with homotopy equivalences, but then we have only been

able to replace a space up to weak equivalence by a nice CW-complex. Since we are

interested in understanding homotopy groups of spaces, this is not such a bad trade

off, but what if we work with CW-complexes and homotopy equivalences? Henry

Whitehead realized that weak equivalences between CW-complexes are actually even

better, they are honest homotopy equivalences.

Theorem 4.3. WHITEHEAD THEOREM. A weak homotopy equivalence between

CW-complexes is a homotopy equivalence.

Proof. Let f : X → Y be a weak equivalence between two path-connected

CW-complexes (if they are not path-connected, we deal with one component at a

time). Then both X and Y , via the identity map, are CW-approximations of Y .

The previous Proposition 4.2 tells us that there exists a map h : Y → X such that

f ◦ h is homotopic to idY . Let us look now at the other composition h ◦ f . When

precomposing with f we see that f ◦ h ◦ f is homotopic to idY ◦ f = f . Using again

Proposition 4.2 but this time for the CW-approximations f and f , we conclude by

the uniqueness part that f ◦ h and idX are homotopic. Thus f and h are homotopy

inverses to each other. □

A direct consequence is that Proposition 4.2 upgrades to a uniqueness up to

homotopy of the CW-approximation.

Corollary 4.4. The CW-approximation of a space is unique up to homotopy.

Proof. We have seen that there is always a weak equivalence h : Z → Z ′ be-

tween two CW-approximations of the same space X. We deduce from Whitehead’s

Theorem 4.3 that h is a homotopy equivalence. □

In the spirit of the proof of the Whitehead Theorem 4.3 here is a very useful cri-

terion to recognize homotopy equivalences. Whereas a weak equivalence is detected
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by homotopy classes of maps out of spheres, we need to allow for more spaces in the

source or in the target to detect homotopy equivalences.

Proposition 4.5. A map a : A→ A′ is a homotopy equivalence if and only if it

induces a bijection a∗ : [A′, X] ∼= [A,X] for any space X.

Proof. If a is a homotopy equivalence, then it admits a homotopy inverse a′.

By functoriality of [−, X], we see that both composition a∗ ◦ (a′)∗ and (a′)∗ ◦ a∗ are

equal to the identity.

To prove the converse, let us assume that a∗ is a bijection on homotopy classes

of maps for any space X. We will use X = A first so that the bijection a∗ : [A′, A] ∼=
[A,A] yields a map a′ : A′ → A such that a∗[a′] = [idA]. This means that a′◦a ≃ idA.

To conclude we have to show that the other composition a ◦ a′ is homotopic to idA′ .

Let us choose X = A′ this time and compute a∗[a◦a′] = [a◦a′◦a] = [a] = a∗[id′A].

Therefore [a ◦ a′] = [idA] and we are done. □

5. Properties of cofibrations

Let us come back to cofibrations and mention a few important properties. To

show all of them would represent too much work compared to the objectives of this

course, so there is one powerful feature we will leave as a black box. Interested

students can find complete proofs in Strøm’s original work [9], tom Dieck’s book [12]

or May’s [4]. In Strøm’s following article, [10] he actually proves that the category

of all spaces forms a so called model category.

We start with a strictification result. It says that one can render a homotopy

commutative triangle strictly commutative.

Lemma 5.1. STRICTIFICATION. Let i : A ↪→ B be a cofibration and f : A → X

be a map. Assume that g : B → X is a map such that g ◦ i and f are homotopic.

Then there exists a map g̃ : B → X such that g̃ ≃ g and g ◦ i = f .
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Proof. Since g ◦ i and f are homotopic, there exists a homotopy F : A× I → X

from g ◦ i to f . Consider now the following extension problem:

A B

A× I B × I

X

i0

i

i0 g
i×I

F

G

Since i is a cofibration, the extension G exists. It is a homotopy that starts at g and

ends at some map g̃ such that g̃ ◦ i = G(i(−), 1), but this is F (−, 1) = f . □

Another useful property is that the product i × C of a cofibration with a given

space C is again cofibration.

Lemma 5.2. Let i : A ↪→ B be a cofibration. Then i × C is again a cofibration

for any space C.

Proof. A homotopy extension problem for i×C into a space X corresponds by

adjunction to a homotopy extension problem for i into the mapping space map(C,X).

□

We continue next with this property of cofibrations we will not prove. It is related

to the so called “pushout-product”map. Let f : A→ B and g : X → Y be two maps

and consider the commutative square obtained as follows:

A×X A× Y

B ×X B × Y

f×X

A×g

f×Y

B×f

We call P the pushout of the diagram consisting of the left and top arrows.

Definition 5.3. Let f : A → B and g : X → Y be two maps. The pushout

P = colim(B ×X f×X←−−− A×X A×g−−→ A× Y ) admits a map f□g : P → B × Y called

the pushout-product map.

When f and g are cofibrations, then the pushout product map f□g : P → B×Y
is a cofibration as well, and if either f or g is a homotopy equivalence, so is f□g. Even
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in the very specific case where g = ∂ : {0; 1} ↪→ I is the inclusion of the boundary

of an interval, the proof is not obvious. Here the pushout is (A × I) ∪ (B × {0; 1}
and a map out of it to a space X is the data of two maps B → X together with a

homotopy A× I → X between their restrictions to A. One reason one could believe

this, is that for two maps f and g that are sub-CW-complex inclusions, the pushout-

product map is another sub-CW-compex inclusion, hence a cofibration. Anyhow, we

will use the following fact without proof and record it here for future reference.

Proposition 5.4. Let f : A→ B be a cofibration. Then (A×I)∪ (B×{0; 1} ↪→
B × I is a cofibration, which is a homotopy equivalence when f is so. □

We have seen that the pushout of a cofibration along any map is again a cofi-

bration, but it is not true in general that the pushout of a homotopy equivalence

along an arbitrary map is again a homotopy equivalence. It is true however when

we perform the pushout along a cofibration.

Proposition 5.5. LEFT PROPERNESS. Let f : A → B be a cofibration and

a : A→ A′ be a homotopy equivalence. Then the pushout of a along i is a homotopy

equivalence b : B → B′.

Proof. We check that b is a weak equivalence by verifying that it induces a

bijection on homotopy classes of maps into any space X. Diagrammatically we are

looking at a diagram of the following form, where the square is a pushout square

and h : B → X is any map:

A B

A′ B′

X

a

i

b
h

j

k

ℓ′

We are looking for the dashed arrow out of B′, and for that we will first find the

other dashed map k out of A′ so as to be able to use the universal property of the

pushout. We do not only need to find this map ℓ, we have to show it is unique up

to homotopy.
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We start with the surjectivity of b∗ : [B′, X] → [B,X]. Since a is a homotopy

equivalence, we know that a∗ is a bijection, so there exists a map k : A′ → X such

that a∗[k] = [h◦i]. By the Strictification Lemma 5.1 we can modify h up to homotopy

for a map h′ such that k ◦ a = h′ ◦ i. Now that the diagram commutes strictly we

obtain from the universal property of the pushout a unique map ℓ : B′ → X making

the whole diagram commute. In particular b∗[ℓ] = [ℓ ◦ b] = [h′] = [h] and we are

done with surjectivity.

We move on to prove injectivity. We first deal with the case when a is not only a

homotopy equivalence, but also a cofibration. Assume thus we are given two maps

ℓ, ℓ′ : B′ → X such that the composition ℓ ◦ b and ℓ′ ◦ b are homotopic. There exists

thus a homotopy H : B×I → X from ℓ◦b to ℓ′◦b. We construct the pushout-product

maps a□∂ and b□∂, let us visualize the spaces P and Q on a cubical diagram:

A
∐
A A× I

B
∐
B B × I

A′∐A′ P

B′ ∐B′ Q

i
∐
i

a
∐
a

i×I

j
∐
j

i0

The left hand side face is a pushout square because it is coproduct of two copies of

our original pushout square defining B′. So are the front and back face as we define

the spaces P and Q in order to have this. Composition of pushouts yields another

pushout so that the square

A
∐
A B × I

A′ ∐A′ Q

a
∐
a
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is a pushout square as well. Finally, from this last pushout and the one defining P

we deduce that the right hand side face is again a pushout square. Let us compose

this last one with the pushout product maps:

A× I P A′ × I

B × I Q B′ × I

i×I

a□∂

b□∂

We know that taking the product with I converts pushout squares into pushout

squares, so the large rectangle is a pushout. The same argument as above shows

now that so is the right hand side square. We started with a homotopy H on B × I
between two maps ℓ◦b and ℓ′ ◦b. By construction of Q we have thus an induced map

H ′ : Q→ X. Now H ◦ (i×I) defines a homotopy on A and since a×I is a homotopy

equivalence, we know that [A′×I,X] ∼= [A×I,X]. This homotopy corresponds thus

to a homotopy K : A′ × I → X such that H ◦ (i× I) ≃ K ◦ (a× I).
We have seen in Lemma 5.2 that a × I is a cofibration, so we can apply the

Strictification Lemma 5.1 so as to change K up to homotopy and get a strict equality

H ◦ (i× I) = K ◦ (a× I). We have now a commutative diagram

P A′ × I

Q B′ × I

X

i′×I
K

H′

H̃′

To verify that it is indeed commutative we use the universal property of the pushout

P and verify the restrictions to A′ ∐A′ and A× I agree. On the coproduct we find

ℓ ◦ i′
∐
ℓ′ ◦ i′ and on the cylinder we get H ◦ (i× I). Our previous work showed that

the square above is a pushout square, so the homotopy H̃ is uniquely determined by

K and H ′. This is precisely a homotopy from ℓ to ℓ′ so we are done.

Done? Not quite, we have only solved the problem when the homotopy equiv-

alence a was a cofibration. In general we can reduce to the previous situation by

factoring a as A ↪→ Cyl(a)
p−→ A′. As we know how to solve the problem for the
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inclusion into the cylinder, we are left with the case of a strong homotopy retrac-

tion. We have a cofibration A′ ↪→ A′′ (the inclusion into the bottom of the cylinder)

followed by the collapse map p : A′′ → A′. Taking the pushout along a cofibration

A′ ↪→ B′ yields first a homotopy equivalence B′ → B′′ by the previous case, and then

a retraction B′′ → B′ since the pushout of the identity is the identity. Thus also

B′′ → B′ is a homotopy equivalence by the recognition principle Proposition 4.5.

Indeed we have a factorization of the identity [B′, X] ∼= [B′′, X] → [B′, X] by a

bijection followed by ... another bijection. This time we are done! □

Remark 5.6. This last part about arbitrary homotopy equivalences is not quite

correct. I am not sure how to fix it at the moment.

6. Homotopy pushouts

Let I be the category with three objects and two non-identity morphisms 2 ←
0 → 1 so that functors F : I → Top are pushout diagrams. We have an adjunction

colimI : Top
I ⇆ Top : c where c is the constant diagram functor sending a space X

to the pushout diagram X = X = X. Then, for any pushout diagram F , maps of

spaces

colimIF → X

correspond to natural transformations of diagrams h : F → cX. This works well

categorically, but not so much when we add homotopy to the picture.

Example 6.1. Consider the following natural transformation of pushout dia-

grams η : F → F ′ as described by the following (strictly) commutative diagram

Dn Sn−1 Sn−1

∗ Sn−1 ∗

≃

i

id

i

≃

All vertical maps are homotopy equivalences, so the natural transformation η de-

serves to be call a (pointwise) equivalence of pushout diagrams. However, when

taking pushouts, η induces a map Sn → ∗ which is not anymore a homotopy equiv-

alence.
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This problem motivates us to adapt the construction of pushouts so as to get

a coherent homotopy type, one which is homotopy meaningful, i.e. invariant for

equivalent diagrams.

Definition 6.2. Let F = (C
g←− A

f−→ B) be a pushout diagram. Turn f

and g into a cofibration followed by a homotopy equivalence A ↪→ B′ → B and

A ↪→ C ′ → C respectively, The homotopy pushout of F is the colimit of the diagram

F ′ = (C ′ j←− A
i−→ B′). We write hocolimIF for the colimit colimIF

′.

Remark 6.3. By construction we have a natural transformation F ′ → F , there-

fore an induced map η : hocolimIF → colimIF . There is a whole theory of so called

total left derived functors in homotopy theory that allows one to prove that not is the

homotopy colimit a homotopy invariant functors, i.e. its value does not depend on

the choices we made to replace the maps f and g by cofibrations and it sends homo-

topy equivalent diagrams to homotopy equivalent spaces, but it is in fact the “best”

such functor, by which we mean that any natural transformation from a homotopy

invariant functor to the colimit actually factors through η.

We continue with a few examples and models that are good to have in mind

when thinking about homotopy pushouts.

Example 6.4. The double mapping cylinder of the pushout diagram is the stan-

dard model for a homotopy pushout. Given a pushout diagram F = (C
g←− A

f−→ B),

we use the mapping cylinder to turn both maps into cofibrations so as to obtain

F ′ = (Cyl(g)
j←− A

i−→ Cyl(f)).

For example, when C = ∗ we get the pushout of CA
j←− A

i−→ Cyl(f)). This is a

version of the mapping cone of f , where the cone on A is a cylinder on A on which

we glue a cone. Up to reparametrization, this is C(f), also called the homotopy

cofiber of f .

When also A = ∗, we get the pushout of CA j←− A
i−→ CA, which is the suspension

ΣA. Depending on the category we are working in, we get the unreduced suspension,

or the reduced suspension (for pointed spaces).

Our main result in this section is that homotopy pushouts are homotopy invari-

ant. For this we need two lemmas.
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Lemma 6.5. Let us consider a diagram where the right hand side square is a

pushout:

A3 A0 A2

A′
3 A1 A12

and complete it to a cube by constructing the pushouts A23 of the top row, and A′
23

of the bottom row. Then the front face

A3 A23

A′
3 A′

23

is also a pushout square.

Proof. We obtain a unique map A23 → A′
23 making the whole diagram com-

mute, so the situation makes sense. Composing the original pushout square with the

bottom pushout square yields a pushout square

A0 A′
3

A2 A′
23

Since the top face is also a pushout square, so is the front face. □

The next lemma is already closely related to our main theorem.

Lemma 6.6. Let D′ be the pushout of a diagram C ′ f←− A ↪→ B and factor f

as A ↪→ C
≃−→ C ′. The homotopy equivalence γ : C → C ′ induces then a homotopy

equivalence of pushouts D = colim(C ← A→ B)→ D′.
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Proof. We apply Lemma 6.5 to the following cube

A B

C D

A B

C ′ D′

j

δ

f

γ

and deduce that the front face is a pushout square. By left properness, Proposi-

tion 5.5, we conclude that δ is a homotopy equivalence. □

We are ready to prove the homotopy invariance of the homotopy pushout con-

struction: it does not depend on the choice of the replacement of our maps by a

cofibration. In fact, thanks to the previous lemma, we only need to change one

single map by a cofibration.

Theorem 6.7. HOMOTOPY INVARIANCE OF PUSHOUTS. Consider a natural

transformation of pushout diagrams which is pointwise a homotopy equivalence:

C A B

C ′ A′ B′

γ≃

f

α≃

i

β≃

f ′ i′

Assume that i and i′ are cofibrations. Then δ : D → D′ is a homotopy equivalence.

Proof. Factoring simultaneously f and f ′ into a cofibration followed by a ho-

motopy equivalence, we can use Lemma 6.6 so as to reduce the proof to the case

where all horizontal maps, including f and f ′ are cofibrations. Then we factor the
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vertical natural transformation by inserting the pushout P of i and α:

C A B

C ′ A′ P

C ′ A′ B′

γ≃

f

α≃

i

π≃

β
f ′

≃

f ′ i′

We observe that the pushout of α along the cofibration i is again a homotopy equiv-

alence we called π in the diagram above. From the universal property of the pushout

P we have a unique map P → B′ which is also a homotopy equivalence because β

and π are so.

We apply now Lemma 6.5 and construct the pushout Q of the middle row and

conclude that the front face

C D

C ′ Q

is also a pushout square. By left properness the comparison map D → Q is a

homotopy equivalence. Moreover Lemma 6.6 implies that so is the map Q → D′.

The composite D → D′ is thus a homotopy equivalence as well and we are done. □

Remark 6.8. It does not matter whether we compare two pushout diagrams

having a cofibration on the same side, like we stated it in the theorem, or on different

sides. The proof goes through in the same way. Let us also say that formally the

homotopy invariance of the homotopy pushout construction is equivalent to left

properness.

7. Playing with homotopy pushouts

To illustrate the way one can use homotopy pushouts, we will consider in this

section“pushout diagrams of pushout diagrams”and provide two models to compute

them. Sometimes one is interesting and the other one is easy to compute! Let us

start with a property about strict colimits. Later we will prove the analogous version

for homotopy colimits.
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Proposition 7.1. FUBINI FOR COLIMITS. Let I and J be small categories and

F : I × J → Top be a functor. Then

colimj∈J [colimIF (−, j)] ≈ colimi∈I [colimJF (i,−)]

Proof. Both colimits of colimits are models for the colimit of F , taken on the

product category I × J , they verify the universal property. □

Example 7.2. Let A ⊂ X and B ⊂ Y be inclusions of pointed subspaces. Then

(X ∨ Y )/(A ∨ B) ≈ X/A ∨ Y/B. To see that we draw a three-by-three diagram

corresponding to a pushout of puhsout diagrams and indicate by squiggly arrows

the computation of the corresponding horizontal pushouts:

∗ ∗ ∗ ∗

B ∗ A A ∨B

Y ∗ X X ∨ Y

Hence the vertical pushout of these horizontal pushouts is the quotient (X∨Y )/(A∨
B). If we start instead with vertical puhsouts we find the diagram Y/B ← ∗ → X/A

whose pushout is X/A ∨ Y/B.

We wish to obtain an analogous result for homotopy pushouts and focus therefore

on the case I = J = 2 ← 0 → 1. A diagram indexed by I × I is therefore of the

form:

A12 A10 A11

A02 A00 A01

A22 A20 A21

In order to compute homotopy pushouts we need to turn all maps into cofibrations

(so we can keep A00 unchanged), but as we will also iterate, let us make the corner

spaces even fatter so as to contain nicely the pushout of each square. More concretely

we turn first every map α : A00 → Aij, with i or j equal to zero, into a cofibration
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followed by a homotopy equivalence:

A00 ↪→ Cyl(α) = A′
ij

≃−→ Aij

We obtain an equivalent diagram with a natural transformation to the original dia-

gram made of homotopy equivalences pointwise:

A12 A′
10 A11

A′
02 A00 A′

01

A22 A′
20 A21

As mentioned above this would be good enough to compute either horizontal pushouts

or vertical ones, but we let Pij be the pushout of the square with terminal corner

Aij, obtain a map Pij → Aij by the universal property, turn it into a cofibration

followed by a homotopy equivalence Pij ↪→ A′
ij

≃−→ Aij. We finally obtain another

pointwise equivalent diagram replacing Aij by A
′
ij for ij ̸= 0.

Let us look more closely at horizontal pushouts (the case of vertical pushouts is

completely analogous). We call Ai the pushout of the diagram Ai2 ←↩ Ai0 ↪→ Ai1.

Lemma 7.3. In the above situation taking horizontal pushouts induces cofibrations

A0 ↪→ Ai for i = 1, 2.

Proof. Instead of checking the HEP by looking at cylinders on all spaces that

are involved, we look at the equivalent problem by adjunction and will construct an

extension to map(I,X) = PX, the space of paths in X. Let us look for example

at the map A0 → A1. To show that it is a cofibration we consider a homotopy

extension problem of the following form, where we also draw the horizontal pushout
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constructions:

A10 A11

A12 A1 PX

A00 A01

A02 A0 X

a ev0

By precomposing the HEP to A01 we find an extension A01 → PX since the vertical

maps A11 ↪→ A01 is a cofibration. By commutativity of the whole diagram this

homotopy, together with the one we already have A12 → PX yield a map P02 → PX

out of the pushout of the left hand side face.

Now we use the assumption on our diagram that the map P02 ↪→ A02 is a cofi-

bration as well. This gives us an extension A02 → PX which is compatible with the

previous homotopies. Since A0 is the pushout of the bottom face of the cube, we

finally find the desired (dashed) extension A0 → PX. □

Theorem 7.4. FUBINI FOR HOMOTOPY PUSHOUTS. Let A•• : I × I → Top be a

functor. Then

hopoj∈I [hopoIA•j] ≃ hopoi∈I [hopoIAi•]

Proof. By replacing the diagram as explained above we find ourselves in a po-

sition where all homotopy pushouts appearing in the formula we wish to prove are

given by strict pushouts. The fact that the second round of homotopy pushout are

also strict ones is given by the previous Lemma 7.3. We can then apply Proposi-

tion 7.1 to conclude. □

We end this section with one simple, but useful trick.

Example 7.5. Consider a pair of composable maps A
f−→ B

g−→ C. We do not

require anything about these maps. We claim that there is always a homotopy cofiber
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sequence

C(f)
α−→ C(g ◦ f)→ C(g)

where the map α is induced by g. In other words we claim that the homotopy cofiber

C(g) is homotopy equivalent to the homotopy cofiber of α. For this, no surprise, we

use a 3× 3-diagram:

∗ ∗ ∗ ∗

∗ A B C(f)

∗ A C C(g ◦ f)

f

g α

g◦f

The squiggly arrow indicate now homotopy pushouts and we can compare the ho-

motopy cofiber of α by computing the same homotopy type with our Fubini The-

orem 7.4. We get, up to homotopy a diagram ∗ ← ∗ → C(g) whose homotopy

pushout is C(g).

8. Fibrations

Now that we have studied cofibrations and played with homotopy pushouts, we

come back to the study of the category of spaces and dualize what we have done for

cofibrations. Whereas cofibrations can be thought of as nice subspace inclusions, we

think of fibrations as nice projections. The proofs in this sections will be more like

sketches of proofs since they are formally dual to the ones we have written down for

cofibrations. We start with the dual of the HEP.

Definition 8.1. A map p : E → B has the homotopy lifting property (HLP) for

the space X if for any map f : E → E and homotopy H : X × I → B starting at

p ◦ f there is a homotopy F : X × I → E lifting H and starting at f .

Here is a diagram that explains better than words the lefting problem we wish

to solve:

X E

X × I B

i0

f

p

H

F
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Definition 8.2. A map p is a (Hurewicz) fibration if it has the HLP for all

spaces X.

Example 8.3. LetX be a non-empty space and p2 : X×B → B be the projection

onto the second factor. This is a fibration since a lift of a homotopy X × I → B

starting at p2◦f can always be obtained by defining the lift component by component.

We just set F (x, t) = (p1(f(x)), H(x, t)).

Remark 8.4. The three classes of maps, homotopy equivalences, (Hurewicz)

fibrations, and (Hurewicz) cofibrations, equip the category of topological spaces with

a so-called Quillen mode structure. It is called the Strøm or the Hurewicz model

structure (I prefer the first since Strøm was the one to prove it is a model structure in

1972, [10]). There is another model structure for weak equivalences, Serre fibrations,

which enjoy the HLP for all cubes In, but are not required to have it for all spaces,

and cofibrations are retracts of relative cell complexes.

Just like for cofibrations one does not need to establish the HLP for all spaces,

one universal space is enough. We used a cylinder for cofibrations, here we need a

path space P (p) = {(e, ω) ∈ E × PB | p(e) = ω(0)}. In other words P (p) is the

pullback in the following diagram and the universal property explains it comes with

a map from the path space PE = map(I, E):

PE

P (p) E

PB B

ev0

p∗

r

p

ev0

Proposition 8.5. A map p : E → B is a fibration if and only if the map

r : PE → P (p) admits a section s : P (p)→ PE.
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Proof. By adjunction we see homotopies in E as maps into PE, so we can

rewrite the HLP as follows:

X

PE E

PB B

f

H

F

p∗

ev0

p

ev0

Since ev0 ◦H = p ◦ f we see that the homotopy H starts at p ◦ f . If p is a fibration,

then F must exist when X = P (p), we call s = F . Conversely if s exists, then we

can choose F = s◦h, where h : X → P (p) is the map given by the universal property

of the pullback for f and H. □

Proposition 8.6. Fibrations are stable under composition and pullback.

Proof. Let us simply draw the diagrams that explain the arguments behind

both properties:

X Z X E ′ E

E X × I B′ B

X × I B

i0

q i0 p′ p

p

b

H

In the first diagram the maps p and q are composable fibrations, in the second one

the map p′ is the pullback of p along b. In both cases one constructs the desired lift

in two steps, first the dashed arrow, then the dotted one. □

One new feature we see in this section is due to our previous study of cofibrations

and the adjunction with mapping spaces. As usual, but let us recall this here since

it has been some time we have not said this, this only applies to locally conpact and

Hausdorff spaces.

Proposition 8.7. Let i : A ↪→ B be a cofibration and Z be any space. Then

i∗ : map(B,Z)→ map(A,Z) is a fibration.
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Proof. By adjunction the lifting problem on the left corresponds to the exten-

sion problem on the right:

X map(B,Z) X × A X × A× I

X × I map(A,Z) X ×B X ×B × I

Z

f

i0 i∗ X×i

i0

H

H

F

f

F

Since i is a cofibration, so is X × i. Therefore the extension H exists in the right

hand side diagram. It corresponds to the adjoint map, abusively written H on the

left. □

Important examples of such fibrations are evaluation maps. We have already met

them, but now we know they are fibrations.

Example 8.8. The inclusion ∂I ⊂ I and the inclusion 0 ⊂ I are cofibrations.

The evaluation maps ev0 : map(I,X) ↠ X ≈ map(0, X) and

ev01 : map(I,X) ↠ X ×X

are therefore fibrations. The second one corresponds to the evaluation at 0 and 1,

so for any path ω : I → X, we have ev01(ω) = (ω(0), ω(1)).

When (X, x0) is a pointed space we can pullback ev01 along the inclusion X ≈
x0 × X ↪→ X × X and obtain by stability under pullbacks, Proposition 8.6, that

ev1 : map∗(I,X) → X, the evaluation at 1 from the pointed path space (of those

paths in X starting at the base point) is again a fibration.

Just like the mapping cylinder helped us to replace an arbitrary map by a cofi-

bration, dually path spaces help us to replace any map by a fibration.

Proposition 8.9. Let f : X → Y be any map. Then there exists a factorization

f : X
≃−→ P (f)

q−→ Y into a homotopy equivalence followed by a fibration.
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Proof. Let us construct the pullback P in the following diagram

P PY

X × Y Y × Y

q′ ev01

f×Y

By construction of a pullback, the points of P are triples (x, y, ω) ∈ X × Y × PY
such that ev01(ω) = (f(x), y). This means that ω(0) = f(x) and ω(1) = y. The

extra information in the second component is thus superfluous, since it is determined

by ω, so P is actually homeomorphic to P (f), the subset of X × PY of pairs (x, ω)

such that ω(0) = f(x).

The pullback of a fibration is a fibration by Proposition 8.6, so q′ : P (f)→ X×Y
is a fibration. Explicitely q′(x, ω) = (x, ω(1)). To see that we have first to use the

above homeomorphism, i.e. identify (x, ω) with (x, ω(1), ω) ∈ P and project to the

first two components. The projectionX×Y → Y is also a fibration, see Example 8.3,

so the composition q : P (f)
q′−→ X × Y → Y is again a fibration by Proposition 8.6.

To find the desired factorization we finally choose X → P (f) to be given by

x 7→ (x, cf(x)). This a homotopy equivalence juste like the inclusion Y → Cyl(f) is

one dually. For an explicit proof, you can have a look at [12, 5.7]. The homotopy

inverse is given by the pullback of the evaluation fibration ev0 : PY ↠ Y along f . □

We will not prove all the facts we have established for cofibrations: right proper-

ness, homotopy pullbacks, homotopy fibers, Fubini Theorem for homotopy pullbacks,

etc, but you can easily imagine what this is all about.

9. Properties and examples of fibrations

Our aim in this section is to relate the long exact sequence in homotopy of a

pair with the homotopy groups of base space and total space of a fibration. In order

to do so we have to understand better the preimages of points by a fibration. We

follow Bredon’s treatment here, see [1, Section VII.6]. We start with a lemma about

a kind of relative lifting property.
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Lemma 9.1. Let p be a fibration. Then any solid arrow commutative diagram

Dn × 0 ∪ Sn−1 × I E

Dn × I B

p

admits a dashed lift.

Proof. The pair (Dn × I,Dn × 0 ∪ Sn−1 × I) is homeomorphic, as a pair, to

(Dn × I,Dn × 0). Explicit formulas would not be enlightning, so let us imagine the

case n = 2 where we have a cylinder on a circle together with the bottom lid as

subspace of the solid cylinder. The homeomorphism is done in three steps as drawn

by Bredon in his book [1, Figure VII-6]:

We first shrink the bottom of the cylinder to say half of its diameter, obtaining a

truncated cone. Next we keep the small solid cylinder of radius 1/2 fixed and project

the remaining part down so that the whole vertical boundary corresponding to S1×I
is now lying on D2 × 0, as an annulus of radius 1/2. Finally we inflate this reversed

truncated cone to get back to D2 × I. The original subspace corresponds precisely

to D2 × 0. □

As a consequence we can use an induction on cells to obtain a more general

version of this relative HLP.

Proposition 9.2. Let p be a fibration and X ⊂ Y be a sub-CW-complex. Then

any solid arrow commutative diagram

Y × 0 ∪X × I E

Y × I B

p

admits a dashed lift.
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The reason we are interested in this is that we obtain more general lifting prop-

erties than just for homotopies. Let us consider a strong deformation retract of

CW-complexes. This means that we have a subcomplex i : X ↪→ Y together with a

retract r : Y → X such that r ◦ i = idX and i ◦ r ≃ idY relative to X. So there is a

homotopy F : Y × I → Y starting at the identity idY and ending at i ◦ r which on

X × I is F (x, t) = x.

Theorem 9.3. Let p be a fibration and X ⊂ Y be a strong deformation retract

of CW-complexes. Then any solid arrow commutative diagram

X E

Y B

f

p

g

admits a dashed lift.

Proof. We insert intermediate steps in the diagram above:

X × 0 X × I ∪ Y × 1 X E

Y × 0 Y × I Y B

i×0

i0 p1×r f

p

i0

H

F g

The solid arrow diagram commutes since F is a relative homotopy, the top composi-

tion is f and the bottom composition is g because we chose F to start at idY . Now,

the dashed arrow H exists by Proposition 9.2 and we observe that H ◦ i0 solves the

lifting problem. □

This property is close to the model categorical property that characterizes fi-

brations: they enjoy a lifting property with respect to all cofibrations that are also

equivalences. For us it will be particularly helpful to compare relative homotopy

groups.

Theorem 9.4. Let p be a fibration and B0 ⊂ B be a subspace containing a

chosen base point b0. Let E0 = p−1(B0) ⊂ E and fix a base point e0 ∈ p−1(b0). Then

p induces an isomorphism p∗ : πn(E,E0)→ πn(B,B0).
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Proof. We prove that p∗ is surjective and injective. For surjectivity, let us

consider a map b : (Dn, Sn−1) → (B,B0) representing a class β ∈ πn(B,B0). The

dashed lift exists in the following diagram

∗ E

Dn B

e0

p

b

f

since the inclusion of a point in a disc is a strong deformation retract. We know that

b(Sn−1) is contained in B0, so f(S
n−1) must lie in the preimage under p, i.e. E0.

The base point has been taken care of, so we found a preimage [f ] of β.

We move now to the injectivity. Let f, f ′ be two maps of pairs such that p ◦ f ≃
p ◦ f ′ via a homotopy F : Dn × I → B restricting on Sn−1 × I to a homotopy into

B0. The data we have here, namely f and f ′, the base point e0 and the homotopy

F correspond to the solid arrow diagram below:

(Dn × ∂I) ∪ (∗ × I) E

Dn × I B

f
∐
f ′∪ce0

p

F

H

The left hand side inclusion is a strong deformation retract, so that the dashed lift

exists by Theorem 9.3. This is a homotopy of pairs. □

Definition 9.5. Let p : E → B be a fibration and b0 ∈ B a (base) point. Then

Fb0 = p−1(b0) is the fiber over b0.

Corollary 9.6. Let p : E → B be a fibration and F = Fb0 = p−1(b0) be the

fiber over a point b0 ∈ B. Then πn(E,F ) ∼= πnB and in particular the long exact

sequence for the pair (E,F ) can be rewritten as

· · · → πn+1F
i∗−→ πn+1E

p∗−→ πn+1B
∂−→ πnF

i∗−→ πnE → . . .

Proof. For this sequence to make sense we choose compatible base points f0 ∈
F , e0 ∈ E. The isomorphism is a direct consequence of Theorem 9.3 for the subspace

B0 = b0. Then we identify the homomorphisms in the long exact sequence of a pair.

First the composite

πn(E, e0)→ πn(E,F )
p∗−→ πn(B, b0)
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is the map induced by p and second the connecting homomorphism can be described

as follows. Let β ∈ πn+1B be represented by a map b : Sn+1 → B. We precompose

it with the map c : Dn+1 → Sn+1 collapsing the boundary Sn to a point and lift it

to a map Dn+1 → E such that Sn is sent to F . This is well-defined up to homotopy

by the previous theorem. Then ∂β is obtained by restricting precisely to Sn, this

yields a map Sn → F representing ∂β. □

We conclude this section and this long chapter with an example and a remark.

Example 9.7. The Hopf map η : S3 → S2 is a so-called “fiber bundle”, i.e. a

map which is locally trivial in the sense that when restricted to each hemisphere in

S2, the Hopf map is homeomorphic to a projection S1 ×D2
± → D2

±. Indeed we can

view S3 as a union (S1 ×D2
+) ∪(S1×S1) (D

2
− × S1)

A fiber bundle is a (Serre) fibration and we see here that all fibers are circles, so

there is an associated long exact sequence in homotopy:

· · · → πn+1S
1 i∗−→ πn+1S

3 p∗−→ πn+1S
2 ∂−→ πnS

1 i∗−→ πnS
3 → . . .

We know that all homotopy groups of the circle are trivial, except π1S
1 ∼= Z. There-

fore πnS
3 ∼= πnS

2 for all n ≥ 3. In particular we see that π3S
2 ∼= π3S

3 ∼= Z and

this infinite cyclic group is generated by the homotopy class of the Hopf map [η].

Remark 9.8. At the beginning of the chapter we learned how to associate a long

exact sequence to an h-exact sequence and now we just proved that any fibration

gives rise to a long exact sequence in homotopy. What is the link between these two

types of exact sequences? Maybe it is already clear that both are the same, but let

us make the comparison explicit. We compare the fiber of a fibration p : E → B
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with the homotopy fiber F (p) as follows. Let us assume that the base space B is

connected, otherwise we deal with one component at a time, and then fix a base

point b0 (we will see in an exercise that this is a harmless restriction since all fibers

have the same homotopy type).

In general, to replace a map f : X → Y by a fibration we take the mapping space

PY = map(I, Y ) and pullback the evaluation at 1 along f to get a mapping path

space P (f) = X ×Y PY , homotopy equivalent to X. The homotopy fiber F (f) of f

is the fiber of the map P (f)→ Y sending a pair (x, ω) to ω(0). In other words, the

homotopy fiber is the subspace ofX×map(I, Y ) of pairs (x, ω) such that ω(1) = f(x)

and ω(0) = y0. So F (f) is the homotopy pullback of E
p−→ Y

ev1←−− map∗(I, Y ). In

our situation we have therefore:

E B b0 F

E B map∗(I, B) F (p)

p

≃

p

ev1

the squiggly arrows indicate the pullback operation. Remember that the path space

map∗(I, B) is contractible so all vertical maps are homotopy equivalences. Each

row is a pullback diagram in which one map is a fibration, p by assumption and

the evaluation ev1 by Example 8.8. By homotopy invariance of homotopy pullbacks

we conclude that F ≃ P (f), the fiber of a fibration is homotopy equivalent to its

homotopy fiber.



CHAPTER 5

The Hurewicz homomorphism

This chapter is devoted to our final “big” classical result in homotopy theory. It

relates homotopy groups with homology groups. Since we have been dealing with

homotopy groups and more generally homotopy classes of maps, we need to come

back to the construction of (cellular) homology groups and recast some known results

in the light of the homotopy theory we have seen up to now.

1. CW-complexes and homology

Later in this chapter we will use cellular homology and thus CW-complexes,

but if we wish to understand general results about all spaces, we need to clarify

the relation of homology with respect to weak homotopy equivalences. We know of

course that homology groups are homotopy invariants. The next result is also due

to Whitehead, it says that homology is a weak homotopy invariant. If we do not

indicate the coefficients it will mean that we are considering homology with integral

coefficients.

Proposition 1.1. Let f : X → Y be a weak homotopy equivalence. The induced

map f∗ = Hn(f) : HnX → HnY is then an isomorphism.

Proof. We turn f into a cofibration i : X ↪→ Y ′ = Cyl(f), which is also a weak

homotopy equivalence. The long exact sequence in homology of the pair (Y ′, X)

shows that it is enough to compute Hn(Y
′, X) and prove they are all zero. We

follow the strategy in Hatcher’s book [3, Chapter 2], probably well known from the

algebraic topology course.

A homology class in represented by a relative cycle α =
∑
kiσi, where the

σi : ∆
n → Y ′ are n-simplices whose boundaries assemble to a chain ∂α in X. Con-

struct now a simplicial complex K by assembling all ∆n’s, identifying faces on which

the corresponding σi’s coincide. By the universal property of the quotient, we have

85
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then an induced map σ : K → Y ′. The faces of simplices we have used to assemble

K do not contribute anything to ∂α, but there are other faces appearing in it. We

use them to construct a subcomplex L ⊂ K. Thus σ can be considered as a relative

map (K,L)→ (Y ′, X). Moreover, using the obvious singular simplices in K we find

a cycle a ∈ Cn(K,L) such that σ ◦ a = α.

We know that πn(Y
′, X) = 0 and use next the Compression Lemma 4.7, since

(K,L) is a finite relative CW-complex, to find a homotopic map of pairs τ ≃ σ

factoring through (X,X). Since σ and τ are homotopic, they induce the same map

in homology, so σ∗[a] = τ∗[a] = 0 because Hn(X,X) = 0. □

This justifies that when studying not only homotopy groups, but also homology

groups, we might as well concentrate on CW-complexes. Let us end this short

introductory section with a result on the skeleta of such a CW-complex.

Lemma 1.2. Let X be a connected CW-complex, n ≥ 0, and X(n+k) the (n+ k)-

skeleton for some integer k ≥ 1. The inclusion i : X(n+k) ↪→ X induces isomorphisms

πnX
(n+k) ∼= πnX and HnX

(n+k) ∼= HnX.

Proof. The pair (X,X(n+k)) is (n + k)-connected as we only attach cells of

dimension > n+ k to the skeleton to construct X. We see then from the long exact

sequence in homotopy that we have an isomorphism for all homotopy groups up to

degree n+ k − 1, in particular on πn.

For homology we can use cellular homology instead of singular homology. Up to

degree n+k the cellular chain complexes of X and X(n+k) are isomorphic since they

only depend on the number of cells and their attaching maps: Ccell
i (X) ∼= ⊕i−cellsZ ∼=

Ccell
i (X(n+k)) for i ≤ n+ k. Here as well we obtain an isomorphism for all homology

groups up to degree n+ k − 1. □

Example 1.3. Let n ≥ 2. We view Sn = e0 ∪ en as a CW-complex with two

cells, and then Sn × Sn as a CW-complex with four cells e0 ∪ en ∪ en ∪ e2n, where
each cell corresponds to a product of cells. The (2n − 1)-skeleton (Sn × Sn)(2n−1)

is thus the wedge Sn ∨ Sn. We learn from the previous lemma that πn(S
n ∨ Sn) ∼=

πn(S
n × Sn) ∼= Z⊕ Z (something we have also seen in an exercise).
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More precisely we can identify concrete generators of this free abelian group of

rank two, namely the wedge summand inclusion i1 : S
n ↪→ Sn ∨ Sn and i2 : S

n ↪→
Sn ∨ Sn, since their composition into the product yields the inclusion into the two

factors of the product, which we know are generators of πn(S
n × Sn).

The same computation holds in homology, Hn(S
n∨Sn) ∼= Hn(S

n×Sn) ∼= Z⊕Z.
More generally this argument shows that both the first non-trivial homotopy group

and the first non-trivial reduced homology group of an arbitrary wedge ∨iSn are

isomorphic to a direct sum ⊕iZ. The wedge summand inclusions provide explicit

generators for πn.

The proof goes by induction for a finite number of spheres. For an infinite

number of spheres, the computation can be done directly for Hn, but we need to use

the compactness of Sn and notice that any map Sn → ∨Sn factors through a finite

wedge.

Let us finally record a computational simplification which is probably clear at

this point, but still useful.

Remark 1.4. Let X be an (n − 1)-connected space. Then CW-approximation

allows us to replace X by a weakly equivalent CW-complex constructed from a point

ba attaching cells of dimension ≥ n. We will thus often assume that such a space

can be chosen, up to weak homotopy equivalence, so that

X(n−1) = ∗, X(n) = ∨Sni , X(n+1) = (∨Sni ) ∪ (∪jen+1
j ), · · ·

In particular, if fj : S
n
j → ∨Sni is the attaching map for the j-th (n+1)-dimensional

cell, this means that X(n+1) is the pushout of the diagram

∨jDn+1
j ← ∨jSnj

f=∨fi−−−→ ∨iSni

2. The Hurewicz homomorphism

We know that Hn(S
n;Z) ∼= Z and fix a generator un for this group by choosing

first a specific representative for u1 ∈ H1(S
1;Z). Our model of the circle is the unit

circle in C, the unique 0-cell is 1 and the 1-cell given by a map u : ∆1 → S1 going

around the circle counterclockwise. This map u is a cycle the singular chain complex
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and it represents u1. Excision induces isomorphisms H1(S
1;Z) ∼= Hn(S

n;Z) and we

choose un to be given by the image of u1.

Definition 2.1. Let X be a (pointed) path-connected space. The Hurewicz

homomorphism Hu : πnX → Hn(X;Z) is defined by Hu(α) = α∗(un) where a rep-

resentative α : Sn → X induces a map α∗ : Hn(S
n;Z)→ Hn(X;Z).

We have been sloppy about various points here, but they do not matter. First

we have not specified the base point, but the change of base points yields isomorphic

homotopy groups. Second we have abusively written α for a homotopy class and

a representative. Homotopic maps induce the same homomorphism in homology,

so different representatives yield the same element Hu(α). Homotopy groups and

homology groups are functors, we check next that the Hurewicz map defines a natural

transformation.

Proposition 2.2. The Hurewicz homomorphism is a natural.

Proof. Compatibility with the group law comes from the definition of the sum

for homotopy groups and the fact that the homology of a wedge is a direct sum by

excision. Let α, β : Sn → X be two (pointed) maps representing homotopy classes.

Their sum α + β is given by the composite

Sn
pinch−−−→ Sn ∨ Sn α∨β−−→ X ∨X ∇−→ X

Applying homology gives therefore a composition

Hn(S
n)→ Hn(S

n)⊕Hn(S
n)→ HnX ⊕HnX → HnX

through which our generator un goes to (un, un) first, then (Hu(α), Hu(β)) and

finally the sum Hu(α)+Hu(β). This shows Hu is a homomorphism (recall that the

direct sum ⊕ is the coproduct in abelian groups).

Let f : X → Y be a pointed map. We have to show that the following square is

commutative:

πnX Hn(X;Z)

πnY Hn(Y ;Z)

f∗

Hu

Hn(f)

Hu
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To do so we choose a map α : Sn → X and chase its image through the diagram:

Hn(f)[Hu(α)] = Hn(f)[Hn(α)(un)] = Hn(f ◦ α)(un) = Hu(f ◦ α)

where we used functoriality of homology. □

Our main theorem in this section provides an isomorphism between the first non-

trivial homotopy group and the first non-trivial reduced homology group of a simply

connected space. We already know this is true for a sphere, but we check now that

the Hurewicz homomorphism is this isomorphism. The idea of the proof was already

present in Hopf’s work. Most of the proof we have already seen in exercises, we write

it down here for completeness.

Lemma 2.3. Let n ≥ 1. Then Hu : πnS
n → Hn(S

n;Z) is an isomorphism.

Proof. We show that every homotopy class of a map f : Sn → Sn is a sum of

maps of degree ±1. So let us consider an arbitrary map f : Sn → Sn. By the PL

approximation Lemma 2.1 we change f up to homotopy for a map g which is PL on

a polyhedron K ⊂ Sn = ∗ ∪ en and there is a non-empty open subset U ⊂ en such

that f−1
1 (U) ⊂ K. If the image of g does not contain the whole subset U , then, just

like in the proof of the cellular approximation Theorem 2.2 we choose a point x in

U and not in the image. Hence g factors through Sn \ {x} which is contractible and

so g, and therefore f as well, are nullhomotopic.

Let us assume now that g is surjective on U so it is an isomorphism on all

simplices in K. We choose again a point x ∈ U but this time we pick a neighborhood

x ∈ V ⊂ U , homeomorphic to an open ball and such that g−1(V ) consists of finitely

many homeomorphic balls Vi containing each one preimage xi of x. The crucial step

is to notice that the collapse map c : Sn → Sn/(Sn \ V ) is a homotopy equivalence

(like collapsing a hemisphere). Thus c ◦ g can be used instead of g to conclude the

argument.

This map sends Sn \ (∪Vi) to the base point, so it factors through the quotient

S/(Sn \ (∪Vi)) ≃ ∨Sni . On each Vi we had a homeomorphism given by an invertible

matrix of determinant ±1, so that we have now an induced map Sni → Sn of degree
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di = ±1. All together we have replaced f by a homotopic map

Sn → ∨Sni
∨di−−→ ∨Sn

∇−→ Sn

The isomorphism πnS
n → Z is given by [f ] 7→

∑
di = d. Now that we know that

both πnS
n and Hn(S

n;Z) are isomorphic to Z it is sufficient to look at the image of

the generator through the Hurewicz homomorphism. We choose our favorite degree

one map, namely the identity, and compute Hu([idSn ]) = (idSn)∗(un) = un. This is

an isomorphism. □

In algebraic topology we had seen that any degree can be realized by a self

map of S1, by z 7→ zd, and suspending this map yields a degree d map on higher

dimensional spheres. What we have sketched above is that any self map of the sphere

is homotopic to such a map. We move next from one sphere to a wedge of spheres.

Notice that we increase the lowest possible value of n here! Recall from the topology

class that π1(∨S1) is a free (non-abelian) group, so this does not work for n = 1.

Proposition 2.4. Let n ≥ 2. Then Hu : πn(∨Snα) → Hn(∨Snα;Z) ∼= ⊕Zα is an

isomorphism.

Proof. In Example 1.3 we have identified the homotopy group of a wedge of

spheres and chose explicit generators ιβ : S
n
β ↪→ ∨Snα, the wedge summand inclusions.

Let us compute the image of [ιβ] through the Hurewicz homomorphism.

Hu[ιβ] = (ιβ)∗(un) ∈ Hn(∨Snα;Z) ∼= ⊕Zα

To obtain an expression in terms of coordinates in this free abelian group we project

onto each component. When α = β then the composite Snβ ↪→ ∨Snα → Snα is the

identity, but for α ̸= β we obtain the constant map. Therefore the element in ⊕Zα
is eβ = (0, 0, . . . , 1, 0, . . . ) the β-th canonical basis element. Just as in the previous

lemma we see that the Hurewicz homomorphism sends generators to generators, it

is an isomorphism. □

We are finally ready for the general case.

Theorem 2.5. HUREWICZ. Let n ≥ 2 and X be an (n − 1)-connected space.

Then Hu : πnX → Hn(X;Z) is an isomorphism.
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Proof. Since both homotopy groups and homology groups are weak homotopy

invariants, we might as well suppose that X is an (n − 1)-connected CW-complex,

hence, by Remark 1.4, that the n-skeleton X(n−1) is reduced to a point, and that

the n-skeleton X(n) is a wedge of spheres. Moreover we have shown in Lemma 1.2

that the homotopy and homology groups we are interested in only depends on the

(n+1)-st skeleton, so we can assume by naturality that x = X(n+1) = ∨Snα∪(∪en+1
β ).

Let f : ∨ Snβ → ∨Snα be the wedge of all attaching maps, so X = C(f) and we call i

the inclusion of the n-skeleton. By naturality we have a commutative diagram

πn(∨Snβ ) πn(∨Snα) πnX

Hn(∨Snβ ) Hn(∨Snα) HnX

Ccell
n+1(X) Ccell

n (X) Coker∂

Hu ∼=

f∗

Hu ∼=

i∗

HuX

∼=

f∗

∼=

i∗

∼=

∂

Proposition 2.4 explains why we have vertical isomorphisms for wedges of spheres,

and the bottom identification with the cellular chain complex is clear since the dif-

ferential is defined by the attaching map. On the right we have identified HnX with

the cokernel of this differential since Ccell
n−1(X) = 0, there are no cells in dimension

(n − 1). This shows that in homology i∗ is surjective, therefore so is the Hurewicz

homomorphism HuX for X.

We finally have to prove that it also injective. Let us look at the kernel. Let ω ∈
πnX be an elemt with HuX(ω) = 0. By the cellular approximation Theorem 2.2 we

can represent ω by a cellular map w : Sn → X(n) = ∨Snα. Therefore 0 = HuX(ω) =

i∗(Hu([w]). The middle line in our diagram is exact, it is part of a long exact sequence

in homology, so there is yet another homology class σ ∈ Hn(∨Snβ ) with Hu([w]) =
f∗(σ). We lift σ through the Hurewicz isomorphism to a class ζ ∈ πn(∨Snβ ) and

observe that ω = i∗([w]) = i∗(f∗(ζ)). But this is zero because the composition i ◦ f
is nullhomotopic, it factors through a (contractible) wedge of discs. □

We add an important remark about the case n = 1 and an extension of the

Hurewicz Theorem to the next degree.
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Remark 2.6. For path-connected spaces the Hurewicz homomorphism Hu :

π1X → H1(X;Z) is not an isomorphism in general as illustrated by S1 ∨ S1. One

can see for this example that Hu is the quotient of the free group Z ∗ Z ↠ Z ⊕ Z.
In fact one can show, following the same strategy as in our proof, that Hu is the

abelianization of the fundamental group.

When X is (n − 1)-connected and n ≥ 2, then we have seen that Hu : πnX →
Hn(X;Z) is an isomorphism. We can then go even further and show that the next

Hurewicz homomorphism Hu : πn+1X → Hn+1(X;Z) is an epimorphism.

We have managed to construct some special spaces having a fixed homotopy

group. For homotopy groups this was not so easy, but for homology groups com-

putations are much easier with the cellular chain complex. Now that we have the

Hurewicz Theorem to help us, we can realize any abelian group as πn of some space.

Example 2.7. Let A be an abelian group and choose a presentation as quotient

of φ : ⊕ Zβ ↪→ ⊕Zα. We realize this inclusion as a map of spheres f : ∨ Snβ → ∨Snα
and define M(A, n) = C(f) to be the homotopy cofiber. Its cellular chain complex

is reduced to φ so we can compute all homology groups. The only non-trivial group

is Hn(M(A, n);Z) ∼= A. We call M(A, n) a Moore space of type (A, n).

3. Eilenberg-Mac Lane spaces

In the previous Example 2.7 we have constructed a space with trivial homotopy

groups in degrees < n, it is (n − 1)-connected, and πnM(A, n) ∼= A. Therefore,

by taking the n-th Postnikov section, see Proposition 4.3, we obtain a space X =

M(A, n)[n] with a single non-trivial homotopy group, namely πnX ∼= A. Such a

space deserves a name, because it is a building block from the point of view of

homotopy groups, just like spheres are building blocks from the point of view of

homology, and moreover, we will see that such spaces play also a central role for

(co)homology.

Definition 3.1. An Eilenberg-Mac Lane space of type K(A, n) is a space X

such that πkX = 0 for k ̸= n and πnX ∼= A.

We already know such spaces exist, they are also unique up to weak equiva-

lence, by definition. To put this differently, if we require a K(A, n) space to be
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a CW-complex, then it is even unique up to homotopy. We will call these space

K(A, n). Therefore we will write abusively that K(Z, 1) = S1, K(Z/2, 1) = RP∞,

or K(Z, 2) = CP∞.

Of course, when n = 1 the group A could be an arbitrary group, but for n ≥ 2

we have to choose an abelian group. From now on we will only work with abelian

groups and consider the functor [−, K(A, n)].

Proposition 3.2. Pointed homotopy classes of maps [−, K(A, n)] defines a con-

travariant functor from Top∗ to Ab which sends cofibration sequences X ↪→ Y →
Y/X to exact sequences.

Proof. Since K(A, n) ≃ Ω2K(A, n + 2), we have that such pointed homotopy

classes are indeed abelian groups. We know from the Puppe sequence Theorem 1.9

that cofibration sequences are sent to exact sequences, using the homotopy equiva-

lence Y/X ≃ C(X ⊂ Y ) by homotopy invariance of homotopy pushouts, see Theo-

rem 6.7. □

Our aim is to compare this functor with ordinary cohomology with coefficients

in A. We establish now a few properties which should remind us of characteristic

properties of ordinary cohomology. The first one is the suspension axiom.

Proposition 3.3. For any space X we have a natural isomorphism [X,K(A, n)] ∼=
[ΣX,K(A, n+ 1)].

Proof. This is a direct consequence of the loop-suspension adjunction. □

The second one is the wedge axiom.

Proposition 3.4. For any index set I, we have an isomorphism [∨Xi, K(A, n)] ∼=∏
[Xi, K(A, n)].

Proof. We know that mapping spaces convert wedges into products:

map∗(∨Xi, K(A, n)) ≃
∏

map∗(Xi, K(A, n))

Taking now sets of components components yields the desired isomorphism of sets

(and thus groups). □
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Even if this is a very easy computation let us record the value of [−, K(A, n)] on

spheres.

Lemma 3.5. For all k ̸= n we have [Sk, K(A, n)] = 0 and we have an isomor-

phism [Sn, K(A, n)] ∼= A. □

Our next goal is to compare [X,K(A, n)] with Hn(X;A), so let us recall how

cohomology groups with coefficients are computed. Let C∗(X) be the singular or the

cellular chain complex. We dualize and consider the cochain complex Hom(C∗(X);A).

Its cohomology groups are Hn(X;A). To be able to compare ordinary cohomology

with homotopy classes of maps into Eilenberg-Mac Lane spaces, we will look for a

comparison map.

For this we need to identify a special cohomology class.

Lemma 3.6. We have an isomorphism Hn(K(A, n);A) ∼= Hom(A,A).

Proof. Since we can build a model of K(A, n) from a Moore space M(A, n) by

attaching cells of dimension ≥ 2, the cellular chain complex for K(A, n) looks like

that of M(A, n) in degrees ≤ n+ 1:

⊕Zβ
d−→ ⊕Zα → 0

where α belongs to an index set of cells of dimension n, and β for (n+1)-dimensional

cells. The cokernel of d is isomorphic to A since by constructionHn(M(A, n);Z) ∼= A.

The cochain complex is thus of the form

Hom(⊕Zα, A)← Hom(⊕Zβ, A)← 0

The n-th cohomology group is the kernel of this homomorphism Hom(d,A), but,

since Hom is a left exact functor, this is Hom(Coker(d), A) ∼= Hom(A,A). □

The identity map idA : A→ A represents an (important) cohomology class ιA.

Definition 3.7. For any natural number n we define a natural transformation

of functors T : [X,K(A, n)]→ Hn(X;A) by sending the homotopy class of a map f

to Hn(f ;A)(ιA).
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In more details, f induces a map in cohomology Hn(K(A, n);A) → Hn(X;A)

and we use ιA to push it to the cohomology of X.

Proposition 3.8. The natural transformation T is an isomorphism on all finite

dimensional CW-complexes.

Proof. The cellular complex for Sn consists in two copies of Z in degrees 0

and n, the cochain complex allows us thus to compute easily Hn(Sn;A) ∼= A. To

compare both functors we compute T on homomorphisms Z→ A corresponding to

a generator α and represent it by a map Sn → K(A, n) factoring through ∨Snα. Its

image is precisely the generator α by construction.

By the wedge axiom, see Proposition 3.4, we also obtain an isomorphism on

arbitrary wedges of spheres, and since both functors have long exact sequences asso-

ciated to cofiber sequences, we obtain by the five Lemma an isomorphism on all finite

dimensional CW-complexes by induction on skeleta. Assume T is an isomorphism

on X(k) and consider the cofiber sequence ∨Skα → X(k) → X(k+1). It induces long

exact sequences in cohomology and also in [−, K(A, n)], and we conclude that so is

T : [X(k+1), K(A, n)]→ Hn(X(k+1);A). □

4. The Milnor sequence

To understand what happens for arbitrary CW-complexes we know how to com-

pute the cohomology of an infinite dimensional CW-complex (in a given degree it

only depends on the lower dimensional cells), but we need to be able to compute

[X,K(A, n)] for such an infinite dimensional CW-complex X. For this we consider

X = ∪X(n) as filtered space. In general if Xn ⊂ X is an increasing and exhaus-

tive sequence of subspaces of X, we apply cohomology (or homotopy classes into

K(A, n)) and obtain a tower

· · · → Hn(Xn+1;A)→ Hn(Xn;A)→ . . .

and we have to compare the (inverse) limit of this tower with H‘n(X;A). Let us

thus do algebra in this section, but do not worry, we will meet again CW-complexes

in the next section.
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Definition 4.1. Let (N,≤) be the poset of natural numbers and we write simply

Nop for the opposite poset. A tower of abelian groups is a functor A• : Nop → Ab,

i.e. a diagram of the form . . . An+1
fn+1−−→ An

fn−→ · · · → A1 → A0.

Definition 4.2. Let A• : Nop → Ab be a tower of abelian groups. The inverse

limit limA• is the abelian subgroup of
∏
An consisting of all compatible sequences

(an)n∈N such that fn(an) = an−1.

Remark 4.3. As usual we can interpret this explicit description of a limit as an

adjunction. For this we consider the constant tower functor c : Ab → AbN
op
. The

limit functor is then a right adjoint, one checks indeed that a morphism from a

constant tower cA→ A• corresponds exactly to a homomorphism A→ limA•.

Example 4.4. One example that might have appeared in other courses is the

inverse limit limZ/pn = Z∧
p where each homomorphism in the tower is the reduction

mod pn.

We introduce now a group homomorphism that shifts by one all group elements

in the product
∏
An using the homomorphisms from a tower. Since all these are

group homomorphisms, so is the shift map.

Definition 4.5. Let A• be a tower. The shift map sh:
∏
An →

∏
An is defined

by (an)n≥0 7→ (fn(an))n≥1. The cokernel of sh− id is the first derived functor of the

limit, written lim1A•.

We will see why this deserves to be called a derived functor, but let us first

establish a close relationship with the limit.

Lemma 4.6. The kernel of sh− id is equal to the limit.

Proof. By definition of the shift map the kernel of this difference consists pre-

cisely of all sequences (an) for which fn(an)− an−1 = 0. □

We are ready now for the six term exact sequence, very much like the Hom-Ext

sequence you have seen in homological algebra. In the following proposition we use

the notion of exactness for morphisms of towers, by which we mean that for each

level n we have exactness for abelian groups.
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Proposition 4.7. Let 0 → A•
α•−→ B•

β•−→ A• → 0 be a short exact sequence of

towers of abelian groups. Then we have a six term exact sequence of abelian groups

0→ limA• → limB• → limC• → lim1A• → lim1B• → lim1C• → 0

Proof. We apply the Snake Lemma to the following diagram

∏
An

∏
Bn

∏
Cn

∏
An

∏
Bn

∏
Cn

∏
αn

sh−id

∏
βn

sh−id sh−id∏
αn

∏
βn

Notice that the product of the injective maps αn is injective (a limit being a right

adjoint is left exact) and the likewise the product of surjective maps βn is surjective,

which explains the zeros at the beginning and end of the six term exact sequence. □

Lemma 4.8. Let A• be a tower of abelian groups. If there exists an integer k

such that fn : An → An−1 is surjective for all n > k, then lim1A• = 0.

Proof. We apply the definition and show that the shift map minus the identity

is surjective. Let (a0, a1, . . . ) be an arbitrary element in the product
∏
An. We

are looking for an element (b0, b1, . . . ) such that aℓ = fℓ+1(bℓ+1) − bℓ for all ℓ ∈ N.
Since fn+1 is surjective we choose bn+1 such that fn+1(bn+1) = an and bn = 0. We

define by downward induction the bℓ’s for 0 ≤ ℓ < n starting with bn−1 = −an−1,

bn−2 = fn−1(bn−1)− an−2, etc.

For the higher bℓ’s we proceed by upward induction and use surjectivity of the

fℓ’s. We have to solve the system of equations given by aℓ − bℓ = fℓ+1(bℓ+1) for

ℓ ≥ n+ 2, which has a solution since fℓ is surjective. □

Remark 4.9. There is a weaker (hence better) condition ensuring the vanishing

of lim1, called the Mittag-Leffler condition. Instead of surjectivity of all but a finite

number of fn’s we only require that for each k there is an integer j ≥ k such that the

images of compositions of structure maps coincide: Im(Ai → Ak) = Im(Aj → Ak)

for all i ≥ j.
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5. Cohomology of arbitrary CW-complexes

After this purely algebraic interlude we come back to cohomology. We had

left after we had understood that ordinary cohomology and homotopy classes into

Eilengerb-Mac Lane spaces coincide on finite dimensional CW-complexes. Our next

aim is to see this also holds for arbitrary CW-complexes. For this we consider a

filtered space X = ∪Xk and wish to understand the relationship between the coho-

mology of X and the inverse limit of the tower Hn(Xk;A). For us the important

case is the skeletal filtration of course. We start with a statement without proof, but

this should be reminiscent of the construction of homotopy pushouts.

Proposition 5.1. Let X• : N → Top be a diagram of the form X0
f0−→ X1

f1−→
X2

f2−→ X3 → . . . . The homotopy colimit of X• can be computed as the (strict) colimit

of an equivalent diagram where all maps fn have been replaced by cofibrations.

Remark 5.2. The standard model of hocolimX• is given by the so-called tele-

scope. We obtain the equivalent diagram mentioned in the previous proposition by

turning each map into a cofibration with our favorite method, namely the cylinder.

Thus we replace f0 : X0 → X1 by the inclusion X0 ↪→ Cyl(f0) = (X0 × I) ∪X1. We

think of this inclusion as a horizontal cylinder lying over the positive real numbers

and gluing X1 at the end of the cylinder, i.e. identifying X0 × 1 with its image

in X1. We continue by turning the composite map Cyl(f0) → X1
f1−→ X2 into

hboxCyl(f0) = (X0× [0, 1])∪X1 ↪→ (X0× [0, 1]∪ (X1× [1, 2])∪)X2 where we attach

the space X2 on the right of the cylinder on X1, i.e. identifying X1 × 2 with its

image in X2. We continue inductively obtaining a (long) telescope. The union of

these spaces is written Tel(X•) and provides a model for the homotopy colimit.

Working with pointed spaces, one can replace the cylinders with their pointed

version by collapsing an interval. For well-pointed spaces the homotopy type is the

same. Therefore, if we start with a pointed diagram of well-pointed spaces, the

pointed telescope has the same homotopy type as the unpointed version.

One important consequence of Proposition 5.1 is the homotopy invariance. In

particular if our original diagram X• comes from a filtered space with cofibrations

Xn ⊂ Xn+1, then one could construct the homotopy colimit as the union ∪Xn since
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all maps are already cofibrations, but we could also wish to construct the telescope

as explained above. Then Tel(X•) ≃ X.

In order to use the algebraic tools developed in Section 4 we have to realize

the identity minus the shift map topologically. Let us write ΣX for the reduced

suspension (and recall that for a well-pointed space, for example a CW-complex, the

reduced suspension and the unpointed suspension have the same homotopy type.

Lemma 5.3. Let f : X → X be a pointed self map of (X, x0) and define Y to

be the homotopy pushout of the diagram X
∇←− X ∨ X (id,f)−−−→ X. Then we have a

cofibration sequence ΣX
id−f−−−→ ΣX → ΣY .

Proof. The homotopy cofiber of the fold map ∇ is the reduced suspension

(X⋉I)/(X∨X). Consider thus the following diagram of horizontal cofiber sequences:

X ∨X X ⋉ I ΣX

X Y ΣX

id f

Both cofibers are homeomorphic because the left hand side square is a pushout

square. The Puppe sequence of the first cofibration allows us to continue two steps

further on the right:

X ∨X X ΣX ΣX ∨ ΣX ΣX∂ −Σ∇

We have replaced the reduced cylinder by the homotopy equivalent space X and used

the fact that suspension commutes with wedges, both being colimits (use Fubini).

But who is ∂? One could think at first sight that it is the pinch map p, but notice that

(−Σ∇)◦p is not null-homotopic, so it cannot be the pinch map. Identifying carefully

the homotopy cofiber construction in the Puppe exact sequence shows that ∂ is in

fact i1−i2 the difference of the two inclusion maps into the wedge components. Since

we work with suspension there is a group structure on pointed homotopy classes and

this difference makes sense. We compare now this h-coexact sequence with the one
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coming from the bottom row.

X ΣX ΣX ∨ ΣX ΣX

Y ΣX ΣX ΣY

g

i1−i2 −∇

id f Σg

id−f

The bottom map id− f has been identified by commutativity of the central square.

□

We apply this result to the shift map sh: ∨ X(n) → ∨X(n) which is defined on

the n-skeleton by including it into the (n+ 1)-skeleton.

Corollary 5.4. Let X be any connected CW-complex. There is a cofibration

sequence ∨ΣX(n) id−sh−−−→ ∨ΣX(n) → ΣX.

Proof. In order to identify the cofibration sequence from Lemma 5.3 we have

to compute the pushout of the following diagram

∨X(n) ∇←− (∨X(n)) ∨ (∨X(n))
id∨sh−−−→ ∨X(n)

To do this we turn the fold map ∇ into a cofibration by replacing the target by the

pointed cylinder ∨X(n)⋊I. The strict puhsout of this new diagram is then a quotient

of this wedge of reduced cylinders ∨(X(n) ⋊ I) where we identify the right hand side

(xn, 1) of the n-th one with (sh(xn), 1) = (xn, 1) in the (n + 1)-skeleton. This is

exactly the telescope of the skeletal filtration of X. As observed in Remark 5.2 this

is homotopy equivalent to X by homotopy invariance since inclusions of skeleta are

cofibrations. □

Proposition 5.5. Let X be a connected CW-complex. There is an exact se-

quence

0→ lim1Hk−1(X(n);A)→ Hk(X;A)→ limHk(X(n);A)→ 0

Proof. The above homotopy cofiber sequence induces a long exact sequence

in cohomology. We do not write the coefficients in this proof, but A’s are under-

stood throughout. Before writing it down we use the suspension axiom to identify

Hk+1ΣX ∼= HkX and the wedge axiom to identify Hk(∨X(n)) with
∏
HkX(n) and
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the toplogical shift map given by inclusion of one skeleton in the next one induces

precisely the shift map in cohomology. Thus we get

. . .
1−sh←−−−

∏
Hk+1X(n) ∂←− HkX ←

∏
HkX(n) 1−sh←−−−

∏
HkX(n) ← . . .

The short exact sequence is then given by Coker(1−sh)→ HkX → Ker(1−sh). □

We arrive finally to our central result in this chapter. Eilenberg-Mac Lane spaces

represent ordinary cohomology in the sense that pointed homotopy classes of maps

to a K(A, n) are in bijection with Hn(−;A).

Theorem 5.6. Let X be a connected CW-complex. Then Hn(X;A) ∼= [X,K(A, n)]

for any n ≥ 1.

Proof. In our setting the tower Hk(X(n);A) stabilizes for k > n since we have

filteredX by skeleta. Therefore lim1 vanishes and we obtain the desired isomorphism.

□

Remark 5.7. For convenience we have dealt with connected pointed CW-complexes,

but the previous result extends of course to non-connected CW-complexes if we allow

ourselves to choose a base point in each connected component.

A more tricky point is that this result does not extend to arbitrary spaces.

Whereas ordinary cohomology is a weak homotopy invariant, homotopy classes into

an Eilenberg Mac-Lane space are not so! One can construct spaces having the weak

homotopy type of a K(Z, n), together with a CW-approximation map K(Z, n)→ X

for which there is no inverse map, even up to weak homotopy, so that the funda-

mental class in cohomology represented by the identity cannot be given by a map

X → K(Z, n)...





CHAPTER 6

More adavanced topics

In this final chapter we indicate a few possible directions for further reading.

This first course about homotopy theory and homotopy groups opens doors to other

fascinating topics.

1. Postnikov invariants

We have seen that in general homology groups or homotopy groups do not de-

termine the (weak) homotopy of a space. A natural question is then to ask what

additional information do we need to reconstruct a space X starting with the knowl-

edge of the homotopy groups. One possible answer is the classification of a certain

tower by cohomology classes.

Example 1.1. Given an arbitrary group π1 and abelian groups πn for n ≥
2, there always exist a space X such that πkX ∼= πk for all k ≥ 1. We can

take
∏
K(πk, k), a product of Eilenberg-Mac Lane spaces, also called a general-

ized Eilenberg-Mac Lane space or GEM for short. But there are many others. We

have seen for example that RP 2 does not admit RP∞ = K(Z/2, 1) as a retract, so

it cannot be a GEM.

To make it simple, let us assume here that X is a simply connected space (there

are generalizations to so-called nilpotent spaces, but the theory does not work for

arbitrary path connected spaces. We look at the Postnikov tower and recall that

we have maps X → X[n] to the n-th Postnikov section and structure maps forming

a tower pn+1 : X[n + 1] → X[n] of fibrations. This map induces isomorphisms on

homotopy groups up to degree n and since X[n+ 1] has its last possibly non-trivial

homotopy group in degree n+ 1, the long exact sequence for the fibration sequence

F → X[n+ 1]
pn+1−−→ X[n] shows that F is a K(πn+1X,n+ 1).

103
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The next result is the central point in the theory of Postnikov invariant. In

general we know from the dual Puppe sequence that we can extend a fibration

sequence on the left and identify the next homotopy fibers as loop spaces on the

original spaces. However one cannot deloop an arbitrary space and even if one could

one would not be able to deloop an arbitrary map between loop spaces. The next

proposition should thus arrive as a nice surprise.

Proposition 1.2. Let p : X ↠ Y be a fibration of simply connected spaces whose

(homotopy) fiber is a K(A, n + 1) for n ≥ 2. There exists then a map k : Y →
K(A, n+ 2) such that X is the homotopy fiber of k.

Proof. We see in the long exact sequence in homotopy for the fibration sequence

F → X → Y that the fiber has a single non-trivial homotopy group, and therefore

πn+1X → πn+1Y is surjective and πkX ∼= πkY for all k ≤ n.

We turn now the fibration p into a cofibration and consider thus the map as a

pair (Y,X). The long exact sequence in homotopy shows that πk(Y,X) = 0 for all

k ≤ n+ 1 since it looks like

· · · → πn+1X ↠ πn+1Y → πn+1(Y,X)
∂−→ πnX

∼=−→ πnY → πn(Y,X)→ . . .

We conclude that πk(Y,X) = 0 for all k ≤ n+1. From the relative Hurewicz Theorem

we conclude that the homology groups Hk(Y,X) are also all zero for k ≤ n + 1.

Moreover

Hn+2(Y,X) ∼= πn+2(Y,X) ∼= πn+1F ∼= A

We finally look at the cofiber sequence X ↪→ Y → Y/X and the associated long

exact sequence in homology. By an analogous argument as above for homotopy

groups we deduce that Y/X is (n+ 1)-connected and the first non-trivial homotopy

group if πn+2Y/X ∼= Hn+2(Y/X,Z) ∼= A.

We define k to be the composite Y → Y/X → (Y/X)[n+2]. The latter Postnikov

section is clearly an Eilenberg-Mac Lane space K(A, n+2). We define thus the space

X ′ as the homotopy fiber of k and one can conclude (...) by comparing X with X ′

and showing they are weakly homotopy equivalent. □
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Since cohomology groups are represented by Eilenberg-Mac Lane spaces, we can

view the map k : Y → K(A, n + 2) as a cohomology class k ∈ Hn+2(Y ;A) when Y

is a CW-complex.

Definition 1.3. The element k ∈ Hn+2(Y ;A) associated to the fiber sequence

K(A, n+ 1)→ X → Y is the k-invariant of this fiber sequence.

An inductive process allows then to reconstruct a simply connected CW-complex

from the purely algebraic data given by its homotopy groups πnX and its k-invariants

kn ∈ Hn+2(X[n];πn+1X). We start withX[2] = K(π2X, 2) and constructX[3] as the

homotopy fiber of the k-invariant K(π2X, 2)→ K(π3X, 4). We continue inductively

and take the (homotopy) limit of the tower of fibrations . . . X[n + 1] ↠ X[n] ↠

X[n − 1] ↠ . . . . This inverse limit is not a CW-complex in general, so we have to

take its CW-approximation to get back our original space.

Proposition 1.4. A space is a GEM if and only if its k-invariants are all zero.

The if direction is obvious by construction, but the only if needs a proof we do

not provide here. We finish this section with an example related to the 3-dimensional

sphere.

Example 1.5. Let us consider the Postnikoc section S3[3] = K(Z, 3). Who is

the next Postnikov section S3[4]?

One can compute π4S
3 ∼= Z/2, generated by the suspension of the Hopf map and

it is possible to identify the first k-invariant as the composite map

K(Z, 3)→ K(Z/2, 3)→ K(Z/2, 5)

where the first map is reduction mod 2 and the second map is much more interesting

since it is the so-called Steenrod square Sq2.

2. Poincaré sphere

From here on we will not provide any proof. The short final sections in these

notes are only meant to illustrate a few topics which are very closely related to the

material we have studied this semester. We start with the famous homology sphere

consructed by Poincaré at the beginning of the 20-th century.
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There is a simple group of 60 elements, the alternating group A5 that csan be

realized as the group of isometries of the regular icosahedron. It is as such a subgroup

of SO(3). The universal cover of SO(3) is the 3-sphere S3, the unit sphere in

the quaternions H and π1SO(2) ∼= Z/2. Hence, the preimage of A5 in S3 is a

group of 120 elements often called the icosahedral group I. It is a perfect group,

H1(K(I, 1);Z) ∼= Pab = 0 and it is even superperfect, i.e. H2(K(I, 1);Z) = 0.

Since I is a (discrete) subgroup of the topological group S3, it acts freely on the

right by multiplication and yields a covering space S3 → S3/I = X. This space

X has fundamental group isomorphic to I by construction, so H1(X;Z) = 0 and it

follows in fact from the fact that I is superperfect that also H2(X;Z) = 0. It is a

three-dimensional CW-complex with a single non-trivial reduced homology group,

H3(X;Z) ∼= Z. This is the famous Poincaré sphere, a homology sphere which cannot

be homotopy equivalent to S3 since it has non-trivial fundamental group.

3. James construction and infinite symmetric products

There is a combinatorial model for the “loop-suspension” construction ΩΣX due

to James, which is a powerful tool to understand the Freudenthal suspension The-

orem. Let us start with the statement of this important result. If α is a homotopy

class in πkX we can represent it by a pointed map a : Sk → X and then suspend

it to obtain Σα : ΣSk → ΣX representing a class in πk+1ΣX. The suspension op-

eration thus yields a homomorphism πkX → πk+1ΣX. The Freudenthal suspension

Theorem states that this is an isomorphism in a range roughly twice as long as the

connectivity of X. More precisely, if X is (n− 1)-connected for some integer n ≥ 2,

then it is an isomorphism for all k < 2n− 1.

Back to the homotopy groups of ΣX, we can use the loop-suspension adjunction

and identify πk+1ΣX with πkΩΣX. The suspension homomorphism is induced by

a map of spaces X → ΩΣX we describe now. The James construction JX is the

topological monoid freely generated by X in a sense we will make precise next. The

result we will not prove is that JX ≃ ΩΣX. In a monoid we have to express words

of arbitrary length in a convenient way. We also need a unit and fix therefore a

basepoint x0 ∈ X which will be a strict unit for the multiplication.
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For words of length one it is easy we just keep a copy of X and call is J1X.

Next we need words of length two and take therefore X × X whose elements are

pairs (x1, x2). However, since we wish x0 to be a unit we have to identify x0 × X
and X × x0 with the words of length one. We set J2X to be the pushout of X ←
X ∨ X ↪→ X × X. By construction there is a map J1X ↪→ J2X and we continue

inductively by adding words of higher length. Then JX = ∪JnX, Notice that

J2X/J1X ≈ (X ×X)/(X ∨X) = X ∧X, which is (2n − 1)-connected. This is the

key to prove that X → JX is highly connected.

Let us also mention that the James construction or equivalently ΩΣ recognizes

H-spaces: A space X admits an H-space structure if and only if the map X → JX

admits a retraction up to homotopy.

In an analogous way one can construct the free abelian monoid on X by iden-

tifying not only the elements of the form (x0, x) and (x, x0) with x, but any pair

(x1, x2) with (x2, x1). This means we take the quotient of X×X under the action of

the symmetric group S2 and continue by taking symmetric powers SP nX = Xn/Sn.

The colimit of this sequence is called the infinite symmetric product SP∞X. It is

a theorem of Dold and Thom that this space is a GEM having the homotopy type

of
∏
K(HnX,n). The natural map X = SP 1X → SP∞X recognizes GEMs and on

homotopy induces the Hurewicz homomorphism πnX → πnSP
∞X ∼= HnX.

4. Puppe’s Theorem

We have seen the Fubini Theorem for homotopy pushouts and more generally one

could prove that homotopy colimits commute with themselves. However homotopy

colimit and homotopy limit usually behave badly, but sometimes they do so. This

unexpected feature makes the homotopy theory of spaces more special than other

homotopy theories. Consider for example a pushout diagram over a fixed base space

as below:
X1 X0 X2

B

Taking the homotopy pushout yields a new map X → B, but how can we understand

its homotopy fiber? It has the homotopy type of the pushout of the respective
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homotopy fibers! This is known as Puppe’s Theorem. A fun example allows us to

reconstruct K(Z, 2) without knowing the cellular structure of CP∞.

Example 4.1. We start from the Hopf fibration S1 → S3 η−→ S2. This fibration is

classified by a k-invariant S2 → K(Z, 2) which is nothing but the second Postnikov

section (it must induces an isomorphism on π2 is we want the homotopy fiber to be

2-connected). We now consider the following pushout diagram over K(Z, 2):

∗ S3 S2

K(Z, 2)

η

∗

Taking the homotopy pushout gives here a map S2 ∪ e4 → K(Z, 2) and Puppe’s

Theorem allows us to identify the homotopy fiber as the homotopy pushout of S1 ←
S1×S3 → S3, where we have used some exercices about homotopy fibers of constant

maps and recall that ΩK(Z, 2) ≃ K(Z, 1) ≃ S1. This homotopy pushout is a

join S1 ∗ S3 ≃ Σ(S1 ∧ S3) ≃ S5. This means on the one hand that we got an

interesting map S5 → S2 ∪ e4 and on the other hand that, since S5 is 4-connected,

the map S2 ∪ e4 → K(Z, 2) is 4-connected as well. This being said we can iterate

the construction and continue with

∗ S5 S2 ∪ e4

K(Z, 2)

η

∗

The same argument as above tells us that the process of attaching a 6-dimensional

cell to S2 ∪ e4 gives us a new map S7 → S2 ∪ e4 ∪ e6, namely the homotopy fiber of

the map to K(Z, 2) which has therefore an even better connectivity, it’s 6-connected.

Repeating this process shows that in the limit we obtain a weak equivalence S2 ∪
e4 ∪ e6 ∪ e8 ∪ · · · ≃ K(Z, 2). In particular the homology of K(Z, 2) is concentrated
in even degrees where we have a copy of the integers H2n(K(Z, 2);Z) ∼= Z) for all

n ≥ 0.
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Another application of Puppe’s Theorem provides generalized Hopf maps for

H-spaces. The product map X ×X → X fits into a commutative diagram

X X ×X X

∗ X ∗

p1 p2

m

Taking homotopy pushouts yields a generalized Hopf map X ∗X → ΣX. One can

check that all vertical homotopy fibers are equivalent to X and most importantly

that all horizontal comparison maps between them are equivalences. This implies

that the homotopy fiber of the generalized Hopf map is again X, up to homotopy.

For the spheres we know to be H-spaces we obtain famous Hopf maps providing

non-trivial elements in the homotopy groups of spheres:

(1) For X = S1 we get S1 → S3 η−→ S2 and the homotopy cofiber of η is CP 2.

(2) For X = S3 we get S3 → S7 ν−→ S4 and the homotopy cofiber of ν is HP 2.

(3) For X = S7 we get S7 → S15 ξ−→ S8 and the homotopy cofiber of ξ is OP 2.

5. Blakers-Massey and Freudenthal Theorems

We finish with the strongest theorem in the above list, probably also the one

whose proof is the most difficult. We start from a pushout diagram, forget about the

initial object and take the homotopy pullback. By universality there is a comparison

map between the initial object and this pullback, the question is what one can say

about the homotopy fiber. The situation is illlustrated in the following diagram:

A B

P

C D

where D is the homotopy pushout of the original pushout diagram and P is the

homotopy pullback. There is no formula allowing us in general to identify the ho-

motopy type of Fib(A→ P ), but if the pairs (B,A) and (C,A) are respectively m-

and n-connected, then the pair (P,A) is (m+ n− 1)-connected.

As an example we obtain the Freudenthal suspension Theorem.
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Example 5.1. The pushout diagram we start with is ∗ ← X → ∗. The homotopy

pushout is ΣX and the homotopy pullback is ΩΣX. The comparison map is a map

X → ΩΣX which is roughly twice as connected as X itself.
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