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Introduction

This is a Master’s course taught for the first time in the Fall semester 2021. The
following sequence of courses taught at the Bachelor’s level constitute the natural
background for the ideas we study here. In “Metric and Topological Spaces” the
notion of topological space is introduced as a generalization of that of a metric space,
the fundamental group is defined and computed for the circle. In my own course
“Topology” the whole semester is spent around this important homotopy invariant
and two different aspects are highlighted. The Seifert-van Kampen Theorem allows
us to compute fundamental groups of spaces constructed by assembling elementary
pieces, in particular in the case of quotient spaces, and the theory of coverings gives
a more geometrical meaning to the fundamental group by identifying its elements
as deck transformations. Finally, the course “Algebraic Topology” makes use of
homological algebra and introduces homology groups as a new homotopy invariant,
both in the form of singular homology and that of cellular homology, a version better
suited for computations when the spaces one works with are CW-complexes.

In this course we focus mainly on higher homotopy groups. Several excellent
textbooks serve as inspiration for this course. We do not claim any originality and

rely often on the approach and technical tools presented in May, etc.






CHAPTER 1

Topological complements

In this short chapter we cover a subject which could have been part of the topol-
ogy course, but as it has not been done there, we have to do it now. We know
that (topological) spaces and (continuous) maps form a category, and we will see
that its structure is even richer as the set of morphisms between two spaces comes
equipped with a nice topology, so we have in fact a space of maps. This topology,
called compact-open for obvious reasons, is designed so that several desirable prop-
erties hold, such as the exponential law. These properties hold unfortunately only
for a restricted class of spaces and we will focus on them in this chapter. In the last
section we indicate how to deal more seriously with this issue, but will not give full

proofs.

1. Compact-open topology

We follow Hatcher’s book [3, Appendix A]. Our aim is to introduce and study a
(good) topology for the set of all maps. To distinguish this mapping space from the
set of all maps we will use a different notation. The set mor(X,Y") of all maps will
thus become a space map(X,Y). We will also use the notation Y for the set of all

non necessarily continuous maps X — Y.

DEFINITION 1.1. Let X, Y be two spaces, K C X be compact and U C Y open.
We define B(K,U) = {f: X = Y | f(K) C U}. The compact-open topology is
defined on the set of all maps f: X — Y by the subbasis B(K,U) where K runs
over all compact subspaces of X and U over all open subspaces of Y. The space

map(X,Y) of all maps is called mapping space.

Therefore a basis for the compact-open topology is given by finite intersections
of B(K,U)’s.
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DEFINITION 1.2. Let X,Y be two spaces, n > 1 an integer, K; be compact
subspaces of X and U; be open subspaces of Y for all 1 < ¢ < n. We define
B(K.,Us) = {f: X =Y | f(K;) C U;foralll < i < n} for a basis of the

compact-open topology.

Finally recall that an arbitrary open subset of map(X,Y’) is an arbitrary union

of basic open subsets. Many important examples will have a compact source.

ExAMPLE 1.3. When X = % is a singleton, the evaluation at this unique point
provides a homeomorphism map(*,Y) ~ Y. More generally, when X = [n] =

{1,...,n} is a finite discrete space, we have a homeomorphism map([n],Y") ~ Y.

EXAMPLE 1.4. When X = [ = [0, 1] equipped with the subspce topology of the
metric space R, one can choose a simpler basis for the compact-open topology on
map(/,Y), the space of all paths in Y. For any choice of 0 <ty <t; <--- <t,_1 <
t, <1 and open subsets Uy, ..., U, in Y we ask that f([t;_1,t;]) C U;.

EXAMPLE 1.5. When X = S! we call AY = map(S*,Y") the space of free loops
in Y since an element in AY is a loop A\: S' — Y starting at any point y = A(1).

2. The exponential law

One of the main features for the compact-open topology is an exponential law.
Let us recall here the set theoretic version. Let X,Y,Z be sets. Then ZX*Y =~

(Z¥)X. We will use the explicit form of this bijection:
f: X xY — Z corresponds to ¢ = a(f): X = Z¥,x+— f(z,—)

This isomorphism is natural in Y, so we have an adjunction (X x —) - Z=). This
explains the name a(f) for the adjoint of the morphism f.

Now we move to the topological version of this adjunction. The set of maps
map(X x Y, Z) is a subset of ZX*Y and likewise (ZY)¥ contains map(X, map(Y, Z)).
In order to control the behavior of the adjoint map, we will need to assume that one
space is locally compact, i.e., every neighborhood of a given point contains a compact

neighborhood.
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LEMMA 2.1. Let X be a locally compact space. Then the evaluation map
ev:map(X,Y) x X =Y,
defined by ev(f,x) = f(x), is continuous.

PROOF. Let V be an open subset in Y and consider a pair (f,z) in the domain
such that ev(f,z) € V. Since f is continuous, the preimage f~!(V) is open in X
and by assumption there exists a compact neighborhood x € K C f~'(V). Thus
f(K) Cc V. We choose therefore the basic open subset B(K, V) in the mapping
space and K as a neighborhood of z in X.

Then ev(g, k) = g(k) € V for all ¢ € B(K,V) and k € K, which shows that the
evaluation map sends the neighborhood B(K, V') x K of (f,z) to V. O

PROPOSITION 2.2. LetY be a locally compact space. Then a map f: X XY — Z

is continuous if and only if its adjoint a(f) = ¢: X — map(Y, Z) is so.

PROOF. Notice first that the restriction f |,y of a continuous map f is again
continuous for any x € X. This justifies the fact that the map a(f) belongs to the
set of set theoretic morphisms X — map(Y, Z) and not only to (Z¥)X.

Assuming that f is continuous, we have to show that so is a(f). Given L C Y
compact and W C Z open, let us check that a(f)~'(B(L,W)) is open in X. This
inverse image consists of those # € X such that f(z x L) C W. Sor for each such z
we have to find an open neighborhood U such that f(U) C B(L,W).

Now, since W is open, so is f~}(WW) and it contains x x L. By definition of the
product topology there exists inside f~!(1¥) a union of open boxes U; X V; containing
xx L. Because L is compact, a finite number of such boxes suffices and we can choose
U = NU; as an open subset in X, and V = UV;.

What we have achieved is that x x L C U x V C f~Y(W). Therefore U is an
open neighborhood of x and a(f)(U) C B(L,W).

To prove the other implication, assume now that a(f) is continuous and consider

the composite

X xY Y ap(Y, Z2) x Y %% 7
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This is a continuous map as the evaluation map is continuous by Lemma 2.1 and
one checks that it coincides with f. Notice that we have used here the assumption

on Y to be locally compact. O

In order to establish the topological exponential law, we will pick better suited
subbases for the mapping spaces coming into play. We start with the following

lemma where no locally compactness needs to be assumed.

LEMMA 2.3. Let X and Y be Hausdorff spaces and Z be any space. Then
map(X x Y, Z) admits as a subbasis for the compact-open topology all B(K x L, W)
for K compact in X, L compact in'Y, and W open in Z.

PROOF. In principle we should use all compact subsets in A C X x Y, not
only boxes K x L as we claim here. So let us consider f € B(A, W) for an arbitrary
compact subset A. We will prove that this subbasic open subset can also be described
as an open subset for the topology generated by the more restrictive choice.

Since A is compact, so are its projection Ax and Ay on X, respectively on Y.
However if f(A) C W, it is not true in general that the image of this larger box,
f(Ax x Ay) is also contained in W. For any (z,y) € A we have f(z,y) € W.
Let us choose open neighborhoods z € U, in Ax and y € U, in Ay such that
f(Uz xV,) C W such that f(U, x V) C W.

By assumption the space Ay is Hausdorff, and compact, thus normal, and we
can separate o from the closed subset Ay \ U, by an open z € U such that U C U,.
Likewise y € V with V' C V. The compact subspaces U x V cover A, we extract
now a finite cover U; x V;. We have done that so as to make sure f (E X VZ) cWw,
thus f € NB(U; x V;, W). This shows that any f € B(A, W) admits a (basic) open
neighborhood for the topology described by the choices in the lemma. |

Now that we have a more suitable description of the compact-open topology on
map(X xY, Z), we observe that the set theoretical exponential sends B(K x L, W) to
B(K, B(L,W)) by Proposition 2.2. We show next that such special subbasic subsets
also form a subbasis for the compact-open topology on map(X, map(Y, Z)).
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LEMMA 2.4. Let X be a Hausdorff space and B a subbasis for the topology of a
space Y. Then B(K,B), for compact K C X form a subbasis of the compact-open
topology on map(X,Y).

PROOF. Similarly to the previous proof of Lemma 2.3 we consider f € B(K,V),
a subbasic open subset in map(X,Y’) and will exhibit a finite number of compact
subset K; C X and subbasic B; € B such that f € NB(K;, B;) C B(K,V).

Let us write V' as a union of basic subsets V,,, i.e. each V,, is a finite intersection
NV,,; for some V, ; € B. Since f(K) C V, the f~1(V,)’s cover K, and we immedi-
ately extract a finite cover Vi, ..., V,,. We can choose (as we will see in an exercise)
compact subsets K; C f~1(V;) such that K = UK.

We have done this so that f(K;) C V;, ie. f € B(K;,V;) forall 1 <i<m. We

conclude by expressing each
B(K;,V;) = B(K;,NV;;) = NB(K;, Vi ;)

This means precisely that f € ﬂ” B(K;,V;,), a finite intersection of the desired
form, contained in B(K,V). O

We are finally ready for our main result. We will go through the steps hinted at

in the previous preparatory lemmas.

THEOREM 2.5. Let X,Y be Hausdorff spaces and Y locally compact. We have a
natural homeomorphism map(X x Y, Z) ~ map(X,map(Y, Z)) for any space Z.

PRrROOF. We have seen in Proposition 2.2 that a map f: X xY — Z corresponds
to a continuous adjoint a(f) and vice-versa because Y is locally compact. This
provides a bijection between these mapping spaces. It is a homeomorphism since the
topology on map(X x Y, 7Z) is defined by the subbasis B(K x L, W) (we use here
that X and Y are Hausdorff and apply Lemma 2.3), and the operation a sends them
to B(K, B(L,W)) which form a subbasis of map(X, map(Y, Z)) by Lemma 2.4 (here
we need X Hausdorf). O

REMARK 2.6. What the exponential law tells us is first is that the functors — x Y

and map(Y, —) form a pair of adjoint functors from topological spaces to topological
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spaces. Here we use the compact-open topology on map(Y, Z), but only remark that

we have a natural bijection of sets:
mor(X X Y, Z) = mor(X, map(Y, 7))

But the exponential law tells us even more since these sets of morphisms can be given
a topology in a way that the corresponding spaces of maps become homeomorphic.

This yields a so-called enriched adjunction.

3. Some remarks on possible improvements

The assumption that all spaces are Hausdorff is a mild one. It is quite common
to work with Hausdorff spaces, say in any course about metric spaces, or in algebraic
topology when dealing with CW-complexes.

The second assumption we have made to prove the exponential law is not so harm-
less. Finite CW-complexes are compact, but in general arbitrary CW-complexes are
not, and even worse, not locally compact. In fact a CW-complex is locally compact
if and only if every open cell meets only finitely many closed cells. Hence, infinite
dimensional projective spaces, infinite wedges of spheres are useful spaces that do

not verify the assumptions made in the previous section.

We follow May’s [4, Chapter 5] to indicate briefly a possible fix. In principle
since, as we will see later, every space is “weakly” equivalent to a CW-complex, we
would be happy to work with CW-complexes only. Two problems occur at least.
The first one is that CW-complexes do not form a (co)complete category, sometimes
(co)limits of CW-complexes give spaces which are not CW-complexes. The second
one is related to the description of mapping spaces and the exponential law we have
studied in the previous sections. Milnor as one of the leading mathematicians who
suggested to work with CW-complexes. He proved that map(X,Y) is homotopy
equivaéent to a CW-complex if X and Y are CW-complexes and X is compact. If
not, there are examples where the resulting mapping space fails to be equivalent to
a CW-complex. This category of spaces is hence not Cartesian closed.

Nowadays there are different ways to fix this problem. The solution I will describe
in these notes consists in working with a nice subcategory of topological spaces, called

compactly generated spaces. Another way around is to work in a different category,
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namely that of simplicial sets, a more combinatorial version of spaces which can be
shown to have the same homotopy theory as spaces, in the sense of Quillen’s theory
of model categories, [7]. This is the topic of Kathryn’s Hess course on abstract

homotopy theory.

DEFINITION 3.1. A space X is weak Hausdorff if any map g: K — X from a
compact space K has a closed image ¢g(K) C X.

If X is Hausdorff, then the image g(K) being compact, it must be closed. This

shows that Hausdorff is a stronger property than weak Hausdorff.

DEFINITION 3.2. A subspace A C X is compactly closed if, for any map g: K —

X from a compact space K, the preimage g~*(A) is closed.

We give a characterization, without proof, of compactly closed subspaces in weak

Hausdorff spaces.

ProrosiTiON 3.3. If X is weak Hausdorff, A C X is compactly closed if and
only if the intersection AN L is closed in X for any compact L C X.

We finally arrive to the notion of k-space, where the letter k stands for ‘kompakt”

in German.

DEFINITION 3.4. A space X is a k-space if every compactly closed subspace is

closed in X. It is compactly generated if it is a weak Hausdorff k-space.

Hurewicz studied this kind of spaces first, in the 1930’s, but it was much later, I
believe in 1960’s, that people realized formally the Cartesian closed property, see [6].
One reason why I don’t wish to deal with this is that one has to change products
into k(X x Y) the k-ification of the product, where all compactly closed subspaces
are closed. Likewise the mapping space with its compact-open tiopology has to be

replaced by its k-ification .

4. Pointed mapping spaces

It would be cleaner and easier to work with simplicial sets or compactly generated

spaces, but as we did not develop the theory, we will content ourselves to work in
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a more restricted setting, or admit when really needed that the solution described
in the previous section provides in particular an exponential law that holds in full
generality.

In this section we work with pointed spaces (X, xg), (Y, yo), etc., and it is natural

to consider thus pointed (based) maps.

DEFINITION 4.1. Let (X, zg) and (Y, yo) be pointed spaces. The space of pointed
maps or pointed mapping space map, ((X, xo), (Y, o)) or map,(X,Y") for short is the
subspace of map(X,Y’) consisting of all maps f: X — Y such that f(x¢) = yo.

The space of pointed maps map, (X,Y) is often considered as a pointed space
itself, where we choose the constant map c,, as base point. Recall that the constant
map ¢y, sends every point x € X to the base point yy € Y.

We will develop now the theory for locally compact Hausdorff spaces, starting
with some preliminaries. All results admit a generalization to compactly generated

spaces, as is done for example in Strom’s book [11, Chapter 3].

LEMMA 4.2. LetY be a Hausdorff space and consider the left hand side pushout

square of locally compact Hausdorff spaces

A-1,pB map(D,Y) —— map(C,Y)
ool Jr J»
C —-D map(B,Y) SEAR map(A,Y)

Then the right hand side square is a pullback square.

Proor. To verify that the square of mapping spaces is a pullback square we
simply check that it enjoys the universal property. Given maps x: X — map(C,Y),
adjoint to k: X x C' = Y, and 5: X — map(B,Y), adjoint to b: X x B — Y, such
that g* ok = f*o 3 we have to prove that there is a unique map 6: X — map(D,Y)
making the appropriate diagram commutative.

The composite map bo (X X f) is adjoint to f* o 3, and likewise for ko (X x g)
and ¢g* o k. Since two different adjunctions come into play here, say for the first

claim, whose left adjoint are respectively — x A and — x B, we need to use the fact



4. POINTED MAPPING SPACES 15
that they are conjugate via — x f and f* : map(B,—) — map(A, —). More details
can be found for example in Mac Lane’s [5, Theorem 1V.7.2]

This means that the solid arrow diagram below commutes:

XxA X x«B

Xxgl Xxhl

X X1

Xx(C —= XxD

Since X x — is a left adjoint, it preserves pushouts. This means that the above
square is a pushout square, hence the dashed arrow d exists and is unique. Its

adjoint §: X — map(D,Y’) solves the problem. O

This applies in particular to quotients and helps us understand mapping spaces

out of such quotient spaces.

COROLLARY 4.3. Let (A, ag) be a subspace of a locally compact Hausdorff space
(X, ap), and (Y, yo) be another locally compact Hausdorff space. Then map,(X/A,Y)
is homeomorphic to the subspace of map(X,Y) of all maps f: X — Y such that

/ |A: Cyp -

ProOF. The left hand side square below is a pushout square by definition of the

quotient X /A, and it explains how this space becomes pointed:

A—— X map(X/A,Y) —— map(x,Y)
S l =
l — X/A map(X,Y) —— map(A,Y)

Therefore the righthand square is a pullback by Lemma 4.2. The projection map
p induces on mapping spaces the inclusion of constant maps via the identification
map(x,Y) ~ Y. A point y € Y corresponds to the map sending * to y, and the
latter is sent by p* to the composition A % + 5 Y.

The pullback consists then of pairs (f,y) € map(X,Y) x Y such that f [4= ¢,.
The space of such pairs is homeomorphic to a subspace of map(X,Y) and when

Yy = Yo is the basepoint, we get precisely the desired subspace. 0
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A particular case of a quotient space is the smash product X A\Y = X xY/X VY.

COROLLARY 4.4. Let X,Y and Z be locally compact Hausdorff spaces. Then
map, (X AY,Z) is homeomorphic to the subspace of map(X x Y,Z) of all maps
sending the wedge X V'Y to the base point zy € Z. O

We finally arrive to the pointed exponential law.

THEOREM 4.5. Let X,Y and Z be locally compact Hausdorff spaces. Then we
have a homeomorphism map,(X AY, Z) ~ map, (X, map,(Y, 7)), natural in Y.

Proor. By Corollary 4.4 we may identify map, (X AY, Z) with the subspace of
map(X x Y, Z) of all maps f sending the wedge X VY to the base point zy € Z.
Under the unpointed exponential law this subspace corresponds to a subspace of
map(X, map(Y, 7)) namely those a(f) such that a(f)(x) = f(z,—) sends yo to the
base point zy for all z € X, ie., a(f)(x) is a pointed map, and a(f)(x) is the
constant map c,,, i.e. the adjoint map a(f) itself is a pointed map. Thus the

unpointed adjunction a restricts to a map
map, (X AY, Z) — map, (X, map, (Y, Z2))

The inverse unpointed homeomorphism restricted to map, (X, map, (Y, Z)) provides

the inverse map, establishing the pointed version. [

COROLLARY 4.6. The smash product X A — converts pushouts into pushouts, the
pointed mapping space map(Y, —) converts pullbacks into pullbacks, and the pointed

mapping space map,(—, Z) converts pushouts into pullbacks.

PROOF. The first statements are direct consequences from the fact that the func-
tors are respectively left and right adjoints. For the third one, beware of the con-
travariance. Consider a pushout square [J and map, ([J, Z). To prove it is a pullback
we have to verify the universal property for a diagram of maps out of X. By ad-
junction this corresponds to a diagram of maps from X A [J into Z. As we have
proved above that this square is also a pushout square we can conclude by adjoining
back. OJ
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REMARK 4.7. In this section we have followed a traditonal approach to prove the
pointed adjunction, relying on the previously established result on unpointed maps.
Surprisingly, a direct proof of the adjunction — A'Y - map, (Y, —) has appeared in
print in 1996 only to my knowledge, in an article by Cagliari, [2].

5. Loop and suspension

In the final short section of this chapter we specialize to the case when the space

Y is the circle.

DEFINITION 5.1. Let X be a pointed space. The loop space (21X is the space of
pointed maps map, (S?, X).

DEFINITION 5.2. The reduced suspension SX of a pointed space X is the smash
product X A S1.

To be very explicit the smash product X A S! is by definition the quotient space
X x S1/X v S! and since S* itself is the quotient 7/0 ~ 1, we identify SX with the
quotient

X x I/(z,0) ~ (x,1),(xg) ~ (x0,0), (zo,t) ~ (x0,0)

Taking this double quotient in the reverse order we see that SX is homeomorphic
to the quotient ¥.X/zy x I. For a well-pointed space this quotient obtainied by
contracting a segment does not change the homotopy type and hence XX ~ SX.
The advantage of the latter is that it has a well-defined and canonical base point,

namely the class of xy x I.
PROPOSITION 5.3. There is a natural homeomorphism map, (X, QY) ~ map,(SX,Y).
COROLLARY 5.4. There is a bijection [X,QY ], = [SX,Y]..

PROOF. Since paths in a mapping space correspond to homotopies we apply g,

the set of path connected components to the homeomorphism in Proposition 5.3. [






CHAPTER 2

Homotopy groups

We introduce higher homotopy groups for pointed spaces, as a generralization
of the fundamental group, a.k.a. the first homotopy group. We show that these
higher analogs are always abelian, in two different ways. One classical way describes
explicit homotopies between the sums f+ ¢ and g+ f, the other is more categorical in
nature, we introduce the notion of (co)-H-spaces and (c)-H-groups. We also establish
the existence of long exact sequences of homotopy groups, similar to the long exact

sequences in homology we already know.

1. Higher homotopy groups

We have seen in the Topology course that mo.X, the set of path connected compo-
nents of a pointed space (X, zg) can be identified with the set of pointed homotopy
classes of maps [(SY,1); (X, zo)]«, which we often write [SY, X]. for short when the
base point is understood from the context. We also identified the group of homotopy
classes of based loops, where the group law is induced by concatenation of loops,
with [S?, X].. We have also reinterpreted concatenation in a more diagrammatic
way using the pinch map on the circle p: S* — S* Vv S'. This is nothing but the
quotient map that identifies 1 and —1, and if we are given two loops f,¢g: St — X,

the product of their homotopy classes is represented by
S'hgtyst M xyx 5 x
where V is the fold map.

REMARK 1.1. Any group G can be realized as fundamental group of a space.
This is a consequence of the Seifert-van Kampen Theorem since we can choose a
presentation of G by generators g, and relators rg living in the free group F(g,).
The fundamental group of the wedge \/_ S' is isomorphic to this free group and
we just need to attach one 2-cell for each relator r,beta so as to construct a space

19
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X = (V,S")U(U;€?) whose fundamental is isomorphic to the quotient of F'(g,) by
the normal subgroup generated by the r3’s, i.e. G.

DEFINITION 1.2. Let (X, z¢) be a pointed space and n > 1. The n-th homotopy
group m, X = m,(X, o) = [S™, X]..

It is also the pinch map, on S™ which justifies the name and yields a group
structure. We also denote by p the collapse map by the equatorial sphere S"~!

in S™.

LEMMA 1.3. Let X be a pointed space. The pinch map on S™ induces a group
structure on m, X . For two pointed maps f,g: S™ — X the sum [f]+[g] is represented
by the the composition f + g: S™ 2 S" v S" o xvx Yo x

PRroor. This goes exactly the same way as when n = 1. The constant map
Cz, Tepresents the neutral element because the collapse of an hemisphere D} C S
is homotopic to the identity up to identifying the quotient S™/D? with S™. The
operation % is associative up to homotopy, hence strictly associative on homotopy
classes of maps. This follows from the observation (analogous to what we have done
for the fundamental group by looking at trisections of an interval) that pinching the
tropic of cancer and the equator or pinching the tropic of capricorn and the equator
are different maps, but they are homotopic, the homotopy moving slowly, in one
second, and continuously the latter up by 25.5 degrees.

Finally, given a pointed map f: S™ — X, let us view S™ as the reduced suspension
SSm~1 whose elements are classes [z,t] for z € S"7! and ¢ € [0,1]. The inverse of

[f] is then represented by the map [z,t] — flz,1 —t]. O

Here comes the first proof of the commutativity of higher homotopy groups.
Instead of providing explicit formulas for the homotopies we show hopefully helpful

drawings in the case n = 2.
ProproOSITION 1.4. For any n > 2 7, X is abelian and we write 4+ for .

PROOF. We represent a map from a sphere S? by a map from a square that is
constant on its boundary (it factors thus through the quotient (I xI)/9(I xI) =~ S?).
Therefore the map fxg is picturally described by the first drawing below, even though
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I would prefer to see f on top of g since my model for the suspension has a vertical
interval in my mind, but stealing the drawing from Najib Idrissi on stackexchange

does not allow me to complain:

The parts of the drawing with an f or a ¢ inside indicate simply a reparametrization
of the map on a homeomorphic square or rectangle, the parts without a letter support

a constant map. O

We do not provide any proofs yet, but indicate a few elementary computations.

EXAMPLE 1.5. (1) m5? = Z, where a generator is the homotopy class of
the identity on the sphere;
(2) 7,S' =0 for all n > 2 using the theory of covering spaces;
(3) w352 = Z, where a generator is the Hopf map n: S3 — 52

2. H-spaces and co-H-spaces

We follow [8, Section 7.2]. To prove the previous proposition, there is a categorical
argument, called the Eckmann-Hilton argument (see also Topologie, Série 7, for a

version of this trick).

DEFINITION 2.1. A pointed space (X, zg) is an H-space if it is equipped with a
multiplication map m: X x X — X such that the following diagram commutes up
to pointed homotopy:

X 1y X xX 2 X
A
X

This means that we dot not require the multiplication to be strict, but the base
point plays the role of a neutral element, up to homotopy. For the moment we do
not require m to be associative, even up to homotopy. But these are features an

H-space could have of course.
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DEFINITION 2.2. An H-space X is homotopy associative if mo (m x X) ~ mo
(X x m) and it is homotopy commutative if moT ~ m where T: X x X — X x X

is the interchange map T'(z,y) = (y, z).

In terms of diagrams homotopy associativity means that

X x X x X 22X X« X

mxx | |m

XXXT>X

commutes up to pointed homotopy and homotopy commutativity means that the

following triangle commutes up to pointed homotopy:

X xX T sy X x X
X

DEFINITION 2.3. A homotopy associative H-space X is an H-group if there is an

tnverse map t: X — X such that the composition X XX XN XXX

is homotopically constant.

Hence, in an H-group m(z, tz) is not equal to the base point z, but continuously
deformable into c,,.
Among the following examples, the first two are historically significant, the last

one is important in this course.

EXAMPLE 2.4. (1) Any topological group is an H-group. For example S =
U(1) 2 SO(2), 83 = SU(2), or other compact Lie groups like SO(n), SU(n),
are H-groups.

(2) The only other sphere, except SY, S, 53, which can be given the structure
of an H-space is S”, the unit octonionic sphere, but it fails to be an H-group
because the multiplication is no associative. We will not be able to give a
proof of this deep theorem in this course.

(3) Any loop space QX = map,(S*, X) is an H-group. Multiplication is con-

catenation of loops, which is homotopy associative as we have seen in the
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Topology class, the inverse map ¢ corresponds to reversing the parametriza-
tion of loops. Notce that QX is not homotopy commutative in general

because of the next observation.

LEMMA 2.5. Let X be an H-group. Then moX inherits a group structure, which

is commutative if X is homotopy commutative.

PrRoOOF. The group axiom hold up to pointed homotopy in X, they thus hold
strictly in moX. O

This lemma is just a particular case of the following result (we have not used at

all that the source is SY above).

PROPOSITION 2.6. Let X be an H-group. Then [W, X, inherits a group structure

o for any pointed space W, which is commutative if X is homotopy commutative.

PROOF. The multiplication m induces product o on [W, X].. Given two pointed
maps f,g: W — X, we define the product f o g by

WS W x W 2% X« x I X
We also write [f] o [g] for the product defined on homotopy classes. O

REMARK 2.7. There is a notion of H-map betwen H-spaces, where we require the

obvious compatibility between the multiplications.
The whole theory dualizes from multiplications to comultiplications.

DEFINITION 2.8. A pointed space (X, xg) is an co-H-space if it is equipped with
a comultiplication map ¥: X — X V X such that the following diagram commutes

up to pointed homotopy:

X
id lw id
X5—XVX —— X
The maps p; and py collapse respectively the second and first wedge summand

to the base point. In terms of universal properties, p; is the unique map whose

restriction to the first wedge summand is the identity and the restriction to the
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second is constant. In terms of explicit formulas, seeing X V X as a subspace of
X x X the map py is defined by po(z; x9) = x¢ and po(z9; ) = x, so its the restriction
of the projection onto the second factor.

The analogous notions of homotopy coassociative, homotopy cocommutative, co-

H-group, are easy to formulate and are left to the reader.

PROPOSITION 2.9. Let X be a co-H-group. Then (X, Z]. inherits a group struc-
ture x for any pointed space Z, which is commutative if X s homotopy cocommuta-

tive.

PROOF. The comultiplication v induces product * on [X, Z].. Given two pointed
maps f,g: X — Z, we define the product f x g by

XL xvx L zvz Yoz
We also write [f] % [¢g] for the product defined on homotopy classes. O

Our main source of examples for co-H-spaces is given by the reduced suspension.

EXAMPLE 2.10. Let SX = S' A X be the reduced suspension of any pointed

space X. The pinch map defines a comultiplication
STAX 25 (ST SHAX & (SEAX) V(ST AX)

We have used here that — A X is a left adjoint on pointed spaces, thus it preserves
pushouts, in particular wedges.
The inverse ¢ is induced by reversing the parametrization S* — S, which sends

e to e .

3. The Eckmann-Hilton argument

When X is a co-H-space and Y is an H-space, one can define two a priori different
group structures on [X, Y., which we denoted by o and % in the previous section.
We will prove that they coincide and give the set of pointed homotopy classes the
structure of an abelian group.

Here comes the famous Eckmann-Hilton Lemma.
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LEMMA 3.1. Let (G, 1) be a set equipped with two unital composition laws o and

* that satisfy the interchange law
(axb)o(cxd)=(aoc)x(bod)
for all a,b,c,d € G. Then o =% and aod=doa forall a,d € G.

PrROOF. We perform two simple computations where we will see the importance

of the fact that both laws share the same neutral element. First
aod=(ax1l)o(lxd)=(aol)x(lod)=ax*d
shows that o and x coincide. Second
aod=(1xa)o(dx1l)=(lod)x(aocl)=dxa=doa
which concludes the proof. O

THEOREM 3.2. Let X be a co-H-group andY be an H-group. The group structures

they define on [X,Y]. coincide and are abelian.

PROOF. We have already seen that the homotopy class of the constant map c,,
is a common unit, so we only to check that x and o satisfy the interchange law
and conclude by the Eckmann-Hilton argument, see Lemma 3.1. Consider thus four
pointed maps a,b,c,d: X — Y and the following diagram allowing us to compare

both fourfold products:

X - y X VX — A2 (X xX)V (X x X)ZY Y x V)V (Y xY) 2 Y VY
5| - . I+
XXX—W <X\/X)X<X\/X>a—>\/b><c\/d(yvy>x(Y\/Y)T)YXYT)Y

By definition of x and o the upper composite of solid arrows going all the way from
X to the bottom right Y represents (axc) o (bxd) whereas the bottom composition
represents (a o b) x (cod).

Let us complete the diagram by adding the two vertical dashed arrows. They
render the left, respectively right, square strictly commutative (which has nothing
to do with the fact that ¢ and m are (co)multiplications). We are thus left with the

middle rectangle.
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Both ways to compose maps correspond to maps from a wedge XV X to a product
Y x Y. By the universal property for a coproduct in the category of pointed spaces,
it is thus enough to compare the restriction to both wedge summands. Let us follow

for example a point of the form (x,zo):
Vo(axceVbxd)o(AVA)(x,x) = Vo(axeVbxd)(z, x, xg, xo) = V(a(x), c(x),b(xg), d(xg))

Since b and d are pointed maps, this is V(a(z),c(x),y0,90) = (a(z),c(x)). Let
us finally follow the other comnposition through the left and bottom part of the

rectangle:
(VxV)o(aVbxeVd)oA((z,x9) = (VxV)o(aVbxeVd)((x, g, x,x9) = (VXV)(a(x), yo, c(z), yo)

Again we find (a(z),c(x)), on the nose!l We have thus shown that the diagram

commutes strictly and this finishes the proof. [

Let us pause here to remark that the strict equality of the interchange law, before
passing to homotopy classes of maps, does not imply that we have a group structure
on the mapping space map,(X,Y’) or even the set of morphisms mor,(X,Y’) since
the unit and associativity do not hold strictly, but only up to homotopy.

The following corollaries are now consequences of this very general principle.

COROLLARY 3.3. Let X and Y be two pointed spaces. The two group structures
on [SX,QY ], coming from the pinch map on SX and loop concatenation on QY

coincide and are abelian.

COROLLARY 3.4. Let X be a pointed spaces. For any n > 2 the group 7, X is

abelian.

PRroor. We use the previous result for S*~! = S$57~2 and the loop-suspension

adjunction. O

4. Relative homotopy groups

Just like homology groups, homotopy groups admit a relative version for pairs of
spaces (X, A) where A C X is a subspace of X containing the base point xy = ay.

We will establish the existence of a long exact sequence and start with a warning
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about the model we use. Homotopy classes of maps from spheres to some space are
replaced by homotopy classes of maps from the pair (D", S""!) but some authors
prefer the homeomorphic pair (1™, 0I"™) which has some advantages related to the

parametrization.

DEFINITION 4.1. Let (X, A) be a pair of pointed spaces and n > 1. The n-th

relative homotopy group m,(X, A) is equal to the set of pointed homotopy classes of
pairs [(D", S" 1), (X, A)]..

Thus, elements in 7,(X, A) are represented by pointed maps f: D™ — X whose
restriction to S™ ! land into A. Homotopies are to be taken in the pointed sense
and restrict to homotopies from S™~! x I into A.

The pinch map on S™ ! extends to a map on the n-dimensional ball D" by

collapsing the whole equatorial disc. We need n > 2 to do so.
LEMMA 4.2. The pinch map on D™ gives m,(X, A) a group structure for n > 2.
Relative homotopy groups generalize the notion of (absolute) homotopy groups.
LEMMA 4.3. For any n > 1 we have a bijection m,(X,xo) = 1, X.

PROOF. A map of pairs f: (D", 8" ') — (X, x¢) is a map which is constant on
S™~1 so that it corresponds, by the universal property of the quotient to a pointed
map f: D"/S"t ~ S — X. Likewise relative homotopies which are constant on
S~ factor through (D"/S™ 1) x I. O

We have already met the category of pairs in an exercise last week, so the next

proposition should not come as a surprise.

PROPOSITION 4.4. For any n > 1 the n-th relative homotopy group is a functor

from the category of pairs to the category of pointed sets, or groups if n > 2.

PROOF. A realtive pointed map f: (X, A) — (Y, B) induces a map on relative

homotopy groups by (post)composition. 0J

In order to set up the long exact sequence for homotopy groups, we introduce a

homomorphism connecting homotopy groups in two adjacent degrees.
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DEFINITION 4.5. Let (X, A) be a pair of pointed spaces and n > 1. The con-
necting homomorphism 0: m,(X, A) — m,A sends the homotopy class of a map of

pairs a: (D", 5™ 1) — (X, A) to the homotopy class of the restriction a |gn-1.

REMARK 4.6. This conencting homomorphism is well-defined since by definition
a homotopy H of pairs a ~ a’ restricts to a homotopy on S™ ! x I whose image lies
in the subspace A.

When n > 2 this map is indeed a homomorphism because the pinch map on the
ball D™ restricts to the pinch map on its boundary sphere. However, when n = 1 we
are looking at m (X, A), (pointed) homotopy classes of maps a: (1,{0;1}) — (X, A),
i.e. paths in X starting at the base point and whose end point belongs to A. The

connecting morphism sends a to its end point a(1), or rather its class in myA.

Before proving that the connecting homomorphisms are part of a long exact
sequence, we establish the so-called Compression Lemma, which is interesting in its
own right since it tells us what it means for a map of pairs to be homotopically
trivial, which is not as transparent as in the absolute setting. We say that two maps
f,9: X — Y are homotopic relative to a subspace A C X is there exists a homotopy
H: X xI — Y from f to g which is constantly equal to f |4= ¢ |4 during the
homotopy, i.e. H(a,t) = f(a) for all a € A. This is stronger than to require that we
have a homotopy of pairs for maps out of (X, A).

LEMMA 4.7. A map a: (D™, 8" ') — (X, A) represents the neutral element in
7.(X, A) if and only if it is homotopic to a map, relative to S"~', whose image lies

entirely in A.

ProOOF. If a is homotopic to a map b: D™ — A C X, then, by contractibility of
D™, we can retract D™ to its base point so that [b] = [cy,].

Conversely, assume that a is homotopic to the constant map c,, in the relative
sense, i.e., there exists a homotopy H: D" xI — X such that H(—,0) = a, H(s,1) =
7o for all s € D™ and H restricts on S"~! x I to a homotopy entirely contained in A.

Consider the subspaces D; = D" x tUS™ ! x[0,t] C D" x [0,1]. Forall0 <t <1
they are homeorphic to a disc whose boundary is S ! x 0. Viewing the homotopy

H as a continuous deformation from a = H |p, to b = H |p, we have indeed a
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homotopy from a to a map b which is constantly equal to a |g=—1 on the boundary.

The image of b is entirely contained in A. OJ

To fix some notation let us write i: A — X for the subspace inclusion of a pair
of pointed spaces (X, A), and j: (X, z9) — (X, A) for the inclusion of pairs. When
talking about exact sequences of pointed sets we simply mean that “the image equals
the kernel”, or more precisely that the image consists of homotopy classes of maps

that are sent to the homotopy class of the constant map.

THEOREM 4.8. For any pair of pointed spaces (X, A) there is a long ezxact se-

quence
s = (XS A) 9, TR A AN TnX ELN (X, A) L moX
where the last three homotopy classes only form pointed sets.

PROOF. Part 1. We prove first exactness at m,X. Since j, 0i, = (j o), we
deduce from the Compression Lemma 4.7 that this composition is zero: Indeed,
given a map a : (D", 8" 1) — (A, 1), the composition with (A4, x¢) C (X, A) yields
precisely a map whose image lies in A.

To show that Kerj, = Imi, consider now a map b: (D", 5" ') — (X, xzg) such
that j.[b] = 0. By the Compression Lemma again this means that j ob is homotopic,
relative to S~ ! to a map b': (D", 5" ') — (X, A) whose image lies in A, and since
the homotopy is constant on S™~! also V' |gn-1 is constant. In particular & can be

seen as a map a: (D", S™ 1) — (A, z¢). Thenioa =1V soi.fa] = [V] = [b].

Part 2. We move to exactness at m,(X, A) and compute 0 o j.. Given a map of
pairs b: (D", S™ 1) — (X, z¢), by Definition 4.5 of the connecting homomorphism,
the class 0(j.[b]) is represented by the restriction j o b |gn—1, which is constant. So
9(j.[b]) = 0.

To prove exactness we consider now a map f: (D™, 5" ') — (X, A) and assume
that J[f] = 0, i.e. f |gn—1 is nullhomotopic as pointed map to A, via a homotopy
F: 8"t x T — A We define a new map g on D" ~ D" x 1US" ! x I by using F

on the cylinder and our map f on D" x 1. Observe that f and g are homotopic as
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maps of pairs since F' takes place entirely inside A. But ¢ is map which is constant

on its boundary, it defines thus a map (D", S ') — (X, o). Now j.[g] = [f].

Part 3. We end with the exactness at m, 1A. Given f: (D", S" 1) — (X, A),
the class i,(0[f]) is represented by the restriction f |gn-1 composed with i. But f
itself can be seen as a nullhomotopy for this map. Therefore i, o 0 = 0.

To conclude let us consider a map a: S" ™' — A with i.[a] = 0, i.e. i0a is
homotopic to the constant map c,, via a homotopy H. As usual such a nullhomotopy
can be parametrized by a map on D", by collapsing S™ ! x 1 to a point. This gives
us a map H: D™ — X whose restriction to S®! is equal to the map a we started

with. Considering H as a map of pairs we have [H] = [a]. O

ExXAMPLE 4.9. Let C'X be the cone on a space X and consider the long exact

sequence in homotopy for the pair (C'X, X):
0=mCX = m(CX,X) 3 mX = mCX = m(CX,X) % mX = mCX = *

We conclude from the contractibility of C'X that the connecting homomorphism
induces an isomorphism 7,1 (CX, X) = 7, X for all n > 1. At the end of the
sequence we have to be more careful because this is only an exact sequence of sets.
The map of sets 0: m(CX, X) — mX is surjective (its image coincides with the
kernel of the “zero map”. We also know that O has its kernel reduced to the class of
the trivial map (D', S%) — (CX, X). Let us see if it is a bijection. The elements of
71 (CX, X) are homotopy classes of paths I ~ D' — C'X whose endpoint lies in X.
Choosing a point x in a connected component of X we claim that any two paths in
CX ending at x are homotopic as relative maps. For the connected component of
the base point this follows from the “injectivity”, and for other components any such

relative path must go through the top of the cone.

ExAMPLE 4.10. Let X be a reduced CW-complex (having a single 0-cell), so
its I-skeleton X is a wedge of circles V,S'. A wedge of circles has trivial higher
homotopy groups (because its universal cover is contractible, it is a Cayley graph

of a free group). The long exact sequence in homotopy then shows that m, X =

7o (X, XW) for any n > 3 and let us again look more closely at the end of the
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sequence:
05 mX 2m(X, XM) S m X0 51X o m (X, X0) = «

Here 7, X () is a free group projecting onto m X so m (X, X)) = «.
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CHAPTER 3

The cellular approximation

In this chapter we will show that any map between CW-complexes can be de-
formed, up to homotopy, into a map which is cellular: it sends n-dimensional cells to
the n-skeleton. There will be a technical part in the proof, but as a reward we will
be able to deduce the value of some very important homotopy groups of spheres, and
other highly connected complexes. We follow quite closely [3, Chapter 4], which has
almost been covered in Christian Urech’s course “Algebraic Topology”, so we should

be quite familiar with the notation and the techniques.

1. CW-complexes and polyhedra

We write X ™ for the n-skeleton of a CW-complex X.

DEerFINITION 1.1. Let X, Y be CW-complexes. A map f: X — Y is cellular if
f(XM)) cY® for any n > 0.

The following example already shows why it will be quite handy to be able to

deform any map into a cellular one.

EXAMPLE 1.2. Let us use the standard cell structure on S™ = € U e, where
the attaching map for the n-cell is the only one there is, namely the constant map
St 5 €9 = x. This means that this model for an n-dimensional sphere has all its
skeleta (S™)®) reduced to a point for k < n.

Let m > n. A map f: S™ — S™ is cellular if and only if it is constant.

The main technique to control what a map does on a cell will be to homotope it
to a piecewise linear map on a polyhedron. For us polyhedra will always be finite,

so we do not mention it explicitly in the terminology.

DEFINITION 1.3. A convex polyhedron in R™ is a finite intersection of half-spaces

whose boundaries are hyperplanes defined by an affine equation ) a;x; = b.
33
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A subspace K C R" is a polyhedron if it is a finite union of compact convex

polyhedra.

EXAMPLE 1.4. A quadrant in R? is a convex polyhedron, but it is not compact,
so we will not work with such polyhedra here. Any triangle in R? is compact convex
polyhedron, a not necessarily convex hexagon is a polyhedron. The standard simplex

in R"*, convex hull of the endpoints of the standard basis, is a polyhedron.

DEFINITION 1.5. Let K be a polyhedron. A map f: K — R¥j is piecewise linear,
or PL for short, if there exists a decomposition of K into compact convex polyhedra
K; C K such that f |k, is affine.

A map f: K — é¥ is piecewise linear if it so after composing with some homeo-

morphism é¥ ~ R*.

EXAMPLE 1.6. Every cube " is a polyhedron and it can be given the structure
of a simplicial complex, either by taking barycentric subdivision, or by doing it
inductively, starting from the segment I which is a simplicial complex, continuing

with the square, which can be cut into two triangles diagonally, etc.
For further use we introduce now a construction.

CONSTRUCTION 1.7. Let f: I™ — R* be any map. Consider two closed balls

By = B(0;1) C By = B(0;2) in R*. Since f is continuous on a compact cube, it is

uniformly continuous. There exists € > 0 such that

(1) If [z —y| < e then [f(x) — f(y)| < 1/2;
(2) & < Jd(fH B I\ fH(B))

Choose an integer N such that the diameter of the small cube [0; 1/N]™ is smaller
than ¢ and subdivide the big cube I"™ into small cubes of side 1/N. Set K to be the
union of all small cubes meeting f~'(B;) and make it somewhat fatter by setting
K5 to be the union of all cubes meeting K.

Observe that every point of K3 is at a distance from K smaller than the diameter
of a small cube, so smaller than . Then, since K contains the preimage of Bi, the
distance to f~!(By) is smaller than 2. Moreover, by choice of €, the polyhedron K,

is containes in f~1(By).
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2. Cellular approximation

Our proof will go by induction on the cells in the source, so we need first a result
about a map from one cell. All technical issues are contained in this result. We will
need to deal with maps which do not miss any point in the interior of large cells (if

there is a point not in the image of f one can retract the cell down to its boundary).

LEMMA 2.1. Let f: I" — Z = W UeF be a map where the interior é*

15 entirely
contained in the image of f. Then f is homotopic to a map f1, relative to f~1(W),
such that there exists a polyhedron K C I™ with

(a) fi(K) Ce* and f |k is PL;

(b) There is a non-empty open subset U C ¥ such that f{*(U) C K.

PROOF. Let us fix a homeomorphism é* and apply Construction 1.7 to the unit
ball By, the larger ball B, in R¥. This allows us to find a polyhedron K C K, in
I™ on which we will define a P map g and then homotope it to f using the extra
space between K and K.

Since K5 is made of little cubes, we can use Example 1.6 to view it as simplicial
complex, i.e. a union of standard simplices. We define the map g by starting on the
vertices (0-simplices) by using the map f, so we set g(v) = f(v) for any v € (K5)(©.
We then extend the map linearly to all simplices of K5. This map g coincides with
f on vertices, but not on the whole boundary of K5 so we need to alter it between
K and this boundary to be able to glue it with f on the complement of K.

To do so we find first a map ¢: Ky — [0; 1] which is constant, equal to 1 on K
and zero on 0K5. We can use the same technique as above to make it continuous by

extending it linearly. Next we construct a homotopy
H: Ky x I — ¥, (a;t) = (1= to(x)) - f(z) +to(z) - g(x))

At time t = 0 we start with H(z,0) = f(z) and at the other end, ¢ = 1 we have
H(z,1) = (1 —¢(z)) - f(x) + ¢(x) - g(x)), a map which coincides with ¢ on K.
As mentioned above the last important property is that for x € 9K \ K we have
H(z,t) = f(x) since ¢(x) = 0 here. This means that we can extend H continuously
to a homotopy on the whole cube I"™ which is constantly equal to f outside K5. This
yields a homotopy H' from f to a map f; = H'(—, 1) which is PL on K.
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Let us now verify the properties (a) and (b). Property (a) is immediate by
construction, so we need only to find the open set U from claim (b). Consider the
compact subspace C' = fi(I" \ K) C W U €.

Claim. The point 0, i.e., the center of the open disc é*¥ we have identified with
R¥, does not belong to C.

Proof of the Claim. On "™\ K, the map f; coincides with f and the latter sends
a point there outside B; since f~!(B;) C K C K,. For points on the boundary, we
proceed as follows. Any maximal dimensional n-simplex ¢ in K, but not in K is
contained in a small cube of side 1/N, hence its image f(o) is contained in a ball of
radius 1/2 by choice of €. However, to construct g we kept the same value as f on
vertices and since a ball is convex, g(o) is contained in the same ball of radius 1/2.
In fact the formula defining H shows that H(o,t) is also contained in that same ball
(convex hull). In particular so is fi(o). The center of this ball is at distance > 1/2
from the origin, if not f(o) would be entirely contained in By, but we chose o with

vertices outside K. This shows that 0 ¢ C, proving the claim.

We thus choose U to be a neighborhood of 0 such that f;(I™\ K)NU = (). This
is what we wanted: f;*(U) C K. O

We are ready now for the proof of the Cellular Approximation Theorem. We will
only do the non-relative version of the following, to keep it as simple as possible, but
it does not involve much more to actually prove a version where one deforms a given
map f only outside a subcomplex on which the map is already cellular. The main
idea is to apply the previous lemma so as to deform a map in such a way that images
of small cells do not entirely cover the large cells they meet in the image, because this
will allow us to contract those large cells down to their boundary. This should be
reminiscent of the proof we saw in Topology that 75? = 1: some loops in S? could
fill S?, but up to homotopy we can make it affine in a small neighborhood and since
a finite number of affine functions can never fill a square, we chose a point not in the

image, prick the sphere at the point and contract it down to a point continuously.
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THEOREM 2.2. Let f: X — Y be a map between CW-complexes. Then f is
homotopic to a map g which is cellular. Moreover, if f is cellular on a sub-CW-

compler A C X, then we can choose the homotopy relative to A.

ProoOF. We study this question cell by cell, and to do so, we start with O-
dimensional cells where the solution is easy (we do not need Lemma 2.1).

Each 0-cell is a vertex v € X, sent to a point f(v) that belongs to some path
component of Y. A path in this component defines a homotopy from f |yw© to a
cellular map if the end point of this path is a vertex in Y. We extend this homotopy,
that is only defined on the 0-skeleton, to higher cells by induction, using the fact
that the inclusion S"~! x T U D™ x 0 C D™ x I is a strong deformation retract, so
it admits a homotopy inverse r: D" x I — S™"™1 x I U D" x 0. Let us spell out the
details for 1-cells and leave it for later to do this properly for higher cells, since this
is a property that so-called cofibrations have in general (we will see that inclusions
of subcomplexes are cofibrations). As promised let us look at a 1-cell e! attached to
the 0-skeleton by an attaching map a: S° — X(©. We have a homotopy H® defined
on X x I and f itself is already given on X (© U, e!. Observe that (X© U, e!) x I
is the pushout of

(XOU, e )y x0U(XO x 1)« (D' x0)U(S°xT)— D' x I

The universal property of the pushout tells us it is enough to define a map on D! x [
compatible with H(®. To do so we use the retraction and compose with the map we
already have. We continue by induction on all cells.

(»=1) and consider the attaching

Let us thus assume that f is already cellular on X
map for a single n-cell ¢, call it again a: S"' — X® D, We will also call f
the restriction to X1 U, e® and have the following situation represented in the
following diagram:

gn-1 __a . x(n-1) M y (n—1)

| I |

D —— XDy, en — Ly
where the left hand square is a pushout square. Since D™ is compact, so is its image,

which thus meets only a finite number of cells in Y. If all these cells have dimension
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< n there is nothing to do, f would already be cellular, but if not let us consider a
maximal dimensional cell e¥ in Y that is hit by f, with k¥ > n. So the image of f is
contained in a subcomplex Z of Y containing Y™~V plus a finite number of cells,
including e*. Let us call W = Z \ é* so Z = W U eF. If the interior of this cell ¥ is
not entirely contained in the image of f we can move directly to the second part of
the algorithm, but let us suppose first that e* is entirely contained in the image of

f. Consider next the composite
g " 5D XUy, ey 7

We are in good position to apply Lemma 2.1 and find a map g; ~ ¢ relative to
g~ 1(W) which is PL on a polyhedron K C I™ whose image lies in é*. Since g sends
the boundary of the cube to W, it has not moved during the (relative) homotopy,
and we can extend this homotopy constantly outside so as to get a map f; ~ f
with f; |en is given by g. Since the dimension of the (compact) polyhedron K is
strictly smaller than k, its image f;(K’) only hits a finite number of affine subspaces
of R¥ ~ é* in a neighborhood we called U in the lemma. Therefore there is a point
uw in U which does not belong to the image of f;.

We have thus managed to be in the situation where the map f hits the cell e*
but misses an interior point. The space W U (e*\ u) admits a deformation retraction
down to W since a pricked disc retracts to its boundary sphere. This yields a map
fo ~ fi ~ f which misses the cell e*. If needed, we repeat this argument, finitely
many times, for all large cells in the image of f, obtaining in the end a homotopic
map which is cellular.

But this map has only been constructed for one extra cell in X. In general
X has been constructed from the (n — 1)-skeleton by attaching many cells, maybe
infintely many. We apply the same procedure simultaneously to all cells, so as to get
a map f, defined on X, we extend the homotopy to a homotopy defined on the
whole space X just as we did for the O-cells in the first step of this proof.

To conclude we need to assemble the successive homotopies we have constructed
skeleta by skeleta. Because X might be infinite dimensional, we concatenate possibly
an infinite number of homotopies. To do so let us spend half a second to perform

the homotopy yielding a map which is cellular on the 0-skeleton, then one quarter
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of a second to have it cellular on the 1-sekelton, one eighth of a second to continue
to the 2-sekeleton, etc. This defines a homotopy from f to f, which is is cellular on
X. O

As promised in Example 1.2 we cash in right away the benefits for our hard work.
COROLLARY 2.3. For any 0 < n < k we have 7,S* = 0.

PROOF. Any map f: S® — S* is homotopic to a cellular map, but the latter is

constant. O

This property that all lower homotopy groups are trivial is important enough to

deserve a name.

DEFINITION 2.4. A space X is n-connected if m; X = 0 for all £ < n and any
choice of base point. A pair (X, A) is n-connected if 7 (X, A) = 0 for all £ < n and

any choice of base point.

ExXAMPLE 2.5. A space X is 0-connected if myX is reduced to a point, i.e. X
is path-connected. A space is 1-connected if moreoever m X = 1, i.e. it is simply
connected. We have seen that the n-sphere is (n — 1)-connected and we will see that
more generally spaces built from large cells are highly connected, more precisely, any

CW-complex whose n-skeleton is reduced to a point is n-connected.

REMARK 2.6. For a pair (X, A) the long exact sequence in homotopy tells us
that being n-connected means that the first homotopy groups of A and X agree:

A = mp X for k < n and the next one m,A — 7, X is an epimorphism.

3. CW-approximation

In the previous section we proved that any map between CW-complexes can be
chosen to be cellular, up to homotopy. In this section we deal with arbitrary spaces

and show that one can replace them with CW-complexes, up to weak equivalence.

DEFINITION 3.1. An unpointed map f: X — Y is a weak homotopy equivalence

if it induces isomorphisms f,: m,(X;z) = m,(Y; f(x0)) for all 2y € X.
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This means that X and Y have the same number of path-connected components
and on each of them f induces an isomorphism on all homotopy groups. We have
met examples of weak (homotopy) equivalences which are not homotopy equiva-
lences, such as the inclusion of a point in the Warsaw circle, but of course homotopy
equivalences are weak equivalences since an inverse up to homotopy induces an in-
verse isomorphism on homotopy classes.

Before getting to the proof of the CW-approximation Theorem, we state and
prove two small lemmas about certain highly connected pairs appearing in our con-

structions.

LEMMA 3.2. The pair (X V.S™, X) is (n—1)-connected and the inclusion i: X —

X V S™ induces an isomorphism on mw,_1.

PROOF. The wedge summand inclusion X < XV .S™ admits a retraction, namely
the collapse of the sphere. Therefore i, is injective in any degree. Moreover, when
k < n, the Cellular Approximation Theorem 2.2 (or rather its relative version for
pairs) tells us that any map (D* S* 1) — (X v S" X) factors through the pair
(X, X) up to homotopy when k < n. As m;(X, X) = 0, this shows the triviality of
the relative homotopy groups in degrees £ < n and the surjectivity of i, by inspection

of the long exact sequence in homotopy for the pair (X V S™, X). O

In the above lemma we could do a little better than for an arbitrary attaching map
because the n-cells we added were attached with a trivial attaching map, yielding a

wedge. In general we can say the following.

LEMMA 3.3. Leta: S™ — X be any map. The pair (X U,e" ™, X) is n-connected.

1

In particular the inclusion X — X U, e induces an isomorphism on all 7, for

k<n.

PROOF. The triviality of (X Uge™ ™, X) for k < n is provided as in the previous
proof by the Cellular Approximation Theorem (for pairs). The long exact sequence

in homotopy allows us to conclude. [

THEOREM 3.4. Any space X admits a CW-approximation, i.e. a weak equiva-
lence f: Z — X from a CW-complex Z.
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Proor. We assume that X is path connected and otherwise we apply the fol-
lowing construction on each path-connected component. The construction is an
inductive process on the dimension of the cells.

We choose Z(© = % to be a point and define f(: ¥ — X by sending this point
to our favorite point o € X. This induces a bijection on 7y by assumption. The
construction to obtain an isomorphism on the next homotopy group, is done in two
steps. We first obtain a surjection and then correct it by killing the kernel.

Let us attach 1-cells to our point * so as to construct Z() which is a wedge
of circles Vie;S}. Here I is a set in bijection with a choice of generators «; of
m1(X;x9). We represent the o;’s by pointed maps a;: S' — X and assemble them
to define f1): Z() — X (the restriction to S} is a;). On fundamental groups this
induces a homomorphism m(vVS!) = F(I) — mX. The fundamental group of
a wedge of circles is a free group whose generators we call x;, for ¢ € I, by the
Seifert-van Kampen Theorem, and by construction x; is sent to «;. In particular
this homomorphism is surjective and we call the kernel K = Ker(f®"),.

In our second step we choose generators 3; of this kernel, where j € J and quickly
represent them by maps b;: 5’; — ZM) = v;SY). By definition of K they have the
property that f(1) o b; are all null-homotopic. Choose a null-homotopy B; defined on
Sjx I with Bj(s,1) = x for all s € S. By the universal property of the quotient, the
homotopy B; induces a map on the space obtained by collapsing the top lid Sj1 x 1.
Let us call h;: D? = (Sj x I)/(S}j x 1) = X.

Let us define Y® = XM U (VD?) where the j-th 2-cell is attached via B;. This
allows us to complete the following diagram with the dotted arrow since the interior
square is a pushout square by construction and the bended arrows make the outer

square commute:

VSt =

[T

V;D? —— Y

AN

g
S
Vh; X

J
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We show now that our new map ¢ induces an isomorphism on the fundamental
group. Apply the functor 7 to the whole diagram and identify with the correspond-

ing free groups the fundamental groups of wedges of spheres:

By the Seifert-van Kampen Theorem, the inner square is a pushout diagram of
groups and (g®), is an isomorphism. We continue by induction adding 2-cells to
obtain a surjection on my and rectifying this by adding 3-cells, etc.

So, let us assume that we have constructed an n-dimensional CW-complex Y
and a map ¢™: Y™ — X inducing an isomorphism on homotopy groups 7, for
k < n. Just as before we will first add n-cells to obtain a surjection on m, and
then rectify it to get an isomorphism. One reason we went through the argument
for 7 separately is that we had the Seifert-van Kampen to perform the explicit
computation of the fundamental group, but there is no higher version we can use
NOW.

Using abusive notation, let us call (again) «; chosen generators for m,X and
a;: S™ — X some representatives, for ¢ € I. Form a wedge of spheres \/; S and
define Z™ =Y ™ v\/, S". We deduce from Lemma 3.2 that the inclusion Y™ —
Z™ induces an isomorphism on 7, for all k& < n. We then extend ¢(™ to a map
f™: Z™ — X by using a; on SP. This induces a surjection on 7, since composite

maps

L ")
R VITARES SRAVAVECLEANS ¢
J
is equal to a;. In order to construct Y ™1 we choose generators B; of the kernel K
of (f™),: ,Z™ — 7, X and represent them by maps b;: S® — Z™. Just as above

we choose null-homotopies h;: D;LH — X and define Y"1 to be the pushout in
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the small square below

v, Sr _ Y am

! |

\/hj

The dotted map ¢tV is induced by the universal property of the pushout. By
Lemma 3.3 we know that the pair (Y (™+1 Z() is n-connected. All together, these
considerations about the connectivity of the pairs imply that 7Y™ — 7,2 —
7Y "1 are isomorphisms for all k& < n. As we assumed that these homotopy groups

m+1) induces isomorphism Yt o X

agreed with those of X we conclude that g
for all k& < n.

Let us finally look at the effect of ¢**!) on 7,. The easy part is surjectivity since
(f™),: 1,Z™ — 7,X is so by construction and this surjection factors through
(g(”“))*. Injectivity follows from a less direct argument. Let x belong to the kernel
of (¢™*Y), and represent it by a map k: S™ — Y™+ We have seen that the pair
(Y (41 7)) is n-connected, so k lifts up to homotopy to a map &': S — Z.
Therefore (¢"*Y), (k) is represented by the composite map f™ o k’. We picked » in
the kernel, so k" = [k] belongs to the kernel K.

This kernel is an abelian group (being a subgroup of a higher homotopy group),
it is thus a finite sum of generators j3; or their opposites —f3;. This means that up
to homotopy £’ factors through the wedge V ;S7: if we need to introduce ¢ times 3;
for / € N, we pinch the corresponding sphere ¢ times and use p: S™ — V,S™, and
if ¢ is negative we precompose with the degree —1 map (changing the sign of one
coordinate for example). This shows, looking at the pushout diagram above, that k
factors through the wedge of discs, which is contractible. Thus £ is null-homotopic
and we are done.

The CW-approximation is completed by setting Z = UZ™ and using the com-
patible maps f to define f on Z. It induces an isomorphism on all homotopy

n+1

groups. Focusing on one of them, 7, say, we have shown that f*1 induces an
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isomorphism on 7, and from there on, attaching higher cells does not change this

homotopy group. [

REMARK 3.5. There is a more general version of the CW-approximation Theo-
rem, relative to a subspace A C X to which one attaches cells so as to construct as
relative CW-complex (Z, A), weakly equivalent to the pair (X, A).

All together what we have seen in the first sections of this chapter is that, up to
weak homotopy equivalence, one can replace any space by a CW-complex, and then
any map between such nice spaces by a cellular map. This retricts our study to a
manageable class of spaces and maps where the methods of the Algebraic Topology
course apply nicely.

What we have not done yet (and promise to come back to later) is to show
that the CW-approximation of a space is unique up to weak homotopy equivalence.
We will need mapping cylinders for that. Then we will show that in fact a weak

equivalence between CW-complexes is a homotopy equivalence.

4. Postnikov sections

The technique we have seen in Section 3 will be applied next not to rebuild the
correct homotopy groups of a CW-approximation, but to kill all higher homotopy
groups, thus obtaining more complicated spaces from the cellular construction, but
simpler from the point of view of homotopy groups. We will actually construct a
tower of spaces X[n] living under X (together with maps X — X|[n]) and differing
from one to the next in a single homotopy group. Spaces with a single non-trivial

homotopy group are important enough to get a name, or rather two.

DEFINITION 4.1. Let A be a group and n > 1. A path-connected space X such
that m, X = 0 for all k£ # n and 7, X = A is called an FEilenberg-Mac Lane space of
type K(A,n).

For now, as we do not require a K (A, n) to be a CW-complex, there is no reason

why such Eilenberg-Mac Lane spaces should be unique up to homotopy.

ExXAMPLE 4.2. We have already met a few Eilenberg-Mac Lane spaces. When

n = 1 they correspond to spaces with contractible universal cover:
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(1) The circle S' is a K(Z,1).

(2) The torus S* x S*is a K(Z x Z,1).

(3) The wedge S*Vv S'isa K(Z*Z,1).

(4) The infinite real projective space RP* is a K(Z/2,1).

(5) The infinite complex projective space CP> is a K(Z,2), but this is harder

to prove...

We start right away with the construction of Postnikov sections, and as a partic-
ular case we will be able to construct K(A,n)’s for all n and all groups A (abelian

when n > 2).

PrROPOSITION 4.3. Let X be a path-connected space and n > 1. There exists
a space X|n| and a map £,: X — Xin| such that (I,).: mX — mX[n] is an
isomorphism for all k < n and m;X[n] =0 for k > n.

PrROOF. We choose a set of generators «; € 7,1 X and represent them by maps
a;: S"*1 — X. We then construct the pushout

\/ai
vpSrtt e x

[

VD X

We know from Lemma 3.3 that the pair (X', X) is (n + 1)-connected as we attach
cells of dimension n + 2. This implies that the inclusion induces isomorphisms
X = m X’ for k < n and an epimorphism on 7,,;. But any map S"*! — X’
factors through its (n 4 1)-st skeleton (X/)*1) = X+ yp to homotopy, so its
homotopy class comes from a class in 7, X. These classes become null-homotopic by
construction, so m, 1 X" = 0.

We iterate this construction and kill 7,2 X’ by constructing a space X” from X’
by attaching (n + 3)-cells. The union of these spaces X C X' C X” C ... is called
X[n] and enjoys the desired properties. O

With this construction X[0] is a weakly contractible space (all its homotopy
groups are trivial), and X[1] is a K(m X, 1).

We can assemble all Postnikov sections into a tower.
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THEOREM 4.4. Let X be a path-connected space. There is a tower of maps
= X[+ 1] 2 X[n] — -+ = X[1] = X[0] such that p, o £y = Ly

PROOF. In order to construct the map p,: X[n+1] — X|n], we use the construc-
tion from the proof of Proposition 4.3. Our aim is to extend the inclusion X C X|[n]
to a map on X[n + 1]. The latter space has been constructed by attaching cells of
dimension > n + 3, the lowest dimensional ones having been used to kill m,,5X.

Instead of doing the full inductive argument on all cells, let us only look at one

of these cells e"™3 and its attaching map b. We have a pushout square as below:

gnt2 % X

where the map B is a nullhomotopy for ¢, o b, which exists since 7,12 X[n] = 0. The
diagram therefore commutes and the universal property of the pushout provides the
dashed arrow p. We could have done that for a wedge of spheres, and then iterate

So as to construct p,. O

EXAMPLE 4.5. Since S? is simply-connected, we have a weakly contractible first
Postnikov section S?[1]. We also know that m55? = Z, so S?[2] is a K(Z,2). The
next Postnikov section is more interesting. The Hof map generates m35% = Z, so
S2[3] is a space with two non-trivial homotopy groups, in degree 2 and 3, both being
isomorphic to Z. We will see that this space is not a product K(Z,2) x K(Z,3), the

Eilenberg-Mac Lane spaces are glued together in a “twisted way”.



CHAPTER 4

Fibrations and cofibrations

In the previous chapter we have given concrete constructions that allow us to
work with nice spaces (CW-complexes) and nice maps (cellular maps). Now we take
some time to study a formal setup in which it is convenient to do homotopy theory.
Two classes of maps play a central role in this theory, hinting at the structure of a
model category, a notion due to Quillen, [7]. This notion is one of the main topics
covered in the course Homotopical Algebra, so one of our objectives will be to present
one way to do homotopy theory with spaces in a way that can be seen as a guideline
to generalizations.

We will also study long exact sequences associated to fibrations and cofibrations.

1. Mapping cylinders and mapping cones

We follow Sections 1 and 6 from [12, Chapter 4]. The mapping cylinder construc-
tion will be very useful to “turn a map into a cofibration”. We have not defined yet
what it means to be a cofibration, but let us think about a nice subspace inclusion,

like a sub-CW-complex.

DEFINITION 1.1. . Let f: X — Y be a map. The mapping cylinder Cyl(f) is
the space (X x I)[[Y/(z,0) ~ f(x).

REMARK 1.2. The cylinder construction actually defines a functor on the cate-
gory of maps (morphisms are commutative squares). If the map is pointed and we
wish to stay in the pointed category, then we would use the pointed version of the
cylinder X x I so the cylinder has a canonical base point. We will not systematically
develop the whole theory in both settings, but it is usually quite obvious to adapt
the unpointed version to the pointed one. In this chapter we will concentrate in fact
on the pointed version since we are mostly interested in pointed homotopy classes

of maps.
47
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LEMMA 1.3. Let f: X — Y be a map. The collapse map r: Cyl(f) — Y is a

homotopy equivalence.

ProOOF. The collapse map is defined by r(z,t) = (z,0) = f(z) for all z €
X,t € I, and r(y) = y for all y € Y. We have already seen this argument in the
topology course: The inclusion i: Y < Cyl(f) has r as a strong deformation retract.
Obviously r o is the identity and i o r is homotopic to the identity relative to Y via

the homotopy

H: Cyl(f) x I — Cyl(f)

((x,t),8) —> (x, st)

(y,8) —y
This homotopy collapses slowly the cylinder on X down to its base in 1 second. [

We define now the mapping cone of a map f as above as the target space to
which we attach a cone on X. We have already met this kind of spaces in topology

to attach what we called X-cells.

DEFINITION 1.4. Let f: X — Y be a map. The mapping cone C(f) is the
quotient space Cyl(f)/X x 1.

In topology the sequence X Ly Lo (f) behaves really like an exact sequence.

Let us thus introduce the terminology and prove this in the next lemma.

*

DEFINITION 1.5. A sequence of pointed spaces A Iy B % Cis h-coexact if for
any pointed space Z the sequence [C, 7], EAN (B, Z]. EAN [A, Z], is exact in pointed
sets, i.e. (f*)7[c.,] = Img*.

LEMMA 1.6. The sequence A ENy ;3N C(f) is h-coexact.

PROOF. Since i o f is the inclusion of A at the bottom of the cone on A, this
composition is null-homotopic, so f* oi* is constant. Conversely, by definition of the

cone of a map, we have a pushout square defining C'(f) and we add to the picture a
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map b: B — Z such that f*[b] = [c,,]:

’E

Since b o f is homotopic to the constant map, there is a null-homotopy H defined
on the cone of A. It deforms continuously b o f at the bottom of the cone to the
constant map defined on the top of the cone, which means that the diagram above
commutes. Therefore the dashed arrow c exists, making the whole diagram commute.

In particular ¢ o4 = b, hence i*[c] = [b]. O

Now that we have started constructing an h-coexact sequence from any map,
we can iterate the construction. So we wish to construct the cone of the inclusion
fi: B = C(f), i.e. take C(f) and attach a cone on B. This would be nice maybe,
but not so interesting if we were not able to identify the homotopy type of C'(i) in

terms of the previous data.
LEMMA 1.7. The cone C(f1) is homotopy equivalent to the suspension L A.

PROOF. The idea is that the cone of B we attach to C(f;) is even larger than
the second cone on A we would attach to C A to construct the suspension. More
precisely, let us look at the following commutative diagram starting with two pushout

squares on the left and completing then with quotient maps on the right:

A—— CA—— CA/JA=%A

oo -

B~ o(f) —2— c(f)/B

[ -

CB —— C(f1) — C(f1)/CB

where p and g denote the quotient maps. Since we started with pushout squares,
the right hand side vertical maps are homeomorphisms, so in particular the induced

map LA — C(f1)/B is a homeomorphism. To conclude we show that the map ¢ is
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a homotopy equivalence. For the sake of readability, we will not write bars over the
pairs of the form (z, s) representing elements in cones and suspensions.

Define s(f): XA — C(f1) by sending the upper cone C; A to C'A via s(f)(a, s) =
(a,2s) and the lower cone C_A to CB via s(f)(a,s) = (f(a),2(1 — s)). When
s = 1/2, we send (a, 1/2) to the base of the cone C'A, that is on (a,1) (the top of
the cone is the class of (a,0)), and this is identified with (f(a),1) in the base of the
cone on B.

Let us write down now an explicit homotopy contracting C'B to a point.

H:C(fiy) xI — C(fy)

(a,(1+1)s) if (1+t)s<1
(f(a),2 = (1+1)s) else

(b,s,t) — (b, (1 —1)s)

(a,s,t) >—>{

To check that this piecewise formula gives a continuous map, we just have to check
that if (1 +¢)s = 1, both formulas (a, (1 +t)s) = (a,1) and (f(a),2 — (1 +t)s) =
(f(a),1) define the same element, which is the case by definition of C(f;), and
moreover two elements (a, s,t) and (b, s,t) in the same class have the same image
under H. This happens for b = f(a) and s = 1, where both formulas give (f(a), 1—t).
So continuity is established.

We check now what happens at t = 0 and ¢ = 1. When ¢ = 0, we have H(a, s,0) =
(a,s) and H(b,s,0) = (b,s), this is the identity. At ¢ = 1 we get on the one hand
H(b,s,1) = (b,0), so H(—, 1) is the constant map on the cone on B. On the other
hand

(a,2s) if 2s <1
(f(a),2—2s) else

This is exactly s(f). In other words, H(—,1) = s(f) o ¢, we first collapse the cone
on B to a point and continue with s(f). This shows that s(f) o ¢ is homotopic to
the identity on C'(fy).
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To conclude we still need to check the other composition, namely go s(f). When
s > 1/2, we see that s(f)(a,s) = (f(a),2(1 —s)) is an element in the cone on B,
which is collapsed by ¢, so the lower cone C'_A is sent to the base point of ¥ A. On

the upper cone, s > 1/2, we have

(g0 s(f))(a,s) = qla,2s) = (a,2s)

This composition simply collapses the lower cone. This is also homotopic to the
identity, a homotopy is given by collapsing only the part A x [0, ] of the lower cone
(A x[0,1])/(A x 0). O

Before continuing even one step further, let us look again at the h-coexact se-

quence we constructed from f, and completed by constructing the cone on fi:
AL BI o B o)

From the previous lemma we learn that we can replace C(f;) by XA and the map
f2 by the simpler map p: C(f) — XA collapsing the bottom cone C'B. After this
slow start, let us continue and identify C(p)! We will see a minus sign appearing in
a map between suspensions: this is given by precomposing with ¢, the inverse for the

co-H-group structure we have seen in 2.10.

PROPOSITION 1.8. The space C(p) is homotopic to B and the inclusion map
YA < C(p) is then replaced =X f: XA — ¥B.

PROOF. The first claim about the homotopy type of C(p) follows directly from
Lemma 1.7, the surprising part is maybe the minus sign appearing when one identifies
the map ¥ A — XB. Just as we have replaced C(f;) by XA via the collapse map g,
we replace C'(f2) by ¥ B via a collapse map ¢’. More explicitly this means that in
C(fe) = C(f1)) UC(C(f)) we collapse the whole cone C(C(f)):

B —— O(f) 25 o) L o)

S N

YA ——— 3B
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We complete the diagram with the diagonal map p’ = ¢/ o f3. The second claim will
then follow if we prove that the middle triangle commutes up to homotopy. Instead
of proving that directly, we precompose with the map s(f): ¥A — C(f1) constructed
in the previous proof. We have seen that g o s(f) is homotopic to the identity, so we
wish to show that p’ o s(f) is homotopic to —Xf. Let us compute this composition.

For an element in the upper cone C; A, the image s(f)(a,s) = (a,2s) belongs to
the cone on C(f) so it is sent to the base point under the collapse map p’. For an
element on the lower cone C_A, we have p'[s(f)(a, s)] = p'(f(a),2(1—s)). This goes
twice as fast, but is homotopic to the map (a, s) — (f(a),1 — s), which is nothing

but X f o since we reversed the orientation of the cylinder. OJ

We finally iterate one more time to get back the suspension of C(f). To sum up

we can splice up h-coexact sequences so as to get a long Puppe sequence.

THEOREM 1.9. Let f: A — B be a pointed map. The sequence

Al pio Bza o vp 2hovo) 2 sz 2

1s then h-coezact.

PROOF. We only need to observe that ¢oc is homotopic to the identity to identify

the second iteration of maps between double suspensions. O

REMARK 1.10. Taking [—, Z], for any space Z yields a long exact sequence of
pointed sets. As soon as we are deakling with suspensions, we know that this is an
exact sequence of groups, and starting from the sixth term, we are looking at abelian
groups. In fact one can saya little more at the place where we move from sets to
groups. The pinch map p: C(f) — YAV C(f) pinching the copy A x 1/2 at half

height on the cone on A provides a map

which is a group action. Two elements in [C(f), Z]. have the same image in [B, Z].

if and only if they belong to the same orbit under the action of the group [LA, Z]..
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2. Path spaces and loop spaces

In this section we dualize the theory and construct a certain h-exact sequence.

Cones will be replaced by path spaces, suspensions by loop spaces, the rest is formal.

DEFINITION 2.1. A sequence of pointed spaces X Ly % 7 is h-eaact if for any
pointed space A the sequence [A, X]. LN [A,Y], £ [A, Z], is exact in pointed sets,
i.e. () tes,] = Imfe.

As indicated above the role of the cone is played by a path space.

DEFINITION 2.2. Let X be a pointed space. The path space FX is the space
map, (I, X) where 0 is the base point of the interval I.

Just like A is nicely contained in the cone C'A as a subspace, and this cone
is a contractible space, we have dually a “nice” surjection ev;: FX — X from a
contractible path space (one can contract every path down to the base point). This
duality is also illustrated by the fact that a map f: A — X is nullhomotopic if and
only if it admits an extension to the cone A C C'A, or dually if and only if it admits
a lift to FX — X. This is immediate by adjunction, but is very useful to have in

mind.

DEFINITION 2.3. Let f: X — Y be a pointed map. The mapping fiber F(f) is
the pullback of the diagram X 2+ V' <L F(Y). We write f': F(f) — X for the
map provided by this pullback construction.

Hence, points of F'(f) are pairs (z,w) consisting of a point x € X and a path
w: I — Y starting at yo such that w(1) = x.
We will now only state the dual statements to those from the previous section.

The proofs are ... dual.

LEMMA 2.4. The sequence F(f) 2 x 4 B is h-exact.

PROPOSITION 2.5. The space F(f') is homotopic to QY, the space F(f?) is
homotopic to QX and the map f3 is homotopic to —Qf: QX — QY.
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THEOREM 2.6. Let f: X — Y be a pointed map. The sequence

s erx ooy Tmap() M aox oy B R S x Ly

1s then h-exact.

ExXAMPLE 2.7. An h-exact sequence yields an exact sequence of pointed sets of
homotopy classes for any pointed space used as a source. A particularly interesting
choice is SY since [S?, Q" X], = [S", X], = 7, X by adjunction. We thus get a long

exact of homotopy groups
R 7T2X — 7T2Y — 7T1F(f) — 7TlX — 771Y — WoF(f) — 7TOX — 7TOY.

This time we have not bothered to indicate the relevant minus signs since image and
kernel of a map or its opposite are equal.

To conclude this short section, let us try to understand what the homotopy
groups of the mapping fiber represent. The elements of 7, F(f) are homotopy classes
of pointed maps S™ — F(f) and since F(f) is defined as apullback, they correspond
to compatible pairs of maps S — X and S™ — F(Y). The adjoint of the latter is
amap S" Al ~ D" — Y ie. a homotopy from f o« to a constant map. In other

words, when f is a subspace inclusion X C Y, then we are looking at m,1(Y, X).

3. The homotopy extension property

Now that we have seen how gluing cones, or dually assembling mapping fibers,
yields “exact sequences up to homotopy”, we are ready to introduce the homotopy

extension property that lies at the heart of the notion of cofibration.
DEFINITION 3.1. A map i: A — B has the homotopy extension property, or HEP
for short, with respect to a space Z if for each solid arrow commutative diagram

A—"> B

bk

Ax ] —— Bx1

there exists a homotopy F' extending H and starting at f.



3. THE HOMOTOPY EXTENSION PROPERTY 55

In other words, we are given a homotopy H on A and know how to extend the
map H(—,0) to B. We wish to extend this homotopy H to a space B, which we

think of as a larger space containing A.

DEFINITION 3.2. A map i: A — B is a cofibration if it has the homotopy exten-

sion property with respect to all spaces.

EXAMPLE 3.3. The inclusion i: S"~' C D" is a cofibration. This is the argument
we have already used in the Cellular Approximation Theorem 2.2. The extension
problem we have to solve is described in Definition 3.1. With the same notation let us
thus assume that we have a map f: D" — Z and a homotopy H: S" ! x I starting at
f |sn-1. By the universal property of the pushout this means that f and H assemble
to yield a map H defined on an “empty cylinder” Cyl(z) = (D™ x 0) U (S"1 x I).

We claim this map extends to a map on the full cylinder D™ x I and the reason
is that the inclusion Cyl(i) C D" x I admits a strong deformation retract r defined
as follows. We choose a point, say (O;2) where O is the center of the ball D" and
for each point (x;t) € D" x I we define r(x;t) to be the intersection of the line
passing through (z;t) and (O;2) with Cyl(7). The points on the empty cylinder are
obviously fixed by r and the homotopy, which we will not really use in this argument,
is provided by moving linearly on the segment between (x;t) and its image r(z;t) in

one second. We simply choose F' = H or.

The argument in the previous example shows that in general the HEP only

depends on the way the cylinder of i: A — B is included in B x I.

LEMMA 3.4. A map i is a cofibration if and only it has the HEP with respect to
the cylinder Cyl(i).

PROOF. The direct implication is obvious, so let us assume that ¢ has the HEP
with respect to Cyl(i) and let us solve an arbitrary homotopy extension problem

as indicated in the following diagram where we have added the cylinder on ¢ (it is
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important to remember that Cyl(7) is the pushout of the diagram A x I LAl B):

A—">B

bk

AxI] —— Bx 1

The solid arrow square ending at the cylinder on ¢ is the pushout square we have
mentioned above, so the map H exists by the universal property. By assumption
i enjoys the HEP with respect to Cyl(i) so r exists by definition of the HEP. We
conclude by choosing F' = Hor as our homotopy starting at f and extending H. [

The statement of the lemma could have been made even more precise since we
have only used one specific lifting problem in the course of the proof, namely that
the inclusion Cyl(i) C B x I admits a retraction. We allow ourselves to talk about
an inclusion here since cofibrations are necessarily embeddings, i.e. injective maps
inducing a homeomorphism onto their image.

We continue with some basic properties of cofibrations, all of which will guide
our intuition when (and if!) we will develop an abstract way of doing homotopy

theory with so-called Quillen model categories.
LEMMA 3.5. An arbitrary coproduct of cofibrations is again a cofibration.

PROOF. The cylinder construction commutes with coproducts, being a left ad-
joint. Hence a homotopy extension problem for a coproduct is equivalent to a collec-
tion of homotopy extension problems. They all have a solution by assumption and

we can use the coproduct of these homotopies to solve the original problem. [

PROPOSITION 3.6. The pushout of a cofibration along any map is a cofibration.
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PRrROOF. Consider a cofibration i: A — B and a map f: A — X. We call Y the

pushout and use the names of the natural maps as in the following diagram:

The map we claim is a cofibration is j and the homotopy lefting problem is given
by the map ¢ and the homotopy V. If f = pogand H = Vo (f x I), then the
associated homotopy lifting problem does admit a solution F since i is a cofibration.

Next, we use the fact that — x [ preserves pushouts because it is a left adjoint,
see Theorem 2.5. Thus, the universal property of the bottom pushout face of the
cube provides a unique map ®: Y x I — Z. By construction this homotopy extends
the homotopy ¥ and we only have to verify that it indeed starts at ¢. This comes
from the fact that both ¢ and ® o iq are maps out of Y that agree on B with pog
and on X with ¢ o7. We conclude by the universal property of the top pushout face

of our cube. O

After having checked that cofibrations are stable under pushouts (sometimes

called cobase change), we verify that they are also stable under composition.

LEMMA 3.7. The composition of two cofibrations is a cofibration.
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PROOF. Let i: A — B and j: B — C be two composable cofibrations. The

result is transparent from the following diagram:

A LI > j>C

bk

AxX] —— Bx I —— Cx1

The solid arrow diagram shows which homotopy extension problem we wish to solve.
The dashed arrow G exists by the HEP the first cofibration i enjoys, then we find F'

because j also is a cofibration. O

PROPOSITION 3.8. Let A be a filtered space with UA, = A. If the inclusion
in: Ap = Ani 18 a cofibration for any n > 0, then the inclusion i: Ay — A is again

a cofibration.

PROOF. Recall that — x [ is a left adjoint, it therefore commutes with colimits.
In particular Ax I = U(A,, x ). To solve a homotopy extension property for Ag — A

we solve it for Aqg < A; and proceed inductively. O

After all these formal results we can use the elementary Example 3.3 to get a

large class of very important cofibrations.

THEOREM 3.9. Let (X, A) be a relative CW-complex. The inclusion A C X is
then a cofibration. In particular the skeletal inclusions X™ c XD gnd X™ c X

are cofibrations for any CW-complex.

PROOF. A coproduct [[S™ ! < [] D" of cofibrations is again a cofibration,
therefore the process of attaching cells yields yet another cofibration A — AU({Je")
by Proposition 3.6. We conclude by Proposition 3.8. OJ

A particular example of the above procedure is given by the inclusion of a point
in a sphere x — S™ as this map is the pushout of our prototypical cofibration

Sl s D™ along D™ — .
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4. Turning maps into cofibrations and applications

Another important feature of cofibrations is that any map can be turned into
such a nice inclusion, without changing the homotopy type of the target. With
this trick in our pocket we will be ready to come back to the CW-approximation
Theorem 3.4 and prove it is unique.

Let f: X — Y be any map. Without surprise the way to realize this is to use
the cylinder Cyl(f).

PROPOSITION 4.1. Any map [ admits a factorization X AN Cyl(f) B Y into a

cofibration 1 and a homotopy equivalence p.

ProoOF. We have already seen that the map p, collapsing the cylinder X x I onto
its base X x 0 is a strong homotopy retraction of the inclusion B < Cyl(f). The map
i is given by i(x) = (x,1) and we prove it is a cofibration by applying Lemma 3.4.
To construct a retraction Cyl(f) x I — Cyl(i), we collapse first Y x I down to Y x 0
and continue by working on X x I x I which we project onto (X x I x0)U(X x1x1I).
Since the bottom part X x 0 x I has been collapsed down to X x 0 when we started
with Y x I, we have to project X x I x 1 in two parts. The bottom X x [0,1/2] x 1
is dilated by a factor two and sent to X x I x 0 whereas the top part X x [1/2,1] x 1
is also dilated by a factor two and sent to X x 1 x I. An explicit formula could be

given, but a picture is probably more helpful. O

Our first application is to CW-approximation. We only state the absolute version
(it says that two CW-approximations of the same space are weakly equivalent) but

note, as with other results, that a relative version also holds.

PROPOSITION 4.2. Let f: Z — X and f': Z' — X be two CW-approximations
of the same pointed space X. There exists then a weak equivalence h: Z — Z' such
that f and ho ' are homotopic in the pointed category. This map h is unique up to
pointed homotopy.

PRrOOF. Since CW-approximation is done path connected component by path
connected component, we only deal with path connected spaces. We will also assume

that Z is constructed by starting with a single O-cell, this is how we have done it
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Theorem 3.4. We turn f’ into a cofibration as we have learned to do in Proposition 4.1

(using the pointed version of the cylinder Z’ x I'). Consider the diagram

Z—>X\

i

7' —— Cyl(f

Since Z© is a point and f is a pointed map we can consider j o f as a map of pairs
(Z,ZO) — (Cyl(f"), Z"). We prove now by induction that it can be homotoped into
Z', so let us assume that we have already managed to change j o f into a homotopic

map h,, which sends the n-skeleton Z into Z’. Consider next the following diagram

\/a SZ Vga Z(n) jof Z/

J l |

Vo Dot g 20 —— Cyl(f)

Here the maps g, are the attaching maps for the (n + 1)-dimensional cells and we
use abusively the same name for a map and its restriction to a subspace. For each
index o we have a relative map (D", S") — (Cyl(f"), Z').

Now we use the fact that [’ is a CW-approximation, it induces isomorphisms on
all homotopy groups. So does the homotopy equivalence r and hence the cofibration
1 is also a weak homotopy equivalence. In particular the relative homotopy group
Tnt1(Cyl(f"), Z') = 0, so that the Compression Lemma 4.7 allows us to change the
map of pairs into one to (Z', Z’) relative to S!'. The homotopies for all cells being
constantly equal to g, on the boundaries, they assemble into a homotopy on Z"+1),
from h, to a map h,.; only defined on Z"*+Y for the moment.

We define h,,1 on the entire space Z by extending the homotopy, defined now
only on Z™*t) x I, to Z x I by the HEP since the inclusion of a skeleton is a
cofibration by Theorem 3.9. The map h is then defined on the entire CW-complex
7 by setting h(z) = h,(2) if 2 belongs to the n-skeleton Z™. Since h is homotopic
to j o f, which is a weak equivalence, so if h.

We move on finally to the proof of the uniqueness of h. Suppose we have two
maps hi, he: Z — Z' such that 7 o hy and i o hy are both homotopic to j o f. There
is then a pointed homotopy H: (Z x I,z x IUZ x 0I) — (Cyl(f’), Z"). The target
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pair is composed of an inclusion which is a weak equivalence. The same argument
as above with the help of the Compression Lemma 4.7 allows us to conclude that we

can replace H by a homotopy H' entirely contained in Z’. O

We arrive at an important observation about CW-complexes. It seems up to now
that we would like to work with homotopy equivalences, but then we have only been
able to replace a space up to weak equivalence by a nice CW-complex. Since we are
interested in understanding homotopy groups of spaces, this is not such a bad trade
off, but what if we work with CW-complexes and homotopy equivalences? Henry
Whitehead realized that weak equivalences between CW-complexes are actually even

better, they are honest homotopy equivalences.

THEOREM 4.3. WHITEHEAD THEOREM. A weak homotopy equivalence between

CW-complezes is a homotopy equivalence.

Proor. Let f: X — Y be a weak equivalence between two path-connected
CW-complexes (if they are not path-connected, we deal with one component at a
time). Then both X and Y, via the identity map, are CW-approximations of Y.
The previous Proposition 4.2 tells us that there exists a map h: Y — X such that
f o h is homotopic to tdy. Let us look now at the other composition h o f. When
precomposing with f we see that f o ho f is homotopic to idy o f = f. Using again
Proposition 4.2 but this time for the CW-approximations f and f, we conclude by
the uniqueness part that f o h and idx are homotopic. Thus f and h are homotopy

inverses to each other. ]

A direct consequence is that Proposition 4.2 upgrades to a uniqueness up to

homotopy of the CW-approximation.
COROLLARY 4.4. The CW-approximation of a space is unique up to homotopy.

PROOF. We have seen that there is always a weak equivalence h: Z — Z’ be-
tween two CW-approximations of the same space X. We deduce from Whitehead’s

Theorem 4.3 that h is a homotopy equivalence. O

In the spirit of the proof of the Whitehead Theorem 4.3 here is a very useful cri-

terion to recognize homotopy equivalences. Whereas a weak equivalence is detected
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by homotopy classes of maps out of spheres, we need to allow for more spaces in the

source or in the target to detect homotopy equivalences.

PROPOSITION 4.5. A map a: A — A’ is a homotopy equivalence if and only if it
induces a bijection a*: [A', X] = [A, X] for any space X .

PROOF. If a is a homotopy equivalence, then it admits a homotopy inverse a’.
By functoriality of [—, X], we see that both composition a* o (a’)* and (a')* o a* are
equal to the identity.

To prove the converse, let us assume that a* is a bijection on homotopy classes
of maps for any space X. We will use X = A first so that the bijection a*: [A", A] =
[A, A] yields amap a’: A’ — A such that a*[a’] = [id4]. This means that a’oa ~ id,.
To conclude we have to show that the other composition a o a’ is homotopic to id .

Let us choose X = A’ this time and compute a*[aod’] = [aod’oa] = [a] = a*[id,].

Therefore [a o a’] = [id4] and we are done. O

5. Properties of cofibrations

Let us come back to cofibrations and mention a few important properties. To
show all of them would represent too much work compared to the objectives of this
course, so there is one powerful feature we will leave as a black box. Interested
students can find complete proofs in Strgm’s original work [9], tom Dieck’s book [12]
or May’s [4]. In Strem’s following article, [10] he actually proves that the category
of all spaces forms a so called model category.

We start with a strictification result. It says that one can render a homotopy

commutative triangle strictly commutative.

LEMMA 5.1. STRICTIFICATION. Let i: A < B be a cofibration and f: A — X
be a map. Assume that g: B — X is a map such that g ot and f are homotopic.

Then there exists a map g: B — X such that g >~ g and go1 = f.
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PROOF. Since goi and f are homotopic, there exists a homotopy F': Ax [ — X

from g o4 to f. Consider now the following extension problem:

A—"— B

bk

AxT 2 Bx1T

Since ¢ is a cofibration, the extension G exists. It is a homotopy that starts at g and

ends at some map ¢ such that goi = G(i(—), 1), but thisis F'(—,1) = f. O

Another useful property is that the product ¢ x C' of a cofibration with a given

space (' is again cofibration.

LEMMA 5.2. Leti: A — B be a cofibration. Then i x C is again a cofibration

for any space C'.

PROOF. A homotopy extension problem for 7 x C' into a space X corresponds by
adjunction to a homotopy extension problem for ¢ into the mapping space map(C, X).
O

We continue next with this property of cofibrations we will not prove. It is related
to the so called “pushout-product” map. Let f: A — B and g: X — Y be two maps

and consider the commutative square obtained as follows:

AXX&AXY

fol lfo

Bx X 29 Bxy

We call P the pushout of the diagram consisting of the left and top arrows.

DEFINITION 5.3. Let f: A — B and g: X — Y be two maps. The pushout
P =colim(B x X <<% Ax X 2% AxY) admits a map fOg: P — B x Y called

the pushout-product map.

When f and g are cofibrations, then the pushout product map fllg: P - BxY

is a cofibration as well, and if either f or ¢ is a homotopy equivalence, so is f[1g. Even
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in the very specific case where g = 0: {0;1} < [ is the inclusion of the boundary
of an interval, the proof is not obvious. Here the pushout is (A x I) U (B x {0;1}
and a map out of it to a space X is the data of two maps B — X together with a
homotopy A x I — X between their restrictions to A. One reason one could believe
this, is that for two maps f and g that are sub-CW-complex inclusions, the pushout-
product map is another sub-CW-compex inclusion, hence a cofibration. Anyhow, we

will use the following fact without proof and record it here for future reference.

PROPOSITION 5.4. Let f: A — B be a cofibration. Then (Ax 1)U(B x{0;1} —

B x I is a cofibration, which is a homotopy equivalence when f is so. O

We have seen that the pushout of a cofibration along any map is again a cofi-
bration, but it is not true in general that the pushout of a homotopy equivalence
along an arbitrary map is again a homotopy equivalence. It is true however when

we perform the pushout along a cofibration.

PROPOSITION 5.5. LEFT PROPERNESS. Let f: A — B be a cofibration and
a: A— A" be a homotopy equivalence. Then the pushout of a along i is a homotopy

equivalence b: B — B’.

PrRoOOF. We check that b is a weak equivalence by verifying that it induces a
bijection on homotopy classes of maps into any space X. Diagrammatically we are
looking at a diagram of the following form, where the square is a pushout square

and h: B — X is any map:

We are looking for the dashed arrow out of B’, and for that we will first find the
other dashed map k out of A’ so as to be able to use the universal property of the
pushout. We do not only need to find this map ¢, we have to show it is unique up

to homotopy.
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We start with the surjectivity of b*: [B’, X] — [B, X]. Since a is a homotopy
equivalence, we know that a* is a bijection, so there exists a map k: A" — X such
that a*[k] = [hoi]. By the Strictification Lemma 5.1 we can modify h up to homotopy
for a map h’ such that koa = h' oi. Now that the diagram commutes strictly we
obtain from the universal property of the pushout a unique map ¢: B’ — X making
the whole diagram commute. In particular v*[¢] = [¢ o b] = [h'] = [h] and we are

done with surjectivity.

We move on to prove injectivity. We first deal with the case when a is not only a
homotopy equivalence, but also a cofibration. Assume thus we are given two maps
¢,0': B" — X such that the composition £ o b and ¢’ o b are homotopic. There exists
thus a homotopy H: Bx 1 — X from £ob to #'ob. We construct the pushout-product

maps alJ0 and b1, let us visualize the spaces P and () on a cubical diagram:

AJTA > Ax I
ixT

illé

alJa BHB » Bx 1
~ io

ATTA > P

i1l ) \ 1

BB > ()

The left hand side face is a pushout square because it is coproduct of two copies of
our original pushout square defining B’. So are the front and back face as we define
the spaces P and () in order to have this. Composition of pushouts yields another

pushout so that the square

AJ[A —— Bx I

e |

AT[A —— Q
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is a pushout square as well. Finally, from this last pushout and the one defining P
we deduce that the right hand side face is again a pushout square. Let us compose

this last one with the pushout product maps:

AxT N RSy AN

l@'xl

Bx1T

Q 9% B x T

g

We know that taking the product with I converts pushout squares into pushout
squares, so the large rectangle is a pushout. The same argument as above shows
now that so is the right hand side square. We started with a homotopy H on B x [
between two maps £ob and £ ob. By construction of () we have thus an induced map
H': @Q — X. Now Ho(ixI) defines a homotopy on A and since a x [ is a homotopy
equivalence, we know that [A" x I, X| = [A x I, X]. This homotopy corresponds thus
to a homotopy K: A" x I — X such that Ho (i x I) ~ K o (a x I).

We have seen in Lemma 5.2 that a x I is a cofibration, so we can apply the
Strictification Lemma 5.1 so as to change K up to homotopy and get a strict equality

Ho(ix1I)= Ko (axI). We have now a commutative diagram

P—— A x 1T

To verify that it is indeed commutative we use the universal property of the pushout
P and verify the restrictions to A'[[ A’ and A x I agree. On the coproduct we find
ot [] ¥ oi" and on the cylinder we get H o (i x I). Our previous work showed that
the square above is a pushout square, so the homotopy H is uniquely determined by

K and H'. This is precisely a homotopy from ¢ to ¢’ so we are done.

Done? Not quite, we have only solved the problem when the homotopy equiv-
alence a was a cofibration. In general we can reduce to the previous situation by

factoring a as A < Cyl(a) & A’. As we know how to solve the problem for the
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inclusion into the cylinder, we are left with the case of a strong homotopy retrac-
tion. We have a cofibration A’ < A” (the inclusion into the bottom of the cylinder)
followed by the collapse map p: A” — A’. Taking the pushout along a cofibration
A" — B’ yields first a homotopy equivalence B’ — B” by the previous case, and then
a retraction B” — B’ since the pushout of the identity is the identity. Thus also
B” — B’ is a homotopy equivalence by the recognition principle Proposition 4.5.
Indeed we have a factorization of the identity [B’,X]| = [B",X| — [B’,X] by a

bijection followed by ... another bijection. This time we are done! O

REMARK 5.6. This last part about arbitrary homotopy equivalences is not quite

correct. I am not sure how to fix it at the moment.

6. Homotopy pushouts

Let I be the category with three objects and two non-identity morphisms 2 <
0 — 1 so that functors F': I — Top are pushout diagrams. We have an adjunction
colim;: Top! < Top: ¢ where c is the constant diagram functor sending a space X
to the pushout diagram X = X = X. Then, for any pushout diagram F', maps of

spaces
colim;F — X

correspond to natural transformations of diagrams h: F© — ¢X. This works well

categorically, but not so much when we add homotopy to the picture.

ExAMPLE 6.1. Consider the following natural transformation of pushout dia-

grams n: F' — F’ as described by the following (strictly) commutative diagram

Dn i Snfl i Snfl

et

* — STk

All vertical maps are homotopy equivalences, so the natural transformation n de-
serves to be call a (pointwise) equivalence of pushout diagrams. However, when
taking pushouts, 1 induces a map S™ — * which is not anymore a homotopy equiv-

alence.
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This problem motivates us to adapt the construction of pushouts so as to get
a coherent homotopy type, one which is homotopy meaningful, i.e. invariant for

equivalent diagrams.

DEFINITION 6.2. Let F = (C & A EN B) be a pushout diagram. Turn f

and ¢ into a cofibration followed by a homotopy equivalence A — B’ — B and
A — C" — C respectively, The homotopy pushout of F is the colimit of the diagram
F' = LAah B'). We write hocolim; F" for the colimit colim;F".

REMARK 6.3. By construction we have a natural transformation F’ — F'| there-
fore an induced map n: hocolim;F' — colim;F'. There is a whole theory of so called
total left derived functors in homotopy theory that allows one to prove that not is the
homotopy colimit a homotopy invariant functors, i.e. its value does not depend on
the choices we made to replace the maps f and g by cofibrations and it sends homo-
topy equivalent diagrams to homotopy equivalent spaces, but it is in fact the “best”
such functor, by which we mean that any natural transformation from a homotopy

invariant functor to the colimit actually factors through 7.

We continue with a few examples and models that are good to have in mind

when thinking about homotopy pushouts.

EXAMPLE 6.4. The double mapping cylinder of the pushout diagram is the stan-
dard model for a homotopy pushout. Given a pushout diagram F' = (C ERRER B),
we use the mapping cylinder to turn both maps into cofibrations so as to obtain
F' = (Cyl(g) ¢ A= Cyl(f)).

For example, when C' = % we get the pushout of C A Zalk Cyl(f)). This is a
version of the mapping cone of f, where the cone on A is a cylinder on A on which
we glue a cone. Up to reparametrization, this is C'(f), also called the homotopy
cofiber of f.

When also A = %, we get the pushout of C'A RN C A, which is the suspension
Y A. Depending on the category we are working in, we get the unreduced suspension,

or the reduced suspension (for pointed spaces).

Our main result in this section is that homotopy pushouts are homotopy invari-

ant. For this we need two lemmas.
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LEMMA 6.5. Let us consider a diagram where the right hand side square is a
pushout:

Ag < AO > AQ

L

Ag Al > A12

AN

and complete it to a cube by constructing the pushouts Asg of the top row, and A,

of the bottom row. Then the front face

Ag —_— A23

L

/ /
A3 A23

1$ also a pushout square.

PROOF. We obtain a unique map A3 — Aj; making the whole diagram com-

mute, so the situation makes sense. Composing the original pushout square with the

bottom pushout square yields a pushout square

A0—>Aé

o

Since the top face is also a pushout square, so is the front face.

The next lemma is already closely related to our main theorem.

LEMMA 6.6. Let D' be the pushout of a diagram C' L A< B and factor f
as A — C = C'. The homotopy equivalence v: C — C" induces then a homotopy

equivalence of pushouts D = colim(C <— A — B) — D'.
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Proor. We apply Lemma 6.5 to the following cube

.
2\

B

C « s D

Y
A s B 5
f ~ ~
'« s D'

and deduce that the front face is a pushout square. By left properness, Proposi-

tion 5.5, we conclude that ¢ is a homotopy equivalence. [

We are ready to prove the homotopy invariance of the homotopy pushout con-
struction: it does not depend on the choice of the replacement of our maps by a
cofibration. In fact, thanks to the previous lemma, we only need to change one

single map by a cofibration.

THEOREM 6.7. HOMOTOPY INVARIANCE OF PUSHOUTS. Consider a natural

transformation of pushout diagrams which is pointwise a homotopy equivalence:

Assume that i and i are cofibrations. Then §: D — D’ is a homotopy equivalence.

PROOF. Factoring simultaneously f and f’ into a cofibration followed by a ho-
motopy equivalence, we can use Lemma 6.6 so as to reduce the proof to the case

where all horizontal maps, including f and f’ are cofibrations. Then we factor the
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vertical natural transformation by inserting the pushout P of ¢ and a:

C<f*Afi>B

= :la( :lw

C’ r, sy P |8
Cl

Al
A/
We observe that the pushout of o along the cofibration i is again a homotopy equiv-

AN

’ .
/P Ny -

i
<

alence we called 7 in the diagram above. From the universal property of the pushout
P we have a unique map P — B’ which is also a homotopy equivalence because 3
and 7 are so.

We apply now Lemma 6.5 and construct the pushout ¢ of the middle row and

conclude that the front face
C —— D

C'—Q
is also a pushout square. By left properness the comparison map D — (@ is a
homotopy equivalence. Moreover Lemma 6.6 implies that so is the map @ — D'.

The composite D — D’ is thus a homotopy equivalence as well and we are done. [

REMARK 6.8. It does not matter whether we compare two pushout diagrams
having a cofibration on the same side, like we stated it in the theorem, or on different
sides. The proof goes through in the same way. Let us also say that formally the
homotopy invariance of the homotopy pushout construction is equivalent to left

properness.

7. Playing with homotopy pushouts

To illustrate the way one can use homotopy pushouts, we will consider in this
section “pushout diagrams of pushout diagrams” and provide two models to compute
them. Sometimes one is interesting and the other one is easy to compute! Let us
start with a property about strict colimits. Later we will prove the analogous version

for homotopy colimits.
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PROPOSITION 7.1. FUBINI FOR COLIMITS. Let I and J be small categories and
F:1IxJ—Top be a functor. Then

colim;¢ s[colim; F'(—, 7)] ~ colim;e[colim ; F' (i, —)]

PrROOF. Both colimits of colimits are models for the colimit of F', taken on the

product category I x J, they verify the universal property. [

EXAMPLE 7.2. Let A C X and B C Y be inclusions of pointed subspaces. Then
(XVY)/(AV B) = X/AVY/B. To see that we draw a three-by-three diagram
corresponding to a pushout of puhsout diagrams and indicate by squiggly arrows

the computation of the corresponding horizontal pushouts:

* * * NS
| [ [
B < * > A ~~ny AV B
| | |
Y +—— %« —— X ~s X VY

Hence the vertical pushout of these horizontal pushouts is the quotient (X VY')/(AV
B). If we start instead with vertical puhsouts we find the diagram Y/B + x — X /A
whose pushout is X/AVY/B.

We wish to obtain an analogous result for homotopy pushouts and focus therefore
on the case I = J =2 + 0 — 1. A diagram indexed by I x [ is therefore of the

form:

Aqo Aqo > A

[

Apg < Ao > Aot

I

Agy < Aso > Aoy

A

In order to compute homotopy pushouts we need to turn all maps into cofibrations
(so we can keep Ay unchanged), but as we will also iterate, let us make the corner
spaces even fatter so as to contain nicely the pushout of each square. More concretely

we turn first every map a: Agy — A;;, with ¢ or j equal to zero, into a cofibration
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followed by a homotopy equivalence:
Ago = Cyl(a) = A;j = Ay

We obtain an equivalent diagram with a natural transformation to the original dia-

gram made of homotopy equivalences pointwise:

A12 — Allo — All

[

/ !
Ay Agp — Ay

I

/
A22 — AQO E— Agl

As mentioned above this would be good enough to compute either horizontal pushouts
or vertical ones, but we let F;; be the pushout of the square with terminal corner
A;;, obtain a map P,;; — A;; by the universal property, turn it into a cofibration
followed by a homotopy equivalence P; — Aj; = A;;. We finally obtain another
pointwise equivalent diagram replacing A;; by Aj; for ij # 0.

Let us look more closely at horizontal pushouts (the case of vertical pushouts is

completely analogous). We call A; the pushout of the diagram A;s <= Ao — Aj1.

LEMMA 7.3. In the above situation taking horizontal pushouts induces cofibrations

Ag — A; fori=1,2.

PRrOOF. Instead of checking the HEP by looking at cylinders on all spaces that
are involved, we look at the equivalent problem by adjunction and will construct an
extension to map(/, X) = PX, the space of paths in X. Let us look for example
at the map Aq — A;. To show that it is a cofibration we consider a homotopy

extension problem of the following form, where we also draw the horizontal pushout
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constructions:

Ay < > Ajy

A12 < > Al > PX

/7\
7/
7/
7/
7/
/
4 4 y
Aoo > Aoy a evo
\ //
7/
7/
7/
7
7/
~ v g
7 7
A02 > AO s X

By precomposing the HEP to Ay; we find an extension Ay, — PX since the vertical
maps A;; — Agi is a cofibration. By commutativity of the whole diagram this
homotopy, together with the one we already have A5 — PX yield a map Fy, — PX
out of the pushout of the left hand side face.

Now we use the assumption on our diagram that the map Fyy < Ago is a cofi-
bration as well. This gives us an extension Ags — PX which is compatible with the

previous homotopies. Since A is the pushout of the bottom face of the cube, we
finally find the desired (dashed) extension Ay — PX. O

THEOREM 7.4. FUBINI FOR HOMOTOPY PUSHOUTS. Let Aqe: I X I — Top be a
functor. Then
hopo,¢;[hopo; A,;] =~ hopo,c;[hoporA;]

PROOF. By replacing the diagram as explained above we find ourselves in a po-
sition where all homotopy pushouts appearing in the formula we wish to prove are
given by strict pushouts. The fact that the second round of homotopy pushout are
also strict ones is given by the previous Lemma 7.3. We can then apply Proposi-

tion 7.1 to conclude. O

We end this section with one simple, but useful trick.

ExaMPLE 7.5. Consider a pair of composable maps A s B % ¢. We do not

require anything about these maps. We claim that there is always a homotopy cofiber
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sequence
C(f) = Clgo f) = C(9)
where the map « is induced by ¢g. In other words we claim that the homotopy cofiber

C'(g) is homotopy equivalent to the homotopy cofiber of «. For this, no surprise, we

use a 3 x 3-diagram:

* * * BUVIIIIII g
1 T

* 4 A » B ~rnns C(f)
| ’

* < A > C ~~r C(go f)

The squiggly arrow indicate now homotopy pushouts and we can compare the ho-
motopy cofiber of a by computing the same homotopy type with our Fubini The-
orem 7.4. We get, up to homotopy a diagram % < * — C(g) whose homotopy
pushout is C(g).

8. Fibrations

Now that we have studied cofibrations and played with homotopy pushouts, we
come back to the study of the category of spaces and dualize what we have done for
cofibrations. Whereas cofibrations can be thought of as nice subspace inclusions, we
think of fibrations as nice projections. The proofs in this sections will be more like
sketches of proofs since they are formally dual to the ones we have written down for

cofibrations. We start with the dual of the HEP.

DEFINITION 8.1. A map p: E — B has the homotopy lifting property (HLP) for
the space X if for any map f: £ — E and homotopy H: X x I — B starting at
po f there is a homotopy F': X x I — F lifting H and starting at f.

Here is a diagram that explains better than words the lefting problem we wish

to solve:
x— 4 F
7
b
X x 1 B

!
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DEFINITION 8.2. A map p is a (Hurewicz) fibration if it has the HLP for all
spaces X.

ExXAMPLE 8.3. Let X be a non-empty space and py: X X B — B be the projection
onto the second factor. This is a fibration since a lift of a homotopy X x I — B

starting at poo f can always be obtained by defining the lift component by component.
We just set F(x,t) = (p1(f(x)), H(z,t)).

REMARK 8.4. The three classes of maps, homotopy equivalences, (Hurewicz)
fibrations, and (Hurewicz) cofibrations, equip the category of topological spaces with
a so-called Quillen mode structure. It is called the Strgm or the Hurewicz model
structure (I prefer the first since Strgm was the one to prove it is a model structure in
1972, [10]). There is another model structure for weak equivalences, Serre fibrations,
which enjoy the HLP for all cubes I", but are not required to have it for all spaces,

and cofibrations are retracts of relative cell complexes.

Just like for cofibrations one does not need to establish the HLP for all spaces,
one universal space is enough. We used a cylinder for cofibrations, here we need a
path space P(p) = {(e,w) € E x PB | p(e) = w(0)}. In other words P(p) is the
pullback in the following diagram and the universal property explains it comes with

a map from the path space PE = map([, F):

P(p) —— FE

bS]

PB ——

evg

ProproOSITION 85. A map p: E — B is a fibration if and only if the map
r: PE — P(p) admits a section s: P(p) — PE.
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PrRoOOF. By adjunction we see homotopies in E as maps into PE, so we can

rewrite the HLP as follows:

PE -+ E

b b

PBe—'Uo>B

Since evgo H = po f we see that the homotopy H starts at po f. If p is a fibration,
then F' must exist when X = P(p), we call s = F. Conversely if s exists, then we
can choose ' = soh, where h: X — P(p) is the map given by the universal property
of the pullback for f and H. 0

PROPOSITION 8.6. Fibrations are stable under composition and pullback.

PROOF. Let us simply draw the diagrams that explain the arguments behind

both properties:

X —7Z X s Y y B
- R PPt
‘\lq iol A_.~""'./’,/’p/,/ D
i 5 X x [ = s B’ s B
RS b
X x 1 — B

In the first diagram the maps p and ¢ are composable fibrations, in the second one
the map p’ is the pullback of p along b. In both cases one constructs the desired lift
in two steps, first the dashed arrow, then the dotted one. O

One new feature we see in this section is due to our previous study of cofibrations
and the adjunction with mapping spaces. As usual, but let us recall this here since
it has been some time we have not said this, this only applies to locally conpact and

Hausdorft spaces.

PROPOSITION 8.7. Let i: A — B be a cofibration and Z be any space. Then
i*: map(B, Z) — map(A, Z) is a fibration.
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ProoOF. By adjunction the lifting problem on the left corresponds to the exten-

sion problem on the right:

X —L s map(B, 2) XxA—2s XxAxI

1
iol {L -7 li* X xiJ: l

X x I —— map(4,7) XXxB— XxBxI

Since 7 is a cofibration, so is X x 7. Therefore the extension H exists in the right
hand side diagram. It corresponds to the adjoint map, abusively written H on the
left. OJ

Important examples of such fibrations are evaluation maps. We have already met

them, but now we know they are fibrations.

ExAMPLE 8.8. The inclusion 9 C I and the inclusion 0 C I are cofibrations.

The evaluation maps evy: map(/, X) - X ~ map(0, X) and
evor: map(l, X) » X x X

are therefore fibrations. The second one corresponds to the evaluation at 0 and 1,
so for any path w: I — X, we have evg; (w) = (w(0),w(1)).

When (X, ) is a pointed space we can pullback evy; along the inclusion X =
9 X X — X x X and obtain by stability under pullbacks, Proposition 8.6, that
evy: map, (I, X) — X, the evaluation at 1 from the pointed path space (of those
paths in X starting at the base point) is again a fibration.

Just like the mapping cylinder helped us to replace an arbitrary map by a cofi-
bration, dually path spaces help us to replace any map by a fibration.

PROPOSITION 8.9. Let f: X — Y be any map. Then there exists a factorization

f: X P(f) LY into a homotopy equivalence followed by a fibration.
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PROOF. Let us construct the pullback P in the following diagram

pP— PY

q l levm

XXYWYXY

By construction of a pullback, the points of P are triples (z,y,w) € X XY x PY
such that evy(w) = (f(x),y). This means that w(0) = f(z) and w(l) = y. The
extra information in the second component is thus superfluous, since it is determined
by w, so P is actually homeomorphic to P(f), the subset of X x PY of pairs (z,w)
such that w(0) = f(x).

The pullback of a fibration is a fibration by Proposition 8.6, s0 ¢': P(f) = X xY
is a fibration. Explicitely ¢/'(z,w) = (z,w(1)). To see that we have first to use the
above homeomorphism, i.e. identify (z,w) with (z,w(1),w) € P and project to the
first two components. The projection X xY — Y is also a fibration, see Example 8.3,
so the composition ¢: P(f) Y X XY 5Yis again a fibration by Proposition 8.6.

To find the desired factorization we finally choose X — P(f) to be given by
x — (2, cp(z)). This a homotopy equivalence juste like the inclusion Y — Cyl(f) is
one dually. For an explicit proof, you can have a look at [12, 5.7]. The homotopy
inverse is given by the pullback of the evaluation fibration evy: PY — Y along f. 0O

We will not prove all the facts we have established for cofibrations: right proper-
ness, homotopy pullbacks, homotopy fibers, Fubini Theorem for homotopy pullbacks,

etc, but you can easily imagine what this is all about.

9. Properties and examples of fibrations

Our aim in this section is to relate the long exact sequence in homotopy of a
pair with the homotopy groups of base space and total space of a fibration. In order
to do so we have to understand better the preimages of points by a fibration. We
follow Bredon’s treatment here, see [1, Section VII.6]. We start with a lemma about

a kind of relative lifting property.
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LEMMA 9.1. Let p be a fibration. Then any solid arrow commutative diagram

D”xOUS”‘lxI—;E

5
-
-
-
-
- p
-
-
-~
~

D'"'x] —— B

admits a dashed lift.

PROOF. The pair (D™ x I, D" x 0 U S"! x I) is homeomorphic, as a pair, to
(D™ x I, D™ x 0). Explicit formulas would not be enlightning, so let us imagine the
case n = 2 where we have a cylinder on a circle together with the bottom lid as

subspace of the solid cylinder. The homeomorphism is done in three steps as drawn
by Bredon in his book [1, Figure VII-6]:

T

||| |/ II-'I .'I : : II'.
1 W |'|'II||"| I!g?'.{ )! W7

ML

We first shrink the bottom of the cylinder to say half of its diameter, obtaining a
truncated cone. Next we keep the small solid cylinder of radius 1/2 fixed and project
the remaining part down so that the whole vertical boundary corresponding to S* x I
is now lying on D? x 0, as an annulus of radius 1/2. Finally we inflate this reversed
truncated cone to get back to D? x I. The original subspace corresponds precisely

to D? x 0. O

As a consequence we can use an induction on cells to obtain a more general

version of this relative HLP.
PROPOSITION 9.2. Let p be a fibration and X CY be a sub-CW-complex. Then
any solid arrow commutative diagram

YXOUXXI—;E

-
-
-
- p
-
-
-
-

Y x] — B

admits a dashed lift.
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The reason we are interested in this is that we obtain more general lifting prop-
erties than just for homotopies. Let us consider a strong deformation retract of
CW-complexes. This means that we have a subcomplex i: X < Y together with a
retract r: Y — X such that r o = idx and 7 o r ~ idy relative to X. So there is a
homotopy F': Y x I — Y starting at the identity ¢dy and ending at ¢ o » which on
X x Iis F(z,t) =z.

THEOREM 9.3. Let p be a fibration and X CY be a strong deformation retract

of CW-complexes. Then any solid arrow commutative diagram

admits a dashed lift.

PrRoOOF. We insert intermediate steps in the diagram above:

Xx0 s XxTuy x1 2% x L,

Y x0 ——— VYV xI- s Y )
20 F g

The solid arrow diagram commutes since F'is a relative homotopy, the top composi-
tion is f and the bottom composition is g because we chose F' to start at ¢dy. Now,
the dashed arrow H exists by Proposition 9.2 and we observe that H o1y solves the

lifting problem. OJ

This property is close to the model categorical property that characterizes fi-
brations: they enjoy a lifting property with respect to all cofibrations that are also
equivalences. For us it will be particularly helpful to compare relative homotopy

groups.

THEOREM 9.4. Let p be a fibration and By C B be a subspace containing a
chosen base point by. Let Ey = p~'(By) C E and fiz a base point eq € p~*(by). Then
p induces an isomorphism p,: m,(E, Ey) — m,(B, Bo).
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Proor. We prove that p, is surjective and injective. For surjectivity, let us
consider a map b: (D", 8" ') — (B, By) representing a class 8 € m,(B, By). The

dashed lift exists in the following diagram

*« —2 s F

f P

[ 2]

D" /—b> B
since the inclusion of a point in a disc is a strong deformation retract. We know that
b(S™1) is contained in By, so f(S™!') must lie in the preimage under p, i.e. Fj.
The base point has been taken care of, so we found a preimage [f] of (.

We move now to the injectivity. Let f, f be two maps of pairs such that po f ~
po f’ via a homotopy F': D" x I — B restricting on S"~! x I to a homotopy into
By. The data we have here, namely f and f’, the base point eg and the homotopy
F' correspond to the solid arrow diagram below:

(D" x O1) U (x x 1) LH %0,

j H -~
s p
\
7

D" x I - B

F
The left hand side inclusion is a strong deformation retract, so that the dashed lift

exists by Theorem 9.3. This is a homotopy of pairs. [

DEFINITION 9.5. Let p: E — B be a fibration and by € B a (base) point. Then
Fy, = p~ (o) is the fiber over by.

COROLLARY 9.6. Let p: E — B be a fibration and F = F,, = p~*(by) be the
fiber over a point by € B. Then m,(F,F) = m,B and in particular the long exact

sequence for the pair (E, F') can be rewritten as
s = T F LN T B LA Tpi1 B = m, F 1, F— ..

PRroOF. For this sequence to make sense we choose compatible base points fy €
F, ey € E. The isomorphism is a direct consequence of Theorem 9.3 for the subspace
By = by. Then we identify the homomorphisms in the long exact sequence of a pair.
First the composite

m(FE,e0) = mo(E, F) LN (B, bo)
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is the map induced by p and second the connecting homomorphism can be described
as follows. Let 3 € m,,1B be represented by a map b: S"*' — B. We precompose
it with the map c: D"t — S"*! collapsing the boundary S™ to a point and lift it
to a map D"*!' — E such that S™ is sent to F. This is well-defined up to homotopy
by the previous theorem. Then 0f is obtained by restricting precisely to S™, this
yields a map S™ — F' representing 0. 0J

We conclude this section and this long chapter with an example and a remark.

EXAMPLE 9.7. The Hopf map n: S* — S? is a so-called “fiber bundle”, i.e. a
map which is locally trivial in the sense that when restricted to each hemisphere in
S? the Hopf map is homeomorphic to a projection S' x D2 — D%. Indeed we can

view S? as a union (S x D%) Uggixgny (D? x S

A fiber bundle is a (Serre) fibration and we see here that all fibers are circles, so

there is an associated long exact sequence in homotopy:
s — 7Tn+151 l—> 7Tn+153 p_) 7Tn+152 — Wnsl l—> 7Tn53 — ...

We know that all homotopy groups of the circle are trivial, except m.S' = Z. There-

[

fore m,5% = 7,52 for all n > 3. In particular we see that | 7352 = m359% = Z| and

this infinite cyclic group is generated by the homotopy class of the Hopf map [n].

REMARK 9.8. At the beginning of the chapter we learned how to associate a long
exact sequence to an h-exact sequence and now we just proved that any fibration
gives rise to a long exact sequence in homotopy. What is the link between these two
types of exact sequences? Maybe it is already clear that both are the same, but let

us make the comparison explicit. We compare the fiber of a fibration p: £ — B
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with the homotopy fiber F'(p) as follows. Let us assume that the base space B is
connected, otherwise we deal with one component at a time, and then fix a base
point by (we will see in an exercise that this is a harmless restriction since all fibers
have the same homotopy type).

In general, to replace a map f: X — Y by a fibration we take the mapping space
PY = map(/,Y) and pullback the evaluation at 1 along f to get a mapping path
space P(f) = X xy PY, homotopy equivalent to X. The homotopy fiber F'(f) of f
is the fiber of the map P(f) — Y sending a pair (z,w) to w(0). In other words, the
homotopy fiber is the subspace of X xmap(/,Y") of pairs (z,w) such that w(1) = f(x)
and w(0) = yo. So F(f) is the homotopy pullback of E & YV <% map,(I,Y). In

our situation we have therefore:

E % B« bo oy F
E—— << map,(I, B) ~~ny F(p)

the squiggly arrows indicate the pullback operation. Remember that the path space
map, ([, B) is contractible so all vertical maps are homotopy equivalences. Each
row is a pullback diagram in which one map is a fibration, p by assumption and
the evaluation ev; by Example 8.8. By homotopy invariance of homotopy pullbacks
we conclude that F' ~ P(f), the fiber of a fibration is homotopy equivalent to its
homotopy fiber.



CHAPTER 5

The Hurewicz homomorphism

This chapter is devoted to our final “big” classical result in homotopy theory. It
relates homotopy groups with homology groups. Since we have been dealing with
homotopy groups and more generally homotopy classes of maps, we need to come
back to the construction of (cellular) homology groups and recast some known results

in the light of the homotopy theory we have seen up to now.

1. CW-complexes and homology

Later in this chapter we will use cellular homology and thus CW-complexes,
but if we wish to understand general results about all spaces, we need to clarify
the relation of homology with respect to weak homotopy equivalences. We know of
course that homology groups are homotopy invariants. The next result is also due
to Whitehead, it says that homology is a weak homotopy invariant. If we do not
indicate the coefficients it will mean that we are considering homology with integral

coefficients.

PROPOSITION 1.1. Let f: X — Y be a weak homotopy equivalence. The induced
map f. = H,(f): H,X — H,Y is then an isomorphism.

PROOF. We turn f into a cofibration i: X — Y’ = Cyl(f), which is also a weak
homotopy equivalence. The long exact sequence in homology of the pair (Y’, X)
shows that it is enough to compute H,(Y’, X) and prove they are all zero. We
follow the strategy in Hatcher’s book [3, Chapter 2|, probably well known from the
algebraic topology course.

A homology class in represented by a relative cycle a = > k;o;, where the
o;: A" — Y are n-simplices whose boundaries assemble to a chain da in X. Con-
struct now a simplicial complex K by assembling all A™’s, identifying faces on which
the corresponding o;’s coincide. By the universal property of the quotient, we have

85
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then an induced map o: K — Y. The faces of simplices we have used to assemble
K do not contribute anything to da;, but there are other faces appearing in it. We
use them to construct a subcomplex L C K. Thus o can be considered as a relative
map (K, L) — (Y', X). Moreover, using the obvious singular simplices in K we find
a cycle a € C,,(K, L) such that o oa = a.

We know that 7,(Y’, X) = 0 and use next the Compression Lemma 4.7, since
(K, L) is a finite relative CW-complex, to find a homotopic map of pairs 7 ~ o
factoring through (X, X). Since o and 7 are homotopic, they induce the same map

in homology, so o.[a] = T.[a] = 0 because H, (X, X) = 0. O

This justifies that when studying not only homotopy groups, but also homology
groups, we might as well concentrate on CW-complexes. Let us end this short

introductory section with a result on the skeleta of such a CW-complex.

LEMMA 1.2. Let X be a connected CW-complex, n > 0, and X" the (n + k)-

n+k)

skeleton for some integer k > 1. The inclusion i: X( — X induces isomorphisms

T, X R) > X and H,X®HH >~ [0 X.

PROOF. The pair (X, X™+*)) is (n 4 k)-connected as we only attach cells of
dimension > n + k to the skeleton to construct X. We see then from the long exact
sequence in homotopy that we have an isomorphism for all homotopy groups up to
degree n + k — 1, in particular on 7,.

For homology we can use cellular homology instead of singular homology. Up to
degree n + k the cellular chain complexes of X and X %) are isomorphic since they
only depend on the number of cells and their attaching maps: C¢(X) & @, cosZ =
Ceell (X +R)) for 4 < n+ k. Here as well we obtain an isomorphism for all homology

groups up to degree n + k — 1. O

EXAMPLE 1.3. Let n > 2. We view S = ¢® U e” as a CW-complex with two
cells, and then S™ x S™ as a CW-complex with four cells e® U e U " U 2", where
each cell corresponds to a product of cells. The (2n — 1)-skeleton (S™ x S™)n=1)
is thus the wedge S™ v S™. We learn from the previous lemma that 7, (S™ V S™) =

T (S™ x S™) =2 Z @ Z (something we have also seen in an exercise).
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More precisely we can identify concrete generators of this free abelian group of
rank two, namely the wedge summand inclusion i;: S™ < S™ V S" and iy: S™ —
S™ Vv S", since their composition into the product yields the inclusion into the two
factors of the product, which we know are generators of m, (S™ x S™).

The same computation holds in homology, H,,(S™V S™) = H,(S™ x S") 2 Z®Z.
More generally this argument shows that both the first non-trivial homotopy group
and the first non-trivial reduced homology group of an arbitrary wedge V;S™ are
isomorphic to a direct sum ¢;Z. The wedge summand inclusions provide explicit
generators for m,.

The proof goes by induction for a finite number of spheres. For an infinite
number of spheres, the computation can be done directly for H,,, but we need to use
the compactness of S™ and notice that any map S™ — V.S™ factors through a finite

wedge.

Let us finally record a computational simplification which is probably clear at

this point, but still useful.

REMARK 1.4. Let X be an (n — 1)-connected space. Then CW-approximation
allows us to replace X by a weakly equivalent CW-complex constructed from a point
ba attaching cells of dimension > n. We will thus often assume that such a space

can be chosen, up to weak homotopy equivalence, so that
X0 =, X = vsp, X0 = (visP) U (Ugelth), -

In particular, if f;: S7 — VS}' is the attaching map for the j-th (n + 1)-dimensional
cell, this means that X ™+ is the pushout of the diagram

+1 f=Vfi
\/jD}l — \/jS;L E— \/len

2. The Hurewicz homomorphism

We know that H,(S™;Z) = Z and fix a generator u, for this group by choosing
first a specific representative for u; € Hy(S';Z). Our model of the circle is the unit
circle in C, the unique O-cell is 1 and the 1-cell given by a map u: Al — St going

around the circle counterclockwise. This map u is a cycle the singular chain complex
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and it represents u;. Excision induces isomorphisms H,(S';Z) = H,,(S™;Z) and we

choose u,, to be given by the image of wu.

DEFINITION 2.1. Let X be a (pointed) path-connected space. The Hurewicz
homomorphism Hu: m,X — H,(X;Z) is defined by Hu(«) = a.(u,) where a rep-
resentative a: ™ — X induces a map a,: H,(S™;Z) — H,(X;Z).

We have been sloppy about various points here, but they do not matter. First
we have not specified the base point, but the change of base points yields isomorphic
homotopy groups. Second we have abusively written « for a homotopy class and
a representative. Homotopic maps induce the same homomorphism in homology,
so different representatives yield the same element Hu(a). Homotopy groups and
homology groups are functors, we check next that the Hurewicz map defines a natural

transformation.
PROPOSITION 2.2. The Hurewicz homomorphism is a natural.

Proor. Compatibility with the group law comes from the definition of the sum
for homotopy groups and the fact that the homology of a wedge is a direct sum by
excision. Let a, f: S™ — X be two (pointed) maps representing homotopy classes.
Their sum « + f is given by the composite

gn 2k, gry gn 20 xvx Y x
Applying homology gives therefore a composition

H,(S™) — H,(S™) & H,(S") — H,X & H,X — H,X

through which our generator w, goes to (u,,u,) first, then (Hu(a), Hu(S)) and
finally the sum Hu(o)+ Hu(B). This shows Hu is a homomorphism (recall that the
direct sum @ is the coproduct in abelian groups).

Let f: X — Y be a pointed map. We have to show that the following square is

commutative:
X s H,(X;7)

f*l lHn(f)
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To do so we choose a map a: S™ — X and chase its image through the diagram:

Hy,(f)[Hu(e)] = Hy(f)[Hn () (un)] = Ho(f © @) (un) = Hu(f o a)
where we used functoriality of homology. (Il

Our main theorem in this section provides an isomorphism between the first non-
trivial homotopy group and the first non-trivial reduced homology group of a simply
connected space. We already know this is true for a sphere, but we check now that
the Hurewicz homomorphism is this isomorphism. The idea of the proof was already
present in Hopf’s work. Most of the proof we have already seen in exercises, we write

it down here for completeness.
LEMMA 2.3. Letn > 1. Then Hu: m,S™ — H,(S™;Z) is an isomorphism.

PRrROOF. We show that every homotopy class of a map f: S™ — S™ is a sum of
maps of degree 1. So let us consider an arbitrary map f: S™ — S™. By the PL
approximation Lemma 2.1 we change f up to homotopy for a map g which is PL on
a polyhedron K C S™ = x U ¢e" and there is a non-empty open subset U C e" such
that f;'(U) c K. If the image of g does not contain the whole subset U, then, just
like in the proof of the cellular approximation Theorem 2.2 we choose a point x in
U and not in the image. Hence g factors through S™\ {z} which is contractible and
so g, and therefore f as well, are nullhomotopic.

Let us assume now that ¢ is surjective on U so it is an isomorphism on all
simplices in K. We choose again a point x € U but this time we pick a neighborhood
x € V C U, homeomorphic to an open ball and such that g=*(V') consists of finitely
many homeomorphic balls V; containing each one preimage x; of x. The crucial step
is to notice that the collapse map c: S™ — S™/(S™\ V) is a homotopy equivalence
(like collapsing a hemisphere). Thus ¢ o g can be used instead of g to conclude the
argument.

This map sends S™ \ (UV;) to the base point, so it factors through the quotient
S/(S™\ (UV;)) ~ vS™. On each V; we had a homeomorphism given by an invertible

matrix of determinant 1, so that we have now an induced map S]* — S™ of degree
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d; = 1. All together we have replaced f by a homotopic map
S — vsr Y v, Yy gn

The isomorphism 7,S™ — Z is given by [f] — >_d; = d. Now that we know that
both 7,5™ and H,,(S™;Z) are isomorphic to Z it is sufficient to look at the image of
the generator through the Hurewicz homomorphism. We choose our favorite degree
one map, namely the identity, and compute Hu([idgn]) = (idgn)«(u,) = u,. This is

an isomorphism. O

In algebraic topology we had seen that any degree can be realized by a self
map of S', by z — 2%, and suspending this map yields a degree d map on higher
dimensional spheres. What we have sketched above is that any self map of the sphere
is homotopic to such a map. We move next from one sphere to a wedge of spheres.
Notice that we increase the lowest possible value of n here! Recall from the topology

class that m(V.S?) is a free (non-abelian) group, so this does not work for n = 1.

PROPOSITION 2.4. Let n > 2. Then Hu: m,(VSY) — H, (VS Z) = ®Z, is an

1somorphism.

ProoF. In Example 1.3 we have identified the homotopy group of a wedge of
spheres and chose explicit generators t5: Sj < V.S;}, the wedge summand inclusions.

Let us compute the image of [t5] through the Hurewicz homomorphism.
Hultg] = (15)«(un) € Hy(VSH; Z) = ©Zg,

To obtain an expression in terms of coordinates in this free abelian group we project
onto each component. When a = § then the composite Sz — VS5 — Sy is the
identity, but for o # [ we obtain the constant map. Therefore the element in $Z,
is eg = (0,0,...,1,0,...) the S-th canonical basis element. Just as in the previous
lemma we see that the Hurewicz homomorphism sends generators to generators, it

is an isomorphism. O

We are finally ready for the general case.

THEOREM 2.5. HUREWICZ. Let n > 2 and X be an (n — 1)-connected space.
Then Hu: 7, X — H,(X;Z) is an isomorphism.
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PROOF. Since both homotopy groups and homology groups are weak homotopy
invariants, we might as well suppose that X is an (n — 1)-connected CW-complex,
hence, by Remark 1.4, that the n-skeleton X~ is reduced to a point, and that
the n-skeleton X is a wedge of spheres. Moreover we have shown in Lemma 1.2
that the homotopy and homology groups we are interested in only depends on the
(n+1)-st skeleton, so we can assume by naturality that z = X"+ = vS?U (Ueg“).
Let f: V S§ — VST be the wedge of all attaching maps, so X = C(f) and we call i

the inclusion of the n-skeleton. By naturality we have a commutative diagram

T (V.SE) LN Ta(VST) — s 1, X

H ul% H ul% lH ux

(2

H,(vS3) —L— H,(vsm) —— H,X

B 2 lg

ceell (X) —2— Cedh(X) ——s Cokerd

Proposition 2.4 explains why we have vertical isomorphisms for wedges of spheres,
and the bottom identification with the cellular chain complex is clear since the dif-
ferential is defined by the attaching map. On the right we have identified H, X with

the cokernel of this differential since Cce!t

e (X) = 0, there are no cells in dimension

(n — 1). This shows that in homology i, is surjective, therefore so is the Hurewicz
homomorphism Huy for X.

We finally have to prove that it also injective. Let us look at the kernel. Let w €
X be an elemt with Huy(w) = 0. By the cellular approximation Theorem 2.2 we
can represent w by a cellular map w: S™ — X = v S". Therefore 0 = Hux(w) =
ix(Hu([w]). The middle line in our diagram is exact, it is part of a long exact sequence
in homology, so there is yet another homology class o € H,(VSj) with Hu([w]) =
f«(o). We lift o through the Hurewicz isomorphism to a class ¢ € m,(VSy) and
observe that w = i.([w]) = i.(f«({)). But this is zero because the composition i o f

is nullhomotopic, it factors through a (contractible) wedge of discs. O

We add an important remark about the case n = 1 and an extension of the

Hurewicz Theorem to the next degree.
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REMARK 2.6. For path-connected spaces the Hurewicz homomorphism Hu :
mX — Hy(X;Z) is not an isomorphism in general as illustrated by S'V S'. One
can see for this example that Hu is the quotient of the free group Z x Z — 7Z & Z.
In fact one can show, following the same strategy as in our proof, that Hu is the
abelianization of the fundamental group.

When X is (n — 1)-connected and n > 2, then we have seen that Hu : m, X —
H,(X;Z) is an isomorphism. We can then go even further and show that the next

Hurewicz homomorphism Hu : m,11 X — H,.1(X;Z) is an epimorphism.

We have managed to construct some special spaces having a fixed homotopy
group. For homotopy groups this was not so easy, but for homology groups com-
putations are much easier with the cellular chain complex. Now that we have the

Hurewicz Theorem to help us, we can realize any abelian group as m, of some space.

EXAMPLE 2.7. Let A be an abelian group and choose a presentation as quotient
of p: @& Zs — ©Z,. We realize this inclusion as a map of spheres f: VvV S5 — V.Sy
and define M(A,n) = C(f) to be the homotopy cofiber. Its cellular chain complex
is reduced to ¢ so we can compute all homology groups. The only non-trivial group
is H,(M(A,n);Z) = A. We call M(A,n) a Moore space of type (A, n).

3. Eilenberg-Mac Lane spaces

In the previous Example 2.7 we have constructed a space with trivial homotopy
groups in degrees < n, it is (n — 1)-connected, and m,M(A,n) = A. Therefore,
by taking the n-th Postnikov section, see Proposition 4.3, we obtain a space X =
M(A,n)[n] with a single non-trivial homotopy group, namely m, X = A. Such a
space deserves a name, because it is a building block from the point of view of
homotopy groups, just like spheres are building blocks from the point of view of
homology, and moreover, we will see that such spaces play also a central role for

(co)homology.

DEFINITION 3.1. An Filenberg-Mac Lane space of type K(A,n) is a space X
such that m, X = 0 for k # n and 7, X = A.

We already know such spaces exist, they are also unique up to weak equiva-

lence, by definition. To put this differently, if we require a K(A,n) space to be
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a CW-complex, then it is even unique up to homotopy. We will call these space
K(A,n). Therefore we will write abusively that K(Z,1) = S', K(Z/2,1) = RP*>,
or K(7,2) = CP>.

Of course, when n = 1 the group A could be an arbitrary group, but for n > 2
we have to choose an abelian group. From now on we will only work with abelian

groups and consider the functor [—, K (A, n)].

PROPOSITION 3.2. Pointed homotopy classes of maps [—, K (A, n)] defines a con-
travariant functor from Top, to Ab which sends cofibration sequences X — Y —

Y/X to exact sequences.

PROOF. Since K(A,n) ~ Q*K(A,n + 2), we have that such pointed homotopy
classes are indeed abelian groups. We know from the Puppe sequence Theorem 1.9
that cofibration sequences are sent to exact sequences, using the homotopy equiva-
lence Y/X ~ C(X CY) by homotopy invariance of homotopy pushouts, see Theo-
rem 6.7. U

Our aim is to compare this functor with ordinary cohomology with coefficients
in A. We establish now a few properties which should remind us of characteristic

properties of ordinary cohomology. The first one is the suspension axiom.

PROPOSITION 3.3. For any space X we have a natural isomorphism [ X, K(A,n)] =
XX, K(A,n+1).

Proor. This is a direct consequence of the loop-suspension adjunction. O

The second one is the wedge axiom.

PROPOSITION 3.4. For any indez set I, we have an isomorphism [VX;, K(A,n)] =
[1[X:, K(A,n)).

Proor. We know that mapping spaces convert wedges into products:
map, (VX;, K(A,n)) ~ Hmap*(Xi, K(A,n))

Taking now sets of components components yields the desired isomorphism of sets

(and thus groups). O
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Even if this is a very easy computation let us record the value of [—, K(A,n)] on

spheres.

LEMMA 3.5. For all k # n we have [S*, K(A,n)] = 0 and we have an isomor-
phism [S™, K(A,n)] = A. O

Our next goal is to compare [X, K(A,n)|] with H"(X; A), so let us recall how
cohomology groups with coefficients are computed. Let C,(X) be the singular or the
cellular chain complex. We dualize and consider the cochain complex Hom(C,(X); A).
Its cohomology groups are H"(X; A). To be able to compare ordinary cohomology
with homotopy classes of maps into Eilenberg-Mac Lane spaces, we will look for a
comparison map.

For this we need to identify a special cohomology class.
LEMMA 3.6. We have an isomorphism H"(K(A,n); A) = Hom(A, A).

PROOF. Since we can build a model of K(A,n) from a Moore space M(A,n) by
attaching cells of dimension > 2, the cellular chain complex for K(A,n) looks like

that of M(A,n) in degrees < n + 1:
@ZB i> P®Zqs — 0

where a belongs to an index set of cells of dimension n, and g for (n+1)-dimensional
cells. The cokernel of d is isomorphic to A since by construction H,, (M (A, n);Z) = A.

The cochain complex is thus of the form
Hom(®Z,, A) < Hom(Zg, A) < 0

The n-th cohomology group is the kernel of this homomorphism Hom(d, A), but,
since Hom is a left exact functor, this is Hom(Coker(d), A) = Hom(A, A). O

The identity map ids: A — A represents an (important) cohomology class ¢ 4.

DEFINITION 3.7. For any natural number n we define a natural transformation
of functors T': [X, K(A,n)] — H"(X; A) by sending the homotopy class of a map f
to H"(f; A)(ea).
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In more details, f induces a map in cohomology H"(K(A,n); A) — H"(X;A)

and we use ¢4 to push it to the cohomology of X.

PROPOSITION 3.8. The natural transformation T' is an isomorphism on all finite

dimensional CW-complezes.

PROOF. The cellular complex for S™ consists in two copies of Z in degrees 0
and n, the cochain complex allows us thus to compute easily H"(S™; A) =2 A. To
compare both functors we compute 7" on homomorphisms Z — A corresponding to
a generator o and represent it by a map S™ — K (A, n) factoring through V.SZ. Its
image is precisely the generator o by construction.

By the wedge axiom, see Proposition 3.4, we also obtain an isomorphism on
arbitrary wedges of spheres, and since both functors have long exact sequences asso-
ciated to cofiber sequences, we obtain by the five Lemma an isomorphism on all finite
dimensional CW-complexes by induction on skeleta. Assume 7' is an isomorphism
on X (k) and consider the cofiber sequence VS¥ — X*) — X*+1D Tt induces long
exact sequences in cohomology and also in [—, K (A, n)], and we conclude that so is
T: [ X*D K(A n)] — HY (XD, A), O

4. The Milnor sequence

To understand what happens for arbitrary CW-complexes we know how to com-
pute the cohomology of an infinite dimensional CW-complex (in a given degree it
only depends on the lower dimensional cells), but we need to be able to compute
[ X, K(A, n)| for such an infinite dimensional CW-complex X. For this we consider
X = UX™ as filtered space. In general if X,, C X is an increasing and exhaus-
tive sequence of subspaces of X, we apply cohomology (or homotopy classes into

K(A,n)) and obtain a tower
= H'( X113 A) > H' (X, A) — ...

and we have to compare the (inverse) limit of this tower with H‘n(X;A). Let us
thus do algebra in this section, but do not worry, we will meet again CW-complexes

in the next section.
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DEFINITION 4.1. Let (N, <) be the poset of natural numbers and we write simply
N for the opposite poset. A tower of abelian groups is a functor A,: NP — Ab,

i.e. a diagram of the form ... A, f"—“> A, ELNN Al — Ap.

DEFINITION 4.2. Let A,: N? — Ab be a tower of abelian groups. The inverse
limit limA, is the abelian subgroup of [] A,, consisting of all compatible sequences

(@n)nen such that f,(a,) = ap_1.

REMARK 4.3. As usual we can interpret this explicit description of a limit as an
adjunction. For this we consider the constant tower functor c: Ab — AN, The
limit functor is then a right adjoint, one checks indeed that a morphism from a

constant tower cA — A, corresponds exactly to a homomorphism A — limA,.

EXAMPLE 4.4. One example that might have appeared in other courses is the
inverse limit imZ/p" = Z;) where each homomorphism in the tower is the reduction

mod p".

We introduce now a group homomorphism that shifts by one all group elements
in the product [[ A, using the homomorphisms from a tower. Since all these are

group homomorphisms, so is the shift map.

DEFINITION 4.5. Let A, be a tower. The shift map sh: [[ A, — [] A, is defined
by (an)n>0 — (fu(@n))n>1. The cokernel of sh —id is the first derived functor of the

limit, written lim'A,.

We will see why this deserves to be called a derived functor, but let us first

establish a close relationship with the limit.
LEMMA 4.6. The kernel of sh — id is equal to the limit.

PROOF. By definition of the shift map the kernel of this difference consists pre-

cisely of all sequences (a,,) for which f,(a,) — a,—1 = 0. O

We are ready now for the six term exact sequence, very much like the Hom-Ext
sequence you have seen in homological algebra. In the following proposition we use
the notion of exactness for morphisms of towers, by which we mean that for each

level n we have exactness for abelian groups.
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PROPOSITION 4.7. Let 0 — A, =% B, LN Ae — 0 be a short exact sequence of

towers of abelian groups. Then we have a six term exact sequence of abelian groups
0 — limA, — limB, — limC, — lim' 4, — lim' B, — lim'C, — 0
Proor. We apply the Snake Lemma to the following diagram

A, L s, 2 110,

lshfid lshfid lshfid

A, L s, 2 110,

Notice that the product of the injective maps «,, is injective (a limit being a right
adjoint is left exact) and the likewise the product of surjective maps £, is surjective,

which explains the zeros at the beginning and end of the six term exact sequence. [J

LEMMA 4.8. Let A, be a tower of abelian groups. If there exists an integer k
such that f,: A, — A,_1 is surjective for all n >k, then lim'A, = 0.

PrROOF. We apply the definition and show that the shift map minus the identity
is surjective. Let (ag,ai,...) be an arbitrary element in the product [[A,. We
are looking for an element (bo, by, ...) such that a; = fo11(bp1) — by for all £ € N.
Since f,41 is surjective we choose b, such that f,.1(b,4+1) = a, and b, = 0. We
define by downward induction the b,’s for 0 < ¢ < n starting with b, 1 = —a,_1,
b= fn_1(bp_1) — an_2, etc.

For the higher b,’s we proceed by upward induction and use surjectivity of the
fo’s. We have to solve the system of equations given by ay — by = foi1(bey1) for

¢ > n + 2, which has a solution since f; is surjective. O

REMARK 4.9. There is a weaker (hence better) condition ensuring the vanishing
of lim!, called the Mittag-Leffler condition. Instead of surjectivity of all but a finite
number of f,,’s we only require that for each k there is an integer j > k such that the
images of compositions of structure maps coincide: Im(A4; — A;) = Im(A; — Ay)

for all © > j.
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5. Cohomology of arbitrary CW-complexes

After this purely algebraic interlude we come back to cohomology. We had
left after we had understood that ordinary cohomology and homotopy classes into
Eilengerb-Mac Lane spaces coincide on finite dimensional CW-complexes. Our next
aim is to see this also holds for arbitrary CW-complexes. For this we consider a
filtered space X = UX} and wish to understand the relationship between the coho-
mology of X and the inverse limit of the tower H"(Xj; A). For us the important
case is the skeletal filtration of course. We start with a statement without proof, but

this should be reminiscent of the construction of homotopy pushouts.

ProproSITION 5.1. Let Xo: N — Top be a diagram of the form X ECN X N
Xo EEX X3 = .... The homotopy colimit of X, can be computed as the (strict) colimit

of an equivalent diagram where all maps f,, have been replaced by cofibrations.

REMARK 5.2. The standard model of hocolimX, is given by the so-called tele-
scope. We obtain the equivalent diagram mentioned in the previous proposition by
turning each map into a cofibration with our favorite method, namely the cylinder.
Thus we replace fo: Xo — X; by the inclusion Xy < Cyl(fy) = (Xo x I) U X;. We
think of this inclusion as a horizontal cylinder lying over the positive real numbers
and gluing X; at the end of the cylinder, i.e. identifying X, x 1 with its image
in X;. We continue by turning the composite map Cyl(fy) — Xi TN Xy into
hboxCyl(fy) = (Xo x [0,1]) U Xy — (Xo x [0, 1] U (X3 x [1,2])U) X where we attach
the space X5 on the right of the cylinder on X, i.e. identifying X; x 2 with its
image in X,. We continue inductively obtaining a (long) telescope. The union of
these spaces is written T'el(X,) and provides a model for the homotopy colimit.

Working with pointed spaces, one can replace the cylinders with their pointed
version by collapsing an interval. For well-pointed spaces the homotopy type is the
same. Therefore, if we start with a pointed diagram of well-pointed spaces, the
pointed telescope has the same homotopy type as the unpointed version.

One important consequence of Proposition 5.1 is the homotopy invariance. In
particular if our original diagram X, comes from a filtered space with cofibrations

X, C X411, then one could construct the homotopy colimit as the union UX,, since
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all maps are already cofibrations, but we could also wish to construct the telescope
as explained above. Then Tel(X,) ~ X.

In order to use the algebraic tools developed in Section 4 we have to realize
the identity minus the shift map topologically. Let us write XX for the reduced
suspension (and recall that for a well-pointed space, for example a CW-complex, the

reduced suspension and the unpointed suspension have the same homotopy type.

LEMMA 5.3. Let f: X — X be a pointed self map of (X,x) and define Y to
be the homotopy pushout of the diagram X & XVvX M X. Then we have a
cofibration sequence 32X NG 35 'GiNG 3 73

PROOF. The homotopy cofiber of the fold map V is the reduced suspension
(XxI)/(XVX). Consider thus the following diagram of horizontal cofiber sequences:

XVX — X xI — XX

id| f l

X > Y s 1 X

Both cofibers are homeomorphic because the left hand side square is a pushout
square. The Puppe sequence of the first cofibration allows us to continue two steps

further on the right:

XVX — 3 X sy YX 2y vXxvIX =Y vx

We have replaced the reduced cylinder by the homotopy equivalent space X and used
the fact that suspension commutes with wedges, both being colimits (use Fubini).
But who is 7 One could think at first sight that it is the pinch map p, but notice that
(—XV)op is not null-homotopic, so it cannot be the pinch map. Identifying carefully
the homotopy cofiber construction in the Puppe exact sequence shows that 0 is in
fact i1 — 5 the difference of the two inclusion maps into the wedge components. Since
we work with suspension there is a group structure on pointed homotopy classes and

this difference makes sense. We compare now this h-coexact sequence with the one
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coming from the bottom row.

X — 39X 22vxX vEX —YV NX

gl H id | f lEg

Yy —ux T owx vy

The bottom map 7d — f has been identified by commutativity of the central square.
O

We apply this result to the shift map sh: vV X™ — vX® which is defined on
the n-skeleton by including it into the (n + 1)-skeleton.

COROLLARY 5.4. Let X be any connected CW-complex. There is a cofibration
id—sh

sequence VEX ™ 20 vy X (W 5 B X
PRrROOF. In order to identify the cofibration sequence from Lemma 5.3 we have

to compute the pushout of the following diagram

idVsh,
—

vX™ & (v x ™) v (vx ™) vX ™

To do this we turn the fold map V into a cofibration by replacing the target by the
pointed cylinder VX x . The strict puhsout of this new diagram is then a quotient
of this wedge of reduced cylinders V(X ™ x I) where we identify the right hand side
(n,1) of the n-th one with (sh(z,),1) = (x,,1) in the (n + 1)-skeleton. This is
exactly the telescope of the skeletal filtration of X. As observed in Remark 5.2 this
is homotopy equivalent to X by homotopy invariance since inclusions of skeleta are

cofibrations. H

PROPOSITION 5.5. Let X be a connected CW-complex. There is an exact se-

quence

0 — lim'H*1(X™; A) = H*(X; A) = imH*(X™: A) = 0

ProOF. The above homotopy cofiber sequence induces a long exact sequence
in cohomology. We do not write the coefficients in this proof, but A’s are under-

stood throughout. Before writing it down we use the suspension axiom to identify
H*1'Y X =~ H*X and the wedge axiom to identify H*(VX ™) with J[] H*X™ and
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the toplogical shift map given by inclusion of one skeleton in the next one induces
precisely the shift map in cohomology. Thus we get

e [Tzt x S akx [T axt A=k [T X" « ...

The short exact sequence is then given by Coker(1—sh) — H*X — Ker(1—sh). O

We arrive finally to our central result in this chapter. Eilenberg-Mac Lane spaces
represent ordinary cohomology in the sense that pointed homotopy classes of maps
to a K(A,n) are in bijection with H"(—; A).

THEOREM 5.6. Let X be a connected CW-complex. Then H"(X; A) = [ X, K(A,n)]
for any n > 1.

PROOF. In our setting the tower H*(X™); A) stabilizes for k > n since we have

filtered X by skeleta. Therefore lim! vanishes and we obtain the desired isomorphism.

O

REMARK 5.7. For convenience we have dealt with connected pointed CW-complexes,
but the previous result extends of course to non-connected CW-complexes if we allow
ourselves to choose a base point in each connected component.

A more tricky point is that this result does not extend to arbitrary spaces.
Whereas ordinary cohomology is a weak homotopy invariant, homotopy classes into
an Eilenberg Mac-Lane space are not so! One can construct spaces having the weak
homotopy type of a K(Z,n), together with a CW-approximation map K(Z,n) — X
for which there is no inverse map, even up to weak homotopy, so that the funda-
mental class in cohomology represented by the identity cannot be given by a map
X = K(Z,n)...






CHAPTER 6

More adavanced topics

In this final chapter we indicate a few possible directions for further reading.
This first course about homotopy theory and homotopy groups opens doors to other

fascinating topics.

1. Postnikov invariants

We have seen that in general homology groups or homotopy groups do not de-
termine the (weak) homotopy of a space. A natural question is then to ask what
additional information do we need to reconstruct a space X starting with the knowl-
edge of the homotopy groups. One possible answer is the classification of a certain

tower by cohomology classes.

ExAMPLE 1.1. Given an arbitrary group m and abelian groups m, for n >
2, there always exist a space X such that m; X = m for all & > 1. We can
take [[ K(mx, k), a product of Eilenberg-Mac Lane spaces, also called a general-
1zed Filenberg-Mac Lane space or GEM for short. But there are many others. We
have seen for example that RP? does not admit RP® = K(Z/2,1) as a retract, so
it cannot be a GEM.

To make it simple, let us assume here that X is a simply connected space (there
are generalizations to so-called nilpotent spaces, but the theory does not work for
arbitrary path connected spaces. We look at the Postnikov tower and recall that
we have maps X — X|n| to the n-th Postnikov section and structure maps forming
a tower p,y1: X[n + 1] — X|n] of fibrations. This map induces isomorphisms on
homotopy groups up to degree n and since X [n + 1] has its last possibly non-trivial
homotopy group in degree n + 1, the long exact sequence for the fibration sequence

Pn+1

F — X[n+ 1] == X|[n] shows that F is a K(m, 1 X,n+ 1).
103
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The next result is the central point in the theory of Postnikov invariant. In
general we know from the dual Puppe sequence that we can extend a fibration
sequence on the left and identify the next homotopy fibers as loop spaces on the
original spaces. However one cannot deloop an arbitrary space and even if one could
one would not be able to deloop an arbitrary map between loop spaces. The next

proposition should thus arrive as a nice surprise.

PROPOSITION 1.2. Let p: X — Y be a fibration of simply connected spaces whose
(homotopy) fiber is a K(A,n + 1) for n > 2. There exists then a map k: Y —
K(A,n+2) such that X is the homotopy fiber of k.

PROOF. We see in the long exact sequence in homotopy for the fibration sequence
F — X — Y that the fiber has a single non-trivial homotopy group, and therefore
Tpi1X — Tue1Y is surjective and 7 X = 1Y for all £ < n.

We turn now the fibration p into a cofibration and consider thus the map as a
pair (Y, X). The long exact sequence in homotopy shows that 7 (Y, X) = 0 for all
k <n + 1 since it looks like

e = T X o Y = ma (Y, X) 9, X = Y = m (Y, X) — ...

We conclude that 74 (Y, X) = 0 for all £ < n+1. From the relative Hurewicz Theorem
we conclude that the homology groups Hy(Y, X) are also all zero for k& < n + 1.

Moreover
Hn—I—Q(Ya X) = 7Tn+2(}/7 X) = 7Tn+1F =A

We finally look at the cofiber sequence X — Y — Y/X and the associated long
exact sequence in homology. By an analogous argument as above for homotopy
groups we deduce that Y/ X is (n + 1)-connected and the first non-trivial homotopy
group if m, oY/ X = H, . »(Y/X,7Z) = A.

We define k to be the composite Y — Y/X — (Y/X)[n+2]. The latter Postnikov
section is clearly an Eilenberg-Mac Lane space K (A, n+2). We define thus the space
X" as the homotopy fiber of k£ and one can conclude (...) by comparing X with X’

and showing they are weakly homotopy equivalent. 0
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Since cohomology groups are represented by Eilenberg-Mac Lane spaces, we can
view the map k: Y — K(A,n + 2) as a cohomology class k € H""(Y; A) when Y
is a CW-complex.

DEFINITION 1.3. The element k € H"?(Y; A) associated to the fiber sequence
K(A,n+1) — X — Y is the k-invariant of this fiber sequence.

An inductive process allows then to reconstruct a simply connected CW-complex
from the purely algebraic data given by its homotopy groups 7, X and its k-invariants
k, € H"(X[n]; mpy1X). We start with X[2] = K(mX,2) and construct X|[3] as the
homotopy fiber of the k-invariant K (meX,2) — K(m3X,4). We continue inductively
and take the (homotopy) limit of the tower of fibrations ... X[n + 1] - X[n| —
X[n —1] — .... This inverse limit is not a CW-complex in general, so we have to

take its CW-approximation to get back our original space.
PROPOSITION 1.4. A space is a GEM if and only if its k-invariants are all zero.

The if direction is obvious by construction, but the only if needs a proof we do
not provide here. We finish this section with an example related to the 3-dimensional

sphere.

EXAMPLE 1.5. Let us consider the Postnikoc section S3[3] = K(Z,3). Who is
the next Postnikov section S?[4]?
One can compute m,5° = 7Z/2, generated by the suspension of the Hopf map and

it is possible to identify the first k-invariant as the composite map
K(Z,3) — K(Z]2,3) — K(Z/2,5)

where the first map is reduction mod 2 and the second map is much more interesting

since it is the so-called Steenrod square Sq?.

2. Poincaré sphere

From here on we will not provide any proof. The short final sections in these
notes are only meant to illustrate a few topics which are very closely related to the
material we have studied this semester. We start with the famous homology sphere

consructed by Poincaré at the beginning of the 20-th century.
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There is a simple group of 60 elements, the alternating group As that csan be
realized as the group of isometries of the regular icosahedron. It is as such a subgroup
of SO(3). The universal cover of SO(3) is the 3-sphere S*, the unit sphere in
the quaternions H and 7 SO(2) = Z/2. Hence, the preimage of A; in S? is a
group of 120 elements often called the icosahedral group I. It is a perfect group,
H\(K(1,1);Z) = Py =0 and it is even superperfect, i.e. Hy(K(I,1);Z) = 0.

Since [ is a (discrete) subgroup of the topological group S, it acts freely on the
right by multiplication and yields a covering space S® — S3/I = X. This space
X has fundamental group isomorphic to I by construction, so Hi(X;Z) = 0 and it
follows in fact from the fact that I is superperfect that also Hy(X;Z) = 0. It is a
three-dimensional CW-complex with a single non-trivial reduced homology group,
H3(X;7Z) = 7Z. This is the famous Poincaré sphere, a homology sphere which cannot

be homotopy equivalent to S? since it has non-trivial fundamental group.

3. James construction and infinite symmetric products

There is a combinatorial model for the “loop-suspension” construction Q2>X due
to James, which is a powerful tool to understand the Freudenthal suspension The-
orem. Let us start with the statement of this important result. If o is a homotopy
class in m,X we can represent it by a pointed map a: S* — X and then suspend
it to obtain Ya: XS* — XX representing a class in 7,1, 2X. The suspension op-
eration thus yields a homomorphism 73 X — 712X, The Freudenthal suspension
Theorem states that this is an isomorphism in a range roughly twice as long as the
connectivity of X. More precisely, if X is (n — 1)-connected for some integer n > 2,
then it is an isomorphism for all £ < 2n — 1.

Back to the homotopy groups of XX, we can use the loop-suspension adjunction
and identify 712X with 7,Q¥X. The suspension homomorphism is induced by
a map of spaces X — QXX we describe now. The James construction JX is the
topological monoid freely generated by X in a sense we will make precise next. The
result we will not prove is that JX ~ QX3 X. In a monoid we have to express words
of arbitrary length in a convenient way. We also need a unit and fix therefore a

basepoint xg € X which will be a strict unit for the multiplication.
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For words of length one it is easy we just keep a copy of X and call is J; X.
Next we need words of length two and take therefore X x X whose elements are
pairs (x1,22). However, since we wish g to be a unit we have to identify zq x X
and X x xy with the words of length one. We set J,X to be the pushout of X «
XV X — X x X. By construction there is a map J; X — J,X and we continue
inductively by adding words of higher length. Then JX = UJ,X, Notice that
Jo X/ "X ~ (X x X)/(XVX)=XAX, which is (2n — 1)-connected. This is the
key to prove that X — JX is highly connected.

Let us also mention that the James construction or equivalently 23 recognizes
H-spaces: A space X admits an H-space structure if and only if the map X — JX

admits a retraction up to homotopy.

In an analogous way one can construct the free abelian monoid on X by iden-
tifying not only the elements of the form (xg,z) and (z,x¢) with z, but any pair
(21, z2) with (22, 21). This means we take the quotient of X x X under the action of
the symmetric group Ss and continue by taking symmetric powers SP"X = X"/S,,.
The colimit of this sequence is called the infinite symmetric product SP>*X. It is
a theorem of Dold and Thom that this space is a GEM having the homotopy type
of [[ K(H,X,n). The natural map X = SP'X — SP>X recognizes GEMs and on

homotopy induces the Hurewicz homomorphism 7, X — 7, SP*X = H,X.

4. Puppe’s Theorem

We have seen the Fubini Theorem for homotopy pushouts and more generally one
could prove that homotopy colimits commute with themselves. However homotopy
colimit and homotopy limit usually behave badly, but sometimes they do so. This
unexpected feature makes the homotopy theory of spaces more special than other

homotopy theories. Consider for example a pushout diagram over a fixed base space

X < Xo > Xo
B

Taking the homotopy pushout yields a new map X — B, but how can we understand

as below:

its homotopy fiber? It has the homotopy type of the pushout of the respective
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homotopy fibers! This is known as Puppe’s Theorem. A fun example allows us to

reconstruct K (Z,2) without knowing the cellular structure of CP>.

EXAMPLE 4.1. We start from the Hopf fibration S* — S3 % S2. This fibration is
classified by a k-invariant S? — K(Z,2) which is nothing but the second Postnikov
section (it must induces an isomorphism on 7y is we want the homotopy fiber to be

2-connected). We now consider the following pushout diagram over K(Z,2):

* < S8 T 52
~
K(Z,2)

Taking the homotopy pushout gives here a map S? Ue* — K(Z,2) and Puppe’s
Theorem allows us to identify the homotopy fiber as the homotopy pushout of S <
S1x 83 — S3, where we have used some exercices about homotopy fibers of constant
maps and recall that QK(Z,2) ~ K(Z,1) ~ S'. This homotopy pushout is a
join St x §3 ~ (ST A S3) ~ S5 This means on the one hand that we got an
interesting map S® — S? U e? and on the other hand that, since S° is 4-connected,
the map S? U e — K(Z,2) is 4-connected as well. This being said we can iterate

the construction and continue with

n
y 52U et

* 4 S°
~ T
K(Z,2)

The same argument as above tells us that the process of attaching a 6-dimensional
cell to S? U e* gives us a new map S7 — S? U e* U eb, namely the homotopy fiber of
the map to K (Z,2) which has therefore an even better connectivity, it’s 6-connected.
Repeating this process shows that in the limit we obtain a weak equivalence S? U
etUelUelU- - ~ K(Z,2). In particular the homology of K(Z,2) is concentrated
in even degrees where we have a copy of the integers Hs, (K (Z,2);7Z) = Z) for all
n > 0.
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Another application of Puppe’s Theorem provides generalized Hopf maps for

H-spaces. The product map X x X — X fits into a commutative diagram

X2 XxXx -2yXx

N

* < > X

Taking homotopy pushouts yields a generalized Hopf map X * X — XX. One can
check that all vertical homotopy fibers are equivalent to X and most importantly
that all horizontal comparison maps between them are equivalences. This implies
that the homotopy fiber of the generalized Hopf map is again X, up to homotopy.
For the spheres we know to be H-spaces we obtain famous Hopf maps providing

non-trivial elements in the homotopy groups of spheres:

(1) For X = S* we get S' — $% % §2 and the homotopy cofiber of 7 is CP2.
(2) For X = 5% we get S% — ST % S* and the homotopy cofiber of v is HP?2.
(3) For X = ST we get ST — S5 £, S8 and the homotopy cofiber of ¢ is QP2

5. Blakers-Massey and Freudenthal Theorems

We finish with the strongest theorem in the above list, probably also the one
whose proof is the most difficult. We start from a pushout diagram, forget about the
initial object and take the homotopy pullback. By universality there is a comparison
map between the initial object and this pullback, the question is what one can say

about the homotopy fiber. The situation is illlustrated in the following diagram:

A\P/B
.

C s D

where D is the homotopy pushout of the original pushout diagram and P is the
homotopy pullback. There is no formula allowing us in general to identify the ho-
motopy type of Fib(A — P), but if the pairs (B, A) and (C, A) are respectively m-
and n-connected, then the pair (P, A) is (m + n — 1)-connected.

As an example we obtain the Freudenthal suspension Theorem.
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EXAMPLE 5.1. The pushout diagram we start with is « <= X — *. The homotopy
pushout is XX and the homotopy pullback is 23X . The comparison map is a map
X — QXX which is roughly twice as connected as X itself.



Bibliography

Glen E. Bredon. Topology and geometry Graduate Texts in Mathematics 139, Springer-Verlag,
New York, 1997. xiv+557 pp.

Francesca Cagliari. Right adjoint for the smash product functor Proc. Amer. Math. Soc 124,
1265-1269, 1996.

Allen Hatcher. Algebraic topology Cambridge University Press 2002, xii+544 pp

J. Peter May. A concise course in algebraic topology The University of Chicago Press 1999, ix
+ 243 pp

Saunders Mac Lane. Categories for the working mathematician Springer Lecture Notes in
Mathematics 5, 1971.

M. C. McCord. Classifying spaces and infinite symmetric products Trans. Amer. Math. Soc.
146 (1969), 273-298.

Daniel G. Quillen. Homotopical algebra Lecture Notes in Mathematics 43 Springer-Verlag 1967,
iv+156 pp

Paul Selick. Introduction to Homotopy Theory Fields Institute Monographs 9, American Math-
ematical Society 1997

Arne Strgm. Note on cofibrations IT Math. Scand. 22 (1968), 130-142 (1969).

Arne Strgm. The homotopy category is a homotopy category Arch. Math. 23 (1972), 435-441.
Jeffrey Strom. Modern classical homotopy theory Graduate Studies in Mathematics 127, Amer-
ican Mathematical Society, Providence, RI, 2011. xxii+835 pp.

Tammo tom Dieck. Algebraic topology EMS Textbooks in Mathematics, European Mathemat-
ical Society (EMS), Ziirich, 2008. xii+567 pp

111



