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Introduction to the
Course

Cryptography is a science that studies techniques for secure communication between
parties in the presence of adversaries. Unlike cryptography from the ancient times
(Roman age; Caeser cipher) and the machine age (WWII; Enigma), modern cryptog-
raphy is built upon mathematical tools and paradoxes. It is thus based on various
areas of mathematics such as abstract algebra, elementary and advanced number
theory, probability theory and statistics as well as complexity theory and algorithms.

Cryptographic objectives

Cryptography aims to achieve the following objectives:

• Data security: data sent from A (Alice) to B (Bob) is invisible to an adversary
E (Eve).

• Data integrity: data is accurate and consistent over its lifecycle.

• Authenticity: the truth of an attribute of data claimed by an entity (certifi-
cate).

Symmetric versus Public Key Cryptography

The two major branches of cryptography are symmetric key cryptography and public
key cryptography. Symmetric key cryptography assumes that the sending and receiv-
ing parties share a secret key used to both encrypt and decrypt data. Encryption of
large data is typically done via this method. The challenge and need for public key
cryptography is that, e.g., we need mechanisms to securely share secret keys between
parties (for the purposes of symmetric key cryptography), we need to be able to do
authentication (digitally sign documents and verify the signatures using only publicly
known data) and much more!

Public key cryptography is built upon various constructions from elementary and
more advanced number theory. As such, the algorithms are significantly slower than
those from symmetric key cryptography (you will never encrypt a large document
with RSA 2048, but rather use AES-256). Moreover, the cryptanalysis of the main
algorithms from PKC is a very challenging task and requires an in-depth mathematical
understanding of the structures involved.
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The goal of the course

This course is entirely on public key cryptography and more specifically, on the way
modern number theory is used to achieve some of the objectives of that area. The goal
is to review various mathematical structures such as finite fields, number fields, elliptic
curves and lattices from a computational perspective. It is thus mainly algorithmic
and aims at giving a basic background on public key cryptanalysis.

Public key cryptanalysis

This course will focus less on the design of cryptographic protocols and algorithms.
It will rather focus on the analysis of the existing and widely used ones via more
advanced cryptanalytic techniques coming from number theory. The two major prob-
lems (hardness assumptions) in public key cryptography are the following:

1. Integer factorization: given a large integer N , efficiently factor N .

2. Computing discrete logarithms: given a large finite field Fq, a generator g
of the multiplicative group F×q and an element h = gx, find the secret exponent
x.

Nowadays, more and more work has been done on the efficient solution of ii) for
finite fields. Good alternatives to finite fields are provided by the (abelian) group of
points on an elliptic curve over a finite field (where the size of the group can be chosen
to be much smaller without compromising security).

Apart from understanding various methods and algorithms for solving i) and ii),
we will introduce the basic theory of elliptic curves over finite fields and show how
the latter are used in cryptographic applications.

The final topic of the course will be lattice-based cryptography - an active area of
research with increasingly important applications in both cryptanalysis and protocols.
Besides fundamental applications of lattice-basis reduction algorithms to public key
cryptanalysis, lattices and hardness problems for lattices are used for the design of
various modern public key encryption schemes. If time permits, we will dive deep
into one of these types of schemes - Fully Homomorphic Encryption (FHE) schemes
allowing for arbitrary computations on encrypted data without decrypting it, the
latter becoming increasingly important for secure computations in the cloud.



CHAPTER

1
Arithmetic with Large
Integers

The goal of this and the next lecture is to explain how computers and other hard-
ware platforms perform basic operations with large integers in the context of public
key cryptographic protocols. On a hardware platform, non-negative integers will be
represented in base B where B is typically a power of 2 (e.g., B could be 232 for a
32-bit architecture). Each integer n is then represented by

n =

s−1∑
i=0

niB
i, 0 ≤ ni ≤ B − 1.

Here, the ni’s are blocks, the least significant one being n0 and the most significant
one being ns−1.

1.1 Complexity of algorithms

Often, we will need to give mathematical estimates for the complexity of various
algorithms. We do that via a special notation called big-O notation that we now
introduce.

1.1.1 Big-O-notation

Suppose that f, g : Z>0 → R are two functions of the positive integers n that take
real values. We say that g(n) = O(f(n)) if there exist constants C,N > 0 such
that |g(n)| ≤ C|f(n)| for all n ≥ N . Moreover, we say that g(n) = Θ(f(n)) if
g(n) = O(f(n)) and f(n) = O(g(n)). Very often, we will give the run-time of an
algorithm via this notation. We will write g(n) = o(f(n)) if f(n) ̸= 0 for all large
enough n and g(n)/f(n) tends to 0 as n → +∞. Finally, we write f(n) ∼ g(n) if
f(n) ̸= 0 for all large enough n and g(n)/f(n) tends to 1 as n→ +∞.

As an example, 2n2 + n = O(n2) since 2n2 + n ≤ 3n2 for all n ≥ 1. Moreover,
2n2 + n = Θ(n2), but n ̸= Θ(n2) since n2 ̸= O(n) even if n = O(n2). As we see
examples of algorithms, we will get more and more used to this notation.
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10 Chapter 1. Arithmetic with Large Integers

1.1.2 Remarks on big-O notation to keep in mind

Measuring run-time of various algorithms is a subtle question. The big-O notation
is one kind of asymptotic notation, an idea from mathematics that describes the
behavior of functions in the limit.

In practice, defining how long an algorithm takes to run is difficult: one cannot
usually give an answer in milliseconds because of the dependency on the machine
architecture. One can neither give an answer in CPU clock cycles (or as an operation
count) because that would be too specific to the particular data to be useful.

The simple way of looking at asymptotic notation is that it discards all the constant
factors in a function. In other words, an2 will always be bigger that bn if n is
sufficiently large (assuming everything is positive). Changing the constant factors a
and b does not change that - it changes the specific value of n where n2 is bigger, but
does not change that it happens. So we say that O(n2) is asymptotically larger than
O(n), and forget about those constants that we probably do not know anyway. That
is useful because the problems with large n are usually the ones where things slow
down enough that we really care. If n is small enough, the time taken is small and
the gains available from choosing different algorithms are small. When n gets large,
choosing a different algorithm can thus make a huge difference.

The big-O notation is a useful mathematical model that abstracts away enough
awkward-to-handle details that useful results can be found, but it is certainly not
a perfect measure for the complexity of algorithms. We do not deal with infinite
problems in practice and there are plenty of times when problems are small enough
that those constants are relevant for real-world performance and sometimes you just
have to time things with a clock rather than asymptotically.

1.2 Schoolbook, Karatsuba and Toom–Cook multipli-
cation

1.2.1 Schoolbook multiplication

Let us recall the basic multiplication of integers that we learned in school: to compute
123 · 323, we do

3 6 9

2 4 6

3 6 9

3 9 7 2 9

Simple as that, we will try to analyze the run-time and express it in big-O notation.
Suppose first that the two numbers have n digits each. To compute each of the rows,
we need n single digit multiplications, a total of n2 single digit multiplications. To
compute the final result out of these, we need to add n integers of at most 2n digits
each. This gives us a total of 3n2 elementary operations, i.e., the run-time of the
algorithm is O(n2). Note that in this estimate, we are, for example, not accounting
for the time it takes to shift an integer to the left. Yet, in computers, bit shifts are
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typically considered very fast operations taking almost negligible amount of time.

1.2.2 Karatsuba multiplication

Let x and y be two base-b numbers of n digits each (in their b-base representation).
For simplicity, assume that n is even, i.e., n = 2m. Write x = x0 + bmx1 and
y = y0 + bmy1. Then

xy = x0y0 + (x0y1 + x1y0)b
m + x1y1b

2m.

To compute xy, it thus suffices to perform the four multiplications x0y0, x1y0, x0y1
and x1y1. Karatsuba [KO63] observed that one only needs to do three multiplications:
(x0 + x1)(y0 + y1), x0y0 and x1y1, and perform four extra additions in order to get
the above product, since

x0y1 + x1y0 = (x0 + x1)(y0 + y1)− x0y0 − x1y1.

Applying this algorithm recursively, one computes the product xy in O(nlog2 3) ele-
mentary steps (you will see in the homework exercise why this is the run time). This
is asymptotically faster than the schoolbook algorithm (in fact, log2 3 ∼ 1, 585 < 2).

1.2.3 Toom–Cook multiplication

Toom–Cook’s method is based on the observation that, given two polynomials of
degree d (for some d),

p(x) = p0 + p1x+ · · ·+ pd−1x
d−1

and
q(x) = q0 + q1x+ · · ·+ qd−1x

d−1,

the product polynomial h(x) = p(x)q(x) = h0 + h1x + · · · + h2d−2x
2d−2 is com-

pletely determined by the values at 2d − 1 distinct points, e.g., at t = −d + 1,−n +

2, . . . , 0, 1, . . . , d − 1. If we now think of each polynomial as the base-b expansion of
an n-bit number, we can turn this idea into an algorithm for multiplying integers.

We illustrate this with an example: consider d = 3 and write the symbolic expres-
sions

r−2 = (p0 − 2p1 + 4p2)(q0 − 2q1 + 4q2)

r−1 = (p0 − p1 + p2)(q0 − q1 + q2)

r0 = p0q0

r1 = (p0 + p1 + p2)(q0 + q1 + q2)

r2 = (p0 + 2p1 + 4p2)(q0 + 2q1 + 4q2).

But now, one can use symbolic linear algebra to express the coefficients of h(x) in
terms of the rt’s (think of this as a precomputation, depending only on the parameter
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d):

h0 = r0

h1 = r−2/12− 2r−1/3 + 2r1/3− r2/12
h2 = −r−2/24 + 2r−1/3− 5r0/4 + 2r1/3− r2/24
h3 = −r−2/12 + r−1/6− r1/6 + r2/12

h4 = r−2/24− r−1/6 + r0/4− r1/6 + r2/24.

Now, to multiply two base-b numbers x = x0+x1b+x2b
2 and y = y0+y1b+y2b

2,
we compute the corresponding rt’s by performing the corresponding additions and 5
multiplications. We then compute the hi’s above for i = 0, . . . , 4. Note that these
hi’s are not yet the base-b digits (they need not be in [0, b−1)). We adjust the carries
by a classical procedure known as carrying.

To compute the gain in the above procedure, we compare to Karatsuba’s algorithm
where we multiplied two size b2 numbers using 3 instead of 4 multiplications of size b
numbers. Here, we multiply two size b3 numbers using 5 instead of 9 multiplication,
so the gain factor is 9/5. If we recursively use the same Toom–Cook procedure to
multiply the smaller-size numbers in the computation of the rt’s, we obtain a total
of O(nlog3 5) small size multiplications (here, by small, we mean multiplications of
constant size independent of n). Since log3 5 < log2 3 (in Karatsuba’s run-time), the
Toom–Cook algorithm runs asymptotically faster in our case.

We can generalize the above procedure for any degree d: there are 2d−1 multipli-
cations in the computations of r−d+1, . . . , rd−1 and again, by a recursive application,
we obtain a total of O(nlogd(2d−1)) small multiplications. We can thus bring the
complexity to O(n1+ε) for any positive number ε > 0.

Note, however, that this is just an asymptotic analysis and is far from what one
expects in practice - in particular, the simple analysis above ignores completely the
bitwise operations used in the additions and multiplications by small constants (which
contribute significantly as the size of the numbers grows and as n → ∞). Even if
often multiplications by small constants are cheap, they grow significantly with the
size of the coefficients in the computations of the hi’s. Yet, the algorithm is certainly
of theoretical interest and in addition, it can be useful for special hardware where
multiplications are particularly expensive compared to additions.

1.3 Fast Fourier Transform (FFT) methods

To simplify the exposition, we will present a very similar algorithm that multiplies
quickly two polynomials.
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1.3.1 Version for polynomials

Let p(X), q(X) ∈ R[X], both of degree n − 1. Without too much loss of generality,
we will assume that n = 2k is a power of 2. If

p(X) = a0 + a1X + · · ·+ an−1X
n−1 and q(X) = b0 + b1X + · · ·+ bn−1X

n−1,

then the product polynomial r(X) = p(X)q(X) = c0 + c1X + · · · + c2n−2X
2n−2 has

degree 2n − 2 and the coefficients are given by ck =
∑

i+j=k
0≤i,j≤n−1

aibj . Computing the

above product requires multiplying each ai with each bj and hence, n2 multiplications
(or less if some coefficients are 0). For each coefficient ck, the number of additions is
equal to the number of pairs (i, j) satisfying the conditions minus one. This yields a

total of
n−1∑
k=0

k+

2n−2∑
k=n

(2n− 2− k) = n2 − 2n+ 1 additions We thus have a run-time of

O(n2) elementary operations in R which makes the algorithm rather slow in practice
(here, multiplications in R are considered much more expensive than additions in R).

One can use another approach instead based on Fast Fourier Transform (FFT).
The idea is that any polynomial f(X) = u0+u1X+ · · ·+un−1Xn−1 of degree exactly
n−1 is uniquely determined by its values at n distinct points (finding the polynomial
from the evaluations is known as interpolation). A good choice of evaluation points
are the numbers ωk

n for 0 ≤ k ≤ n− 1, where ωn is a primitive nth root of unity (for
example ωn = e2πi/n). In what follows, we explain why this choice is good.

We now represent any polynomial f(X) of degree n− 1 by the vector in Rn of its
coefficients. The Discrete Fourier Transform (DFT) of f(X) for ωn is

DFTωn
: u = (u0, u1, . . . , un−1) 7→ û =

(
û0, û1, . . . , ûn−1

)
, (1.1)

where ûj =

n−1∑
t=0

utω
jt
n = f(ωj

n). The main point here is that there are algorithms

such as Algorithm 4 computing the DFT with a complexity better than the naïve
approach requiring O(n2) elementary operations in R. If this is the case, we speak of
Fast Fourier Transform (FFT).

The DFT-based algorithm to compute the product r(X) of two degree n − 1

polynomials p(X) and q(X) will essentially evaluate p(X) and q(X) at X = ωm
2n

(here, ω2n is a primitive 2n-roots of unity) for every 0 ≤ m < 2n using the more
efficient algorithm and will then compute the products p(ωm

2n)q(ω
m
2n) = r(ωm

2n). This
is because of the basic convolution theorem according to which

DFTω2n(r(X)) = DFTω2n(p(X) · q(X)) = DFTω2n(p(X)) · DFTω2n(q(X)).

We will thus get more efficiently the discrete Fourier transform of the coefficient
vector of r(X). To get r(X) itself, we will use an inverse-FFT algorithm to compute
the inverse IDFTω2n of the transformation (1.1). But the inverse can be performed
essentially via the same algorithm as RECURSIVE-DFT with the same complexity. The
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inversion is based on the relation

1

2n
DFTω−1

2n
◦ DFTω2n = id .

Note that we consider a 2nth roots instead of a nth root because of r.

Algorithm 1 DFT-Product
Require: Two degree n− 1 polynomials p and q seen in Rn, ω2n a primitive 2n-root

of unity
Ensure: The vector of the coefficients of r = p · q in R2n−1

1: p̂ := DFTω2n
(p)

2: q̂ := DFTω2n
(q)

3: r̂ := p̂ · q̂
4: r :=

1

2n
DFTω−1

2n
(r̂)

5: return r

Example 1. For example, let p(X) = a0 + a1X and q(X) = b0 + b1X, so that n = 2.
Consider ω2n = e2πi/(2n) = i. Then,

DFTi(a0, a1) = [a0 + a1, a0 + a1i, a0 − a1, a0 − a1i]

and similarly for q. The product of these two vectors is

[

(a0 + a1)(b0 + b1),

(a0 + a1i)(b0 + b1i),

(a0 − a1)(b0 − b1),
(a0 − a1i)(b0 − b1i)

]

and the DFT of this last vector at ω−12n = −i is [4a0b0, 4(a0b1 + a1b0), 4a1b1, 0].

We now present a fast recursive algorithm (Algorithm 4) to compute the DFT.
It is based on the remark that, for n = 2k, f(X) = a0 + a1X + · · · + an−1X

n−1 =

(a0 + a2X
2 + · · ·+ an−2X

n−2) +X(a1 + a3X
2 + · · ·+ an−1X

n−2) so that evaluating
f(X) at a primitive nth root of unity can be done by evaluating two degree (n− 2)/2

polynomials at a primitive (n/2)th root of unity.

Let T (n) be the run-time (number of elementary steps, i.e., "addition" and "mul-
tiplication" of complex numbers). Steps 7. and 8. take a total of 2T (n/2) elementary
steps whereas steps 12− 16 take a linear (in n) number of steps, i.e., Θ(n). We thus
get a recurrence relation

T (n) = 2T (n/2) + Θ(n),

from which we compute T (n) = Θ(n log2 n). This is certainly asymptotically faster
than the naïve algorithm described in the beginning.
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Algorithm 2 RECURSIVE-DFT
Require: An integer n = 2k and a vector a = (a0, a1, . . . , an−1).
Ensure: DFTωn

(a) = â = (â0, â1, . . . , ân−1).
1: aeven := (a0, a2, . . . , an−2)
2: aodd := (a1, a3, . . . , an−1)
3: if n = 2 then
4: âeven := aeven

5: âodd := aodd

6: else
7: âeven := RECURSIVE-DFT(n/2,aeven)
8: âodd := RECURSIVE-DFT(n/2,aodd)
9: end if

10: ωn = e
2πi
n

11: w = 1
12: for i = 0, . . . , 2k−1 − 1 do
13: âi = âeveni + wâoddi

14: âi+2k−1 = âeveni − wâoddi .
15: w := w · ωn

16: end for
17: return â = (â0, . . . , ân−1).

1.3.2 Cooley–Tukey algorithm

The above recursive FFT algorithm is a particular case of a more general FFT algo-
rithm due to Cooley and Tukey [CT65], one of the most common and general variants
of FFT. Here, we assume that n = n1n2 and we arrange the coefficients into a 2D
array. One then expresses

̂ak1n2+k2
=

n1−1∑
m1=0

n2−1∑
m2=0

an1m2+m1
e−

2πi
n1n2

(n1m2+m1)(n2k1+k2) =

=

n1−1∑
m1=0

e−
2πi

n1n2
m1k2

(
n2−1∑
m2=0

an1m2+m1e
− 2πi

n2
m2k2

)
=

=

n1−1∑
m1=0

(
n2−1∑
m2=0

an1m2+m1
e−

2πi
n2

m2k2

)
e−

2πi
n1n2

m1(n2k1+k2).

The above formula shows that to perform a DFT of size n1n2, it suffices to perform:

1. n1 DFTs of size n2,

2. Multiplications by the appropriate roots of unity,

3. n2 DFTs of size n1.

1.3.2.1 RecursiveDFT as Radix-2 DIT

The algorithm RECURSIVE-DFT described above is a 2-radix decimation-in-time (radix-
2 DIT) form of the algorithm of Cooley–Tukey. There are other forms of Cooley–
Tukey that are useful in practice.
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1.3.2.2 Data ordering, data access and variations

There are different variations of the above FFT algorithms according to the applica-
tion or the architecture. See [JF09] for a good overview of some of these variations of
FFT.

One particular aspect is designing an in-place algorithm: i.e., an algorithm that
overwrites its input with its output data that uses constant auxiliary storage. To get
an in-place Radix-2 DIT, one uses a technique known as bit-reversal.

Algorithm 3 IterativeDFT
Require: An integer n = 2k and a vector a = (a0, a1, . . . , an−1).
Ensure: A vector r containing DFTωn(a) = â = (â0, â1, . . . , ân−1).
1: bit-reverse-copy(a, r)
2: for s = 1, . . . , k do
3: m = 2s and ωm := exp(−2πi/m)
4: for ℓ = 0,m, 2m, . . . , 2k −m do
5: ω := 1
6: for j = 0, . . . ,m/2− 1 do
7: t := ωr[k + j +m/2]
8: u := r[k + j]
9: r[k + j] := u+ t

10: r[k + j +m/2] := u− t
11: ω := ωωm

12: end for
13: end for
14: end for
15: return r.

Dimitar : Complete!

1.3.3 Multiplying large integers - the method of Schönhage–Strassen

An efficient algorithm based on FFT that multiplies two n-digit numbers was discov-
ered in 1971 by Schönhage and Strassen [SS71]. The run-time of this algorithm is
O(n log n log log n) which is less than the run-time of Karatsuba multiplication. Note
that it outperforms the method of Karatsuba and other older methods for numbers
of more than 10,000 decimal digits. It is currently a part of the GNU Multiprecision
Library and is used for at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal
digits), depending on architecture. In addition, a Java implementation of the method
is used for implementing multiplication in Java for big integers of more than 74,000
decimal digits1.

The basic idea is the following: to multiply two numbers, e.g., 156 × 723, we

1The Java BigInteger class (https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html)
uses the algorithm of Schönhage and Strassen.
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consider first the linear convolution sequence:

1 5 6

7 2 3

3 15 18

2 10 12

7 35 42

7 37 55 27 18

The sequence (7, 37, 55, 27, 18) is known as the linear (or acyclic) convolution of the
two sequences (1, 5, 6) and (7, 2, 3). In general, for two n-digit numbers, the length
of that sequence is always 2n − 1. There are two useful convolutions computed out
of that sequence: the cyclic convolution and the negacyclic convolution. The cyclic
convolution in the example above yields the sequence

55 27 18

+ 7 37

55 34 55

The negacyclic convolution is

55 27 18

− 7 37

55 20 −19

The key observation is that the product of two n-digit base-b numbers is equivalent
modulo bn−1 to the cyclic convolution obtained from the two sequences corresponding
to the base-b digits of the numbers. Similarly, the product of two n-digit base-b
numbers is equivalent modulo bn + 1 to the negacyclic convolution. The Schönhage–
Strassen’s algorithm relies on the negacyclic convolution rather than the cyclic one
for various efficiency (and other) reasons that we explain below.

The idea uses a weighted version of the DFT algorithm in order to compute what
is called the negacyclic convolution. More precisely, letting vx and vy be the vectors
of base-b digits of the numbers x and y, we have

CyclicConvolution(vx, vy) = IDFTω(DFTω(vx) · DFTω(vy)),

and

NegacyclicConvolution(vx, vy) = A−1 · IDFTω(DFTω(A · vx) · DFTω(A · vy)),

where A = diag(ωi)ni=0 where ω is a primitive 2nth root of unity.
In order to apply the recursive DFT algorithm in practice to integers in b-base

representation, we need to work modulo some number N (what is known as the
Number Theoretic Transform, or NTT ). Over the real numbers R or the complex
numbers C, it was natural to use a primitive 2nth root of unity. Yet, it is not
automatic that such a root of unity would exist modulo N . We thus need to determine
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a special modulus N for which we have a primitive root of unity. If N is sufficiently
large, then computing xy mod N yields the product xy.

A major part of the algorithm is the careful choice of N to ensure that multipli-
cations the primitive root and reductions modulo N are performed very efficiently
(essentially, using only bit shifts and additions).

Algorithm 4 Schönhage-Strassen’s algorithm
Require: Integers x and y; an integer n
Ensure: Computes xy mod 2n + 1 using the negacyclic convolution
1: Decompose both x and y into 2k equal parts where 2k | n and set n′ to be the

smallest integer that is at least 2n/2k+k and is divisible by 2k (n′ is the recursion
length)

2: Compute A · vx and A · vy via shifts (the jth component shifted by n′j/2k)
3: Compute DFTω(A · vx) and DFTω(A · vy) via the NTT variant of RECURSIVE-DFT

(using ω = 22n
′
/2k as a primitive 2kth root of unity, one performs multiplications

as shifts)
4: Apply recursively the algorithm to compute the element-wise product DFTω(A ·
vx) · DFTω(A · vy)

5: Compute IDFTω(DFTω(A · vx) · DFTω(A · vy)) using the NTT variant of
RECURSIVE-DFT (multiplications are again shifts)

6: Multiply the result vector by A−1 using shifts only
7: return Result after carrying modulo 2n + 1.

The complexity is thus expressed in terms of the parameter k in Step 1. The opti-
mal k is when 2k ∼

√
n and in this case, we obtain a complexity O(n log n log log n).

1.3.3.1 An algorithm for polynomial multiplication in Q[x].

Note that the rational numbers Q do not contain a primitive 2nth root of unity.
Instead, assuming that n = 2k, we consider the polynomials in Q[x] modulo xn + 1.
We have the following congruences of polynomials:

xn ≡ −1 mod xn + 1 and x2n ≡ 1 mod xn + 1.

This means that the polynomial ω = x mod xn+1 is a 2nth root of unity. Since 2 is
invertible in Q, ω is a primitive 2nth root of unity. If we are able to replace arithmetic
in Q with arithmetic with rational polynomials modulo xn + 1, we will then be able
to compute the product of two polynomials in Q[x] of degrees at most n in O(n log n)
operations with polynomials mod xn + 1.

To make this precise, consider f, g ∈ Q[x] with deg(fg) ≤ 2n = 2k and let
m = 2⌊k/2⌋, t = 2n/m. Write the polynomials f and g as

f(x) = f0(x) + xmf1(x) + · · ·+ xm(t−1)ft−1(x)

and
g(x) = g0(x) + xmg1(x) + · · ·+ xm(t−1)gt−1(x),
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where the degrees of the fi’s and gi’s are less than m. We then see that

f(x) = F (x, xm) for F (x, y) = f0(x) + yf1(x) + · · ·+ yt−1ft−1(x),

and
g(x) = G(x, xm) for G(x, y) = g0(x) + yg1(x) + · · ·+ yt−1gt−1(x).

The key observation is that in order to compute fg, it suffices to compute FG modulo
yt + 1. Indeed, if

F (x, y)G(x, y) = H(x, y) + q(x, y)(yt + 1).

then
f(x)g(x) ≡ H(x, xm) mod xmt + 1 = H(x, xm) mod xn + 1.

1.3.3.2 An algorithm for large integer multiplication.

We are not presenting the version of the algorithm of Schönhage and Strassen, but
rather, a version based on the Chinese remainder theorem. Suppose that one has two
large integers a =

∑
0≤i<ℓ

ai2
Bi and b =

∑
0≤i<ℓ

bi2
Bi. We will also assume that ℓ does

not exceed 2B (typical examples that occurs in practice is B = 64). In this case,
we can choose three auxiliary primes p1, p2 and p3 between 2B−1 and 2B . In order
to obtain ab, it suffices to compute ab mod pi for each i = 1, 2, 3 and then use the
Chinese remainder theorem. If the pi’s are chosen appropriately (i.e., such that pi−1

is divisible by a large power of 2) then a mod p1 can be computed using FFT modulo
pi (by the choice of pi, there will be a primitive 2nth root of unity modulo pi).

1.4 Recent developments and summary

In 2007, Fürer [Für07] presented an algorithm for asymptotically faster multiplication
of very large integers compared to the algorithm of Schönhage and Strassen.

Surprisingly, a recent algorithm of Harvey and van der Hoeven [HvdH21] multiplies
two n-bit integers in O(n log n) operations, thus, proving a long-standing conjecture
of Schönhage–Strassen.

In summary, we have seen the following multiplication algorithms with indicated
complexities:

Algorithm Complexity
Schoolbook Multiplication O(n2)

Karatsuba O(nlog2 3)

Toom–Cook O(n1+ε)

Fast Fourier Transform O(n log n)
Schönhage–Strassen O(n log n log log n)
Harvey–vdHoeven O(n log n)
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1.5 Exercises

Exercise 1.1. 1. Prove in detail that if two maps T, g : R>0 → R>0 are bounded
on any bounded interval, satisfy T (x) = 2T (x/2) + g(x) for every real number
x ≥ 1 and g(x) = O(x), then T (x) = O(x log(x)).

2. Let a, b ≥ 2 be integers. Prove that if a map T : Z>0 → R>0 satisfies T (n) ≤
aT (⌈n/b⌉) for all n ≥ 1, then T (n) = O(nlogb(a)).

Exercise 1.2 (SAGE). Write a SAGE function Karatsuba(A, B) that takes two
integers A and B and returns their product using the algorithm from section 1.2.2.
Run and time the above algorithm on 100 pairs of uniformly random positive integers
less than 2512.

Exercise 1.3. Prove the correctness of the RECURSIVE-DFT algorithm supposing n =

2k.

Exercise 1.4 (SAGE). 1. Write the function RecursiveDFT taking as input a vec-
tor a ∈ Zn (e.g., the coefficients of a polynomial p(x) of degree n) as well as
a parameter ω (e.g., a complex root of unity) and that outputs the vector
â = DFTω(a). Here we can assume that n = 2k is a power of 2.

2. Write the function InverseRecursiveDFT.

3. Write a function DFT_product that computes the product of two integers, using
fast Fourier transform. It is not needed to implement Schönhage-Strassen’s algorithm,

but you can use the idea that 2 is a primitive 2n-th root of unity in Z/(2n + 1)Z. Otherwise

working with complex roots of unity is fine.



CHAPTER

2
Exponentiation
Algorithms

As hinted earlier in the course, one of the arithmetic operations that needs to be
optimized for both RSA encryption, RSA signatures as well as discrete-log based
systems is exponentiation. We now review various methods for fast exponentiation.

2.1 Basic Binary Ladders

The basic multiplication algorithm is based on binary ladders (we also commonly call
these square-and-multiply algorithms). The point is that they work as if we are doing
a recursion, except that they are still iterative.

Algorithm 5 BINEXP_LR
Require: A base x and an exponent y = (yd−1 . . . y0)2 in binary.
Ensure: xy.
1: z = x
2: for i = d− 2, . . . , 0 do
3: z := z2

4: if yi = 1 then
5: z := z · x
6: end if
7: end for
8: return z

For instance, the above algorithm will compute x23 as follows:

x23 = x2
4+22+2+1 =

(
((x2)2 · x)2 · x

)2 · x.
Note that if you want to do modular exponentiation (i.e., compute xy mod N),

you want to do modular multiplications in Steps 3. and 5.
This algorithm is essentially an “unrolled" version of the following simple recursive

algorithm POW below (which you will never use in practice for large exponents - why?).

An alternative way to compute x23 is as follows:

x23 = x · x2 · (x2)2 · (x8)2

21
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Algorithm 6 POW
Require: A base x and an exponent n.
Ensure: xn.
1: if n = 1 return x
2: if n is even return POW(x2, n/2)
3: if n is odd return POW(x2, (n− 1)/2) · x

This displays slightly better the binary expansion of the number 23. The right-to-left
binary ladder is then the following algorithm:

Algorithm 7 BINEXP_RL
Require: A base x and an exponent y = (yd−1 . . . y0)2 in binary.
Ensure: xy.
1: z := x
2: a := 1
3: for i = 0, . . . , d− 1 do
4: if yi = 1 then
5: a := z · a
6: end if
7: z := z2

8: end for
9: return a

A priori, the above algorithm seems to require the same number of multiplications
and squarings as Algorithm 7. There is one practical advantage of Algorithm 5 to
Algorithm 7, namely, that the multiplicand x in the former is fixed and in many cases
(e.g., primality testing, where x is small and one computes xn−1) the multiplication
z · x can be made quite fast.

To write the cost of the above algorithm, we assume that S is the cost of a squaring
and M is the cost of multiplication. The total cost is then (log y)S+HM where H is
the Hamming weight of the exponent y (i.e., the number of 1s in the binary expansion
of y).

2.2 Window exponentiation

There is an exponential algorithm that is slightly more general than the binary ladder
algorithms in the sense that it exploits the base-B representation of the exponent for
some B = 2b. It assumes that the exponents {x, x2, . . . , xB−1} have been precom-
puted. The algorithm is the following:

To illustrate the advantage of the windowing ladder, consider, e.g., computing x79.
First, 79 = (1001111)2 = (1033)4. For B = 22, the windowing ladder computes x79

as follows:
x79 =

((
x4
)4 · x3)4 · x3

The cost of this algorithm is 6S+2M . On the other hand, the binary ladder algorithm
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Algorithm 8 WINDOWING LADDER
Require: A base x and an exponent y = (yd−1 . . . y0)B in base B = 2b. We assume

precomputed values of {xm : 0 < m < B, m is odd}.
Ensure: xy.
1: z := 1
2: for i = d− 1, . . . 0 do
3: Write yi =: 2c ·m where m is either 0 or odd.
4: z := (xm)2

c · z
5: if i > 0 then
6: z := z2

b

7: end if
8: end for
9: return z

computes it as follows:

x79 =

(((
x2

3

· x
)2
· x
)2

· x

)2

· x,

and the cost is obviously 6S + 4M . Of course, one should not forget the cost of the
precomputation of {x, x2, x3}. Yet, if the exponent y is large, the windowing ladder
saves multiplications.

2.3 Fixed-base ladders

The previous algorithm windowing ladder algorithm provides a hint on how to get a
very efficient exponentiation algorithms when the base x is fixed (i.e., we reuse it for
performing multiple exponentiations with different y’s).

In this case, we can simply do a large precomputation to store all the values

{xℓB
j

: 1 ≤ ℓ ≤ B − 1, 1 ≤ j ≤ d− 1}.

Once this computation has been done, the algorithm then becomes very simple as

all we need is a multiplication for each B-ary digit, making a total of
log y

logB
multipli-

cations.

Algorithm 9 FIXED-BASE LADDER
Require: A base x and an exponent y = (yd−1 . . . y0)B in base B = 2b. We assume

precomputed values of {xm : 0 < m < B}.
Ensure: xy.
1: z := 1
2: for j = d− 1, . . . 0 do
3: z := (yj · xB

j

) · z
4: end for
5: return z
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2.4 Addition/Lucas chains/Montgomery ladder

We will see how this method works in the context of primality testing a little later in
the course. For the moment, all of the previous methods motivate the following basic
question:

Question 2.4.1. What is the length of the shortest addition chain sequence a0, a1, . . . , ar
such that a0 = 1 and ar = y? Here, addition chain sequence is defined as a sequence of
positive integers with the property that for every index i, there exist indices 0 ≤ j, k < i

such that ai = aj + ak.

The question of the length ℓ(y) of the shortest addition chain for the number y is an
interesting one. It is difficult to compute the exact value of ℓ(y). Yet, Erdös showed
that (see [Erd60])

ℓ(y) = log y + (1 + o(1))
log y

log log y
.

In practice, it is hard to compute the optimal addition chain, so one typically uses an
almost optimal chain (as we see in the examples above).

Lucas chains are special types of addition chains introduced by Peter Montgomery
[Mon83], originally as a method of speeding up scalar multiplications on elliptic curves
and subsequently, as performing exponentiations. It is an addition chain a0, a1, . . . , ar
such that a0 = 1, for each index i, there exist indices 1 ≤ j, k < i such that ai = aj+ak
with either aj = ak or |aj − ak| = am for some m. These are helpful to compute
recurrences of the form Xm+n = f(Xm, Xn, Xm−n). Montgomery also computes
lower bounds on the lengths of Lucas chains in [Mon83].

The concept of Lucas chains led Montgomery to propose a ladder that ended up
being helpful not only for elliptic curve scalar multiplications, but also for general
exponentiations. To explain the Montgomery ladder, let y = (yd−1 . . . y0)2 be the
binary expansion of the exponent and for each j, let Lj = (yd−1 . . . yj)2. Let Hj =

Lj + 1. Then

Lj = 2Lj+1 + yj = Lj+1 +Hj+1 + yj − 1 = 2Hj+1 + yj − 2.

The idea of the Montgomery ladder is to use to registers z0 and z1 in which one would
store xLj and xHj at any given step. Since

(Lj , Hj) =

{
(2Lj+1, Lj+1 +Hj+1) if yj = 0

(Lj+1 +Hj+1, 2Hj+1) if yj = 1,

this leads to the following algorithm:
Even if it might seem a priori that the Montgomery ladder has more multiplica-

tions than the LR or RL binary ladders, it should be noted that there are three main
reasons why the Montgomery ladder is of interest:

1. (Fixed R1/R0) - this properly was crucially used by Montgomery for speeding
up elliptic curve scalar multiplication (we will see how this work later in the
course, so we will not discuss it now).
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Algorithm 10 MONTGOMERY LADDER
Require: A base x and an exponent y = (yd−1 . . . y0)2.
Ensure: xy.
1: z0 := 1, z1 = x
2: for j = d− 1, . . . 0 do
3: if yj = 0 then
4: z1 := z0 · z1, z0 := (z0)

2

5: else
6: z0 = z0 · z1, z1 := (z1)

2

7: end if
8: end for
9: return z0

2. (Parallelization) - note that each pair of multiplications (in Line 4 and Line
6) can be parallelized as the multiplications are independent. For modular
exponentiation, this can be an advantage - if the cost of modular multiplication
is M , modular squaring is slightly faster, so the cost of each of these lines on a
machine with two processors is M .

3. (Common multiplicand) - it should be noted that the two pairs of multiplications
(both Lines 4 and 6) have a common multiplicand - if yj = b then the two
multiplications are zb · z¬b and (zb)

2. This allows for some practical speedups,
originally used for speeding up the above binary ladders [YL93]. The basic idea
is to express the two multiplications in terms of logical operations. Since the
common multiplicand in both cases is zb, we write

zcom := z0 ∧ z1, zb,c := zcom ⊕ zb, z¬b,c := zcom ⊕ z¬b,

and observe that z¬b = zcom + z¬b,c. We then have

zb · z¬b = zb · zcom + zb · z¬b,c,

and
(zb)

2 = zb · zcom + zb · zb,c.

Since zb · zcom is common for the two products, it can be computed only once.
The gain from the above computation comes from the fact that, on average, the
Hamming weights of zcom, zb,c and z¬b,c are half the Hamming weights of the
inputs, thus, the multiplications zb · zb,c, zb · zcom and zb · z¬b,c requiring half less
binary additions.

2.5 Exercises

Exercise 2.1 (SAGE). Here, you will do a few basic SAGE exercises related to some
bit operations.

1. Write a simple one-line command (in SAGE) that calculates 34324324 modulo
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21000000 using the Python/SAGE generic % (modulo) operator. Time the cal-
culation. You probably notice that it is quite slow. Using the Python “AND"
operator &, show how to write another one-line command that speeds this up.
Give a short justification of why you are getting the same answer. Now, imple-
ment a function myLSB(N, k) that takes as input integers N and k and outputs
the k least significant bits in the binary representation of N .

2. Recall Python’s right-shift (» k) and left-shift (« k) operators. Implement a
function myMSB(N, k) that takes an integer N and an integer k and returns the
k most significant bits of the binary representation of N .

Exercise 2.2 (SAGE). Implement Montgomery_mult and Montgomery_exp corre-
sponding to the Montgomery multiplication and exponentiation respectively. Test
the correctness of your functions using the % operator and compare the timing.

Exercise 2.3. 1. Write a recursive function Fibo_recursive(n) (i.e., your func-
tion calls itself) that outputs the n-th Fibonacci number (1, 1, 2, 3, 5, 8, 13,
...).

2. Write an iterative function Fibo_iterative(n) (i.e., using a for loop) that
outputs the n-th Fibonacci number.

3. Run your two functions on n = 32, time and compare the results.

Exercise 2.4. For an integer n ≥ 1, let ℓ(n) be the shortest length of an addition
chain a0 = 1 < a1 < ... < aℓ(n) = n (i.e., for every integer k such that 1 ≤ k ≤ ℓ(n)

there are indices 0 ≤ i, j < k such that ai + aj = ak). In this exercise, we are going
to show that ℓ(n) ∼ log2(n).

1. Show that if 2s ≤ n < 2s+1 and s ≥ 1 then s ≤ ℓ(n) ≤ 2s.

2. Prove that if r ≥ 1, s ≥ 0 are integers such that 2rs ≤ n < 2r(s+1) then there
is an addition chain1 for n of length at most (r + 1)s+ 2r − 2 and which starts
with ai = i for all i ∈ {0, ..., 2r − 2}, that is:

a0 = 1, a1 = 2, a2 = 3, ..., a2r−2 = 2r − 1.

Hints: proceed by induction on s. In the induction step, you can work with the euclidean

division of n by 2r (and use the induction hypothesis on the quotient).

3. By choosing r = ⌈log(log(n))⌉ for n ≥ 3 in b), where log = ln is the logarithm
in base e, deduce that ℓ(n) ≤ log2(n)(1 + o(1)) as n→ +∞.

Exercise 2.5. Find an addition chain a0 = 1 < a1 < ... < a15 = 2047 of length 15
for n = 2047.

1To be very precise for the case s = 0, we should say "there is an addition chain for max{n, 2r−1}".



CHAPTER

3
Modular and Finite
Field Arithmetic

3.1 Congruences and Modular Arithmetic

Assuming that most of you have followed a course on abstract algebra, I will spend
less time recalling basic facts about congruences, but rather give you some exercises
on these. Recall that for integers a, b,N ̸= 0, we say that a is congruent to b modulo
N and write a ≡ b mod N if N | a − b. One of the most basic tools from public
key cryptography, the RSA algorithm, relies on congruences. We thus need a way
of efficiently performing modular arithmetic (modular addition, multiplication and
exponentiation). At the same time, cryptographic schemes based on the discrete
logarithm problem (either for finite fields or for elliptic curves) heavily rely on finite
field arithmetic. In this lecture, we will learn some basics on how one performs efficient
modular and finite field arithmetic on modern computer architectures.

3.1.1 Theorems of Fermat and Euler

We recall two basic theorems that will be needed for, e.g., the RSA protocol. You
will prove these in one of the exercises:

Theorem 3.1.1 (Fermat’s little theorem). If p is a prime and a ∈ Z is coprime to p
then

ap−1 ≡ 1 mod p.

Now, if N is an integer, φ(N) will denote the number of integers in {1, . . . , N}
that are coprime to N . For instance, φ(5) = 4 and φ(6) = 2.

Theorem 3.1.2 (Euler’s theorem). If a ∈ Z is such that (a,N) = 1 then aφ(N) ≡
1 mod N .

Remark 1. The main idea behind the RSA protocol comes from the observation that
if N = pq for large primes p and q then if one knows only N (without p and q),
computing φ(N) = (p− 1)(q − 1) is hard (equivalent to factoring N).

27



28 Chapter 3. Modular and Finite Field Arithmetic

3.2 Newton Methods - Barrett’s Algorithm

In order to get deeper into how the RSA algorithm is implemented in modern archi-
tectures, one needs to understand better modular arithmetic.

The first step for this is to discuss the computations of the classical functions
div and mod. These will be useful in almost any classical public-key cryptographic
operation (e.g., RSA encryption/decryption).

The naïve idea for computing these functions resembles schoolbook multiplication.
Knuth studies in detail the complexity of division with remainder in multiprecision
arithmetic [Knu, Alg.4.3.1.D]. In particular, to compute ab mod N where a, b < N

are two integers, it takes O((log2N)2) multiplications and O(log2N) divisions. But
divisions are much more expensive than multiplications. Hence, one may want to look
for an algorithm that uses multiplications only.

A method for reducing an integer a mod N using only multiplications was pro-
posed by Barrett [Bar86]. To compute a mod N , the basic idea is to invert N as a
floating point number, i.e., s = 1/N and then use that

a mod N = a− ⌊as⌋N.

To better understand the method, let us restrict to single-word arithmetic i.e.,
we assume that the values fit into a single machine word. In this case, Barrett
reduction tries to approximate 1/N with a number of the form m/2k for a given k

(here, m corresponds to the mantissa and −k corresponds to the exponent; notice
the minus sign corresponding to the normalization in the definition of floating point
representation). In order to compute m, we use m ∼ 2k/N and hence, we wish to find
the nearest integer to 2k/N . Yet, if m > 2k/N , this will create an overflow, hence,
we wish to take m = ⌊2k/N⌋.

With this choice (assuming sufficient precision in the floating-point representation
- to be carefully analyzed later), the division is replaced by the simpler operation that
first computes (what we would like to call the quotient)

q := (a ·m)≫ k,

where≫ represents the right-shift operator. There is a minor technical detail: because
of the choice of m above, it could be that q is one less than the value of the actual
quotient, i.e., a− qN can be an integer in the interval [0, 2N) instead of [0, N) which
means that an extra subtraction might be needed. We formally prove this in the
following lemma:

Lemma 3.2.1. Let N be a modulus and let a be an integer such that a ≤ N2. Let k

be any integer such that 2k−1 > N , let m =

⌊
2k

N

⌋
and let q =

⌊am
2k

⌋
. Then

0 ≤ a− qN < 2N.
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Proof. First, note that by the choice of k, a < 2k. We then write

a− qN = a−
⌊am
2k

⌋
N = a−

(
am− (am mod 2k)

2k

)
N =

= a− aN

2k
m+

(am mod 2k)N

2k
=

= a− aN

2k

(
2k − (2k mod N)

N

)
+

(am mod 2k)N

2k
=

=
a(2k mod N)

2k
+

(am mod 2k)N

2k
< 2N,

which proves the lemma.

The method can be generalized to multi-precision arithmetic as well. It can also
be viewed as a generalization of Newton’s method. Once the precomputation step
has been done, it requires one multiplication of two log2N -bit numbers and hence, a
complexity of O((log2N)2) and we have avoided the expensive divisions.

3.3 Montgomery Arithmetic

Suppose that you want to compute ab mod N where N is a large modulus and a

and b are large integers. Montgomery arithmetic, introduced by Peter Montgomery
in 1985 [Mon85], is another method of performing fast modular multiplication and
exponentiation.

The method requires representing integers modulo N in a special form known as
Montgomery form. For a single multiplication, it is slower than Barrett reduction,
yet, if one is performing many subsequent multiplication (e.g., in an exponentiation
algorithm) where one can keep the intermediate results in Montgomery form, it out-
performs Barrett reduction.

More specifically, let B be the radix (depending on the computer architecture)
and choose s such that R = Bs > N . We refer to R as the Montgomery radix. The
Montgomery form of the residue a mod N is defined by as a = aR mod N .

Given two integers u and v, define their Montgomery product to be M(u, v) =

uvR−1 mod N . Observe that one has u mod N = M(u, 1) and also M(u, v) = uv.
The main idea is that, given two integers u and v mod N , it is very efficient to
compute the Montgomery product M(u, v) if the Montgomery radix R is a power of
2. This means that we can efficiently perform Montgomery modular multiplication
and exponentiation given the Montgomery forms, assuming that we have performed
the conversion of the original inputs into Montgomery form.

As the conversion is not cheap, computing the product of a single pair of integers
is not justified using this method and is often slower than more classical modular
arithmetic algorithms such as reduction by division or Barrett’s method [Bar86]. Yet,
if one performs many modular multiplications or a modular exponentiation (the latter
requires many many multiplications), it is better to use Montgomery product as this
will lead to speedups.
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The main observation for computing the Montgomery product fast is summarized
in the following lemma (a very simple exercise on congruences):

Lemma 3.3.1. Suppose that (N,R) = 1 and let N ′ = N−1 mod R. Then y =

x−N(xN ′ mod R) is divisible by R and

y/R ≡ xR−1 mod N. (3.1)

If 0 ≤ x < NR then y/R− (xR−1 mod N) is either 0 or −N .

Proof. y ≡ 0 mod R is a direct consequence of NN ′ ≡ 1 mod R. The second state-
ment is then a consequence of y ≡ x mod N and (R,N) = 1.

The lemma indeed shows that computing the Montgomery product M(u, v) is fast
if the Montgomery radix is R = 2s - if x < NR then computing xN ′ mod R is simply
xN ′&(R − 1). If we have precomputed N ′, it reduces to a single multiplication and
an & (AND) operation.

3.3.1 Montgomery multiplication

The algorithm that computes efficiently M(a, b) provided R = 2s and R > N is the
following:

Algorithm 11 MONTGOMERY-MULT
Require: A modulus N , two integers 0 ≤ a, b < N and a Montgomery radix R =

2s > N .
Ensure: The Montgomery product M(a, b).
1: x = a · b
2: z = x−N · ((x ·N ′)&(R− 1))≫ s (bit-shift s positions to the right)
3: if z < 0 then
4: z := z +N
5: end if
6: return z.

3.3.2 Montgomery exponentiation

Using Algorithm 11, we can design an efficient modular exponentiation algorithm that
computes xy mod N fast.

Note that for Steps 1. and 2. one can use any divide / mod method (these steps
are implemented only in the initialization stage). After Step 8., the value of r is
indeed xy, so the algorithm returns the correct result. The upshot is that any of
the modular multiplications inside the for loop are Montgomery multiplications and
hence, efficient (given by Algorithm 11).

3.3.3 Montgomery reduction and Montgomery arithmetic

As we saw, the identity M(u, v) = uv implies that one can compute the Montgomery
form of the product of two integers modN assuming one has the Montgomery form
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Algorithm 12 MONTGOMERY-EXP
Require: (N,R) as above, a residue 0 < x < N and an exponent y =

(yt−1yt−2 . . . y0)2 in binary.
Ensure: xy mod N .
1: x = xR mod N
2: r = R mod N
3: for i = t− 1, . . . , 0 do
4: r =M(r, r)
5: if yi = 1 then
6: r =M(r, x)
7: end if
8: end for
9: return M(r, 1)

of the two integers. In order to apply such an algorithm, one clearly needs to compute
efficiently the transformation of an integer mod N into its Montgomery form.

The naïve approach for that is to simply compute xR mod N (or xR−1 mod N if
we want to go from Montgomery form of the result to the result itself). To compute
xR−1 mod N faster than this naïve method, one uses what is called Montgomery
reduction. You will learn more about this algorithm in the homeworks/programming
assignments, but we will describe the idea here.

To convert an integer x mod N to Montgomery form, instead of the naïve idea,
we can simply compute (assuming we have precomputed the Montgomery form R

of R) the Montgomery product M(x,R) = x · R2 · R−1 = xR mod N . To convert
from Montgomery form x to the integer x mod N , we simply compute M(x, 1) =

xR ·R−1 = x mod N .

3.3.4 Concurrent Montgomery multiplication

It is interesting to consider how one can speedup Montgomery multiplication using
vectorized instructions (SIMD) or even graphic processing units (GPUs). Extensive
research has been done to address these two questions which we describe below. The
GPU acceleration is based on the Chinese remainder theorem or residue number sys-
tem (RNS) representation of integers. It enables to replace the expensive operations
modulo the large RSA moduli with concurrent modular operations modulo much
smaller moduli.

3.3.4.1 Working with multiprecision integers

In the multiprecision case (i.e., the case s > 1), Montgomery multiplication interleaves
the multiplication and the reduction step, the advantage being that the intermediate
results never exceed s+ 1 machine words.

More precisely, if x = x0 +Bx1 + · · ·+Bs−1xs−1 then computing xyR−1 mod N

amounts to iterating over i = 0, . . . , s− 1 and performing the following steps at each
iteration:

1. z := z + xiy
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2. q := (N−1 mod B)z mod B

3. z := (z +Nq)/B

Here, z is initialized to 0 and at the end of the loop, if necessary, we correct in case
N ≤ z < 2N by updating z := z −N .

3.3.4.2 Concurrent Montgomery multiplication with SIMD instructions

The first work to show that Montgomery multiplication on the 256-bit vector instruc-
tion set AVX2 outperforms the same computation on the ALU of x86_64 platform was
[GK15].

The following algorithm uses two threads running in parallel to compute Mont-
gomery multiplication (a 2-way SIMD vector instructions found on modern proces-
sors). References are [BMSZ13] and [SLG+14].

One can try to compute the two multiplications from Section 3.3.4.1 in parallel.
The problem is that, a priori, these are dependent on each other. The idea to remove
the dependency is to compute q first. This changes the order:

1. q := (N−1 mod B)(z0 + aib0) mod B

2. z := z + xiy

3. z := (z +Nq)/B

There is a small penalty that one pays for that, namely, computing the first word
z0 of z twice. Indeed, one needs it in order to compute q and then one recomputes
it a second time in the second step. While that might seem like an overhead, it is a
relatively small penalty that one pays to remove the dependency of the multiplica-
tions and thus, compute the two multiplications in parallel (i.e., 2-way SIMD vector
instructions). This is essentially the idea of [BMSZ13]. An even more efficient ap-
proach is presented in [SLG+14] where, instead of scheduling the two multiplications
in parallel, a 2-way SIMD approach is used for each of this multiplications to remove
the read-after-write dependencies and reduce the number of bubbles (execution delays
on the instruction pipeline).

3.3.4.3 Montgomery multiplications via the residue number system represen-
tation

A residue number system (RNS) is an integer representation based on the Chinese
remainder theorem (CRT) [Gar59]. A large integer x is represented as a vector of small
integer values (x1, . . . , xn) where xi is the residue of x modulo ri for independent and
pairwise coprime moduli r1, . . . , rn. The RNS modulus R = r1 . . . rn and, given an
integer x modulo R, the representation of x is simply

(x1, . . . , xn) = (x mod r1, . . . , x mod rn).
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Converting back to x is done as follows: let Ri ≡ (R/ri)
−1 mod ri (i.e., Ri is an

integer in [0, ri)). Recovering x is then

x =

n∑
i=1

xiRi ·
R

ri
mod R.

The advantage is that one can do many small computations concurrently modulo the
small integers ri. We call the system of moduli {r1, . . . , rn} an RNS basis.

A classical reference for modular reduction in residue number systems (RNS) is,
e.g., [PP95] or [BDK98]. Significant effort has been made to use graphic cards (graphic
processing units, or GPUs) in accelerating public-key cryptography [BI04], [MPS07],
[SG08].

Here, we present one possible version of a GPU-friendly algorithm.

• Take an RNS basis Bn = {r1, . . . , rn} and define an RNS modulus R = r1 ·· · ··rn.

• Idea: use the RNS modulus R as the Montgomery radix.

• As N is not an RNS modulus (either a prime or a product of two primes), need
an auxiliary RNS basis B′n = {r′1, . . . , r′n} with RNS modulus R′ = r′1 · · · · · r′n.

Suppose that we want to compute xyR−1 mod N on highly parallel architectures
like GPUs. Letting X (resp., X′) and Y (resp., Y′) be the representations of x and y
with respect to Bn (resp., B′n), the Montgomery product is computed via the following
steps:

1. Compute Z := X ·Y and Z′ := X′ ·Y′. Here, the product means that at the
ith component we compute xiyi mod ri.

2. Compute xy(N−1 mod R) mod R by computing Q = N−1 · Z (with respect to
the RNS basis Bn).

3. Convert Q := −N−1 · Z to Q′ in basis B′n .

4. Compute C′ := (Z′ +Q′ ·N′) ·R−1 in B′n,

5. Convert C′ to C in basis Bn to recover the result.

3.4 Finite Field Arithmetic

Finite fields play an important role in public key cryptographic protocols based on
discrete logarithms. If F = Fp is a prime field, arithmetic in F reduces to arithmetic
in Z/pZ. Here, we review basic techniques for finite field arithmetic on prime fields
Fp finite field extensions of Fp.
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3.4.1 Basics on finite fields and finite field extensions

We know from abstract algebra that F = Z/NZ is a field if and only if N is a prime.
A finite field is a field F with finitely many elements. For any prime p, we denote by
Fp the finite field with p elements.

Recall that a finite field F has a characteristic char(F ) that is the smallest integer
n such that 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0. The characteristic is always a prime number p. In

addition, if char(F ) = p then this means that Fp ⊂ F , i.e., F is a Fp-vector space.
This means that |F | = pn for some n > 0. Next, we recall that the multiplicative
group of a prime field is cyclic.

Proposition 3.4.1. The multiplicative group of a finite field F×pn is cyclic.

Proof. We vaguely recall the idea of the proof. If a ∈ F∗pn , one can talk about the
orderm of a, i.e., the smallest integerm such that am = 1 in F∗pn . Note thatm | pn−1.

Next, if a has order s and b has order t, and gcd(s, t) = 1 then one can show that
ab has order st. To prove then that F×pn is cyclic, we factor pn−1 = qα1

1 . . . qαr
r (where

all qi are primes) and then we show that for each i there is an element gi such that
the order of gi is qαi

i . Indeed, one can easily show that Xq
αi
i − 1 has a root that is

not a root of Xq
αi−1

i − 1. To complete the proof, we take g = g1 . . . gr.

One can prove that there is a unique finite field F (up to isomorphism) with
|F | = pn (we will not give a proof here). Yet, we summarize the main results on finite
fields in the following theorem:

Theorem 3.4.2. Let p be a prime and let q = pn for some n ≥ 1. Then

1. There exists a finite field F with q elements.

2. Any two fields of q elements are isomorphic.

3. If F is a field of order q then the multiplicative group F ∗ is cyclic of order q−1.

4. The elements of F are the roots of the polynomial Xq − X ∈ Fp[X] and this
polynomial factors into a product of distinct linear factors.

5. Every irreducible polynomial of degree n over Fp is a factor of Xq − X. The
irreducible factors of Xq −X are precisely the irreducible polynomials over Fp

whose degrees divide n.

6. A field F of order q contains a subfield of order q′ = pn
′
if and only if n′ | n.

The theorem then implies that a way to construct the unique (up to isomorphism)
finite field of pn elements is to choose any irreducible polynomial f(X) of degree n
over Fp and to consider the polynomials in Fp[X] modulo f(X) under addition and
multiplication. More precisely, the quotient ring

Fp[X]/⟨f(X)⟩ ∼= Fpn .

For those familiar with the theory of rings and ideals, ⟨f(X)⟩ ⊂ Fp[X] denotes the
ideal generated by f(X).
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Example 2. The simples example of a non-prime field is p = 2 and n = 2. In that
case, the only irreducible polynomial of degree 2 over F2 is f(X) = X2 +X + 1 and
hence, F4

∼= F2[X] mod X2 +X + 1.

For all practical applications of finite fields, the choice of the polynomial f(X) in
the construction of Fpn matters (a good example is the implementation of AES in
symmetric key cryptography where a special choice of f(X) for F2128 allows for very
efficient computations.

3.4.2 Irreducible polynomials over Fp

Let f(d) be the number of irreducible polynomials of degree d over Fp. The polynomial
Xpn −X ∈ Fp[X] factors over Fp is a product of all irreducible polynomials of degree
dividing n. This means that (comparing degrees)∑

d|n

f(d)d = pn (3.2)

In order to invert (3.2), one uses the Möbius function µ(d) (look it up on google) and
arrives at the following formula due to Gauss:

f(n) =
1

n

∑
d|n

pdµ
(n
d

)
.

This is asymptotically ∼ 1

n
pn which means that a randomly chosen monic polynomial

of degree n will be irreducible with probability
1

n
. Thus, to compute an irreducible

polynomial, one can try choosing a random monic polynomial f(X) of degree n and
calculating gcd(f(X), Xpm −X) for m = 1, 2, . . . , ⌊n2 ⌋ (if the gcd is trivial for every
m then f(X) is irreducible).

Remark 2. One should compare this result with the prime number theorem where
the number π(x) of primes primes in the interval [1, x] is asymptotically

x

lnx
. For

example, if x = 2n then

#primes less than or equal to 2n ∼ c 1
n
2n #irred. poly’s of degree n = c̃

1

n
pn,

for some constants c, c̃ > 0.

3.4.3 Normal bases

Let k be an integer and let Fpk/Fp be the finite field extension of degree k of Fp.
Then Fpk can be viewed as an Fp-vector space of dimension k.

Definition 3.4.3 (normal basis of a finite field extension). A basis B of Fpk (as an
Fp-vector space) is called normal if

B = {α, αp, αp2

, . . . , . . . αpk−1

}
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for some α ∈ Fpk that is a root of an irreducible polynomial f(X) ∈ Fp[X] of degree
k.

The advantage of normal bases in cryptography is that they speed up arithmetic
significantly. The reason for that is that computing the pth power of an element (or,
its image under Frobenius) is simply a circular shift of the coefficients. Indeed,(

a0α+ a1α
p + a2α

p2

+ · · ·+ ak−1α
pk−1

)p
= ap0α

p + ap1α
p2

+ · · ·+ apk−1α
pk

=

= ak−1α+ a0α
p + · · ·+ ak−2α

pk−1

,

since api = ai and (u+ v)p = up + vp for any u, v ∈ Fpk .

3.4.4 Inversion using normal bases

Computing multiplicative inverses in finite fields can be made fast using normal bases.
Indeed, note that for any element x ∈ F∗pk and any integer r

x−1 = (xr)−1xr−1.

Take r =
pk − 1

p− 1
. Then r− 1 = p+ p2 + · · ·+ pk−1 and hence, one can compute xr−1

using at most log2(k−1) multiplications in Fpk and the (fast) Frobenius computations.
The log2(k − 1) comes from the fact that

xp+p2+···+pm

· xp
m(p+···+pm) = xp+···+p2m

.

One can thus quickly compute xr−1. To compute (xr)−1, we observe that xr is an
element of Fp ⊂ Fpk and hence, computing its inverse is much faster.

3.4.5 Examples of normal bases

Let p be an odd prime and let q be a prime such that p is a primitive root modulo q,
i.e., p mod q is a generator of F∗q . One can show (see homework exercise) that

f(X) =
Xq − 1

X − 1
= Xq−1 + · · ·+X + 1

is an irreducible polynomial of Fp[X].
In this case, we obtain an optimal normal basis as follows: suppose that α is a

root of f(X). Then it follows that αpi

is a root of f(x) as well for i = 0, 1, . . . , q − 1.
In addition αm = αm mod q for every m. Since p mod q is a generator for F×q , it
follows that {p mod q, p2 mod q, . . . , pq−1 mod q} is a permutation of {1, . . . , q − 1},
i.e., {α, αp, . . . , αpq−2} is a normal basis for the field extension Fpq−1 . We summarize
this in the following:

Proposition 3.4.4. Let p be an odd prime and let q be a prime such that p is a
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primitive root modulo q, i.e., p mod q is a generator of F∗q . Then the polynomial

f(X) =
Xq − 1

X − 1
= Xq−1 + · · ·+X + 1 ∈ Fp[X]

is irreducible and if α is a root of f then {α, αp, . . . , αpq−2} is a normal basis of the
field extension Fpq−1/Fp.

3.5 Exercises

Exercise 3.1. Let p be a prime. We refer to a set of integers {b1, . . . , bp−1} as a com-
plete residue system mod p if the set {b1 mod p, . . . , bp−1 mod p} is a permutation
of {1, . . . , p− 1}.

1. Let {b1, . . . , bp−1} be a complete residue system. Show that if a is an integer
that is relatively prime to p then {ab1, . . . , abp−1} is again a complete residue
system.

2. Use (a) to deduce Fermat’s little theorem, i.e., if gcd(a, p) = 1 then ap−1 ≡ 1

(mod p).

3. How can you prove Euler’s theorem with a similar idea?

Exercise 3.2. Let p be a prime. For 0 ≤ k ≤ p, consider the binomial coefficients(
p

k

)
=

p!

k!(p− k)!
.

1. Prove that if 0 < k < p then
(
p

k

)
is divisible by p.

2. Use (a) to show that if x and y are arbitrary integers then

(x+ y)p ≡ xp + yp mod p.

3. Use (b) and induction to show that if x1, . . . , xk are integers then

(x1 + x2 + · · ·+ xk)
p ≡ xp1 + · · ·+ xpk mod p.

Use that to give another proof of Fermat’s little theorem.

Exercise 3.3. Let φ(n) be the Euler totient function (i.e., the number of integers in
{1, 2, . . . , n} that are coprime to n). Show that

∑
d|n

φ(d) = n.

Exercise 3.4. Recall how the RSA algorithm works. Moreover, given an odd integer
N which is known to be a product of two distinct primes p, q, prove that computing
ϕ(N) := (p−1)(q−1) is equivalent to factoring N . Note: this does not mean that breaking

RSA is equivalent to factoring N .
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Exercise 3.5. Let p be an odd prime and let q be a prime such that p (viewed as an
element mod q and hence, of Fq) is a primitive element of F×q (i.e., that p generates
the cyclic group F×q ). Consider the polynomial

f(X) =
Xq − 1

X − 1
= Xq−1 + · · ·+X + 1 ∈ Fp[X].

Let α be a root of f(X) and Fp(α) be the finite field extension of Fp generated by α.

1. If Fp(α) ∼= Fpd , show that q | (pd − 1).

2. Show that d = q − 1 and deduce that f is irreducible.

3. Show that f(αpi

) = 0 for all i ∈ {0, 1, . . . , q − 2}.

4. Let α be as above. Show that the set of elements {α, . . . , αq−1} is the same as
the set of elements {[}

]
αp0

, αp1

, . . . , αpq−2

.

5. Deduce that {αp1

, . . . , αpq−1} is a normal basis for Fpq−1 over Fp. In fact, one
calls this basis an optimal normal basis.

Exercise 3.6. Prove that if g is a primitive element (= multiplicative generator) of
F×pn and if d | n then g(p

n−1)/(pd−1) is a primitive element of F×
pd .

Exercise 3.7. We have seen that we can construct F9 by adjoining to F3 the roots
of an irreducible monic polynomial of degree 2.

1. Check that f(X) = X2−X−1 ∈ F3[X] is an irreducible polynomial and call α
a root of this polynomial (in some algebraic closure of F3). All the elements of
F9 can be written as a + bα for some a, b ∈ F3 (you don’t need to prove this).
Show that α is a generator of the multiplicative group F×9 (explain in detail
your computations).

2. Find the discrete logarithm of α− 2 to the base α− 1, if it exists. That is, find
an integer n ∈ Z such that (α− 1)n = α− 2 ∈ F9.

Exercise 3.8 (SAGE). Construct with SAGE the finite fields Fp, Fpn and Fp[X]/(P (X))

for some irreducible polynomial P (X) over Fp[X].
For various values of prime numbers p and integers n > 1 (e.g. p = 23, n = 10),

find what irreducible polynomial f(X) ∈ Fp[X] is used in SAGE to construct the
finite field Fpn .

Exercise 3.9 (SAGE). We say that x ∈ F×p is a square (or a quadratic residue) if
there exists y ∈ F×p such that x = y2. Write a program counting how many squares
there are in F∗p. Compute this number for all p < 100 and give a formula for this

number. Prove this formula. Prove that x ̸= 0 is a square if and only if x
p−1
2 = 1 in

F∗p.

Exercise 3.10 (SAGE). Write in SAGE a function computing the euclidean division
between two polynomials in Fp[X].

https://en.wikipedia.org/wiki/Algebraic_closure
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Exercise 3.11. In this exercise, we will study the following probabilistic algorithm
which outputs a generator of F∗p, when p is a given odd prime number such that the
factorization into prime powers of

p− 1 =

r∏
i=1

qeii

is known.

Algorithm 13 Probabilistic generator
Require: A prime p and factorization p− 1 =

∏r
i=1 q

ei
i .

Ensure: A generator γ of F∗p.
1: for i = 1, . . . , r do
2: βi := 1
3: while βi = 1 do
4: pick α ∈ F×p randomly
5: βi := α(p−1)/qi

6: γi := α(p−1)/qeii

7: end while
8: end for
9: return γ :=

∏r
i=1 γi

1. Prove that the algorithm indeed returns a generator of F∗p when it terminates.

2. At a given step i, what is the probability that βi = 1 in the while loop? Deduce
the expected number of trials before getting βi ̸= 1. (Hint : you can use the fact

that the expected value of a geometric distribution with success probability p0 is 1/p0).

3. Using the previous part, show that the expected running time of the algorithm
is O(log(p)d) for some integer d > 0.

4. (optional) Implement the algorithm in SAGE. You are allowed to use a factor-
ization function from SAGE to pre-compute the factors qeii of p− 1.





CHAPTER

4
Factoring Polynomials
over Finite Fields

4.1 Polynomial rings and quotient rings of polyno-
mial rings

4.1.1 Commutative rings with unity

Recall the following basic abstract algebra definition to be used throughout:

Definition 4.1.1 (Commutative ring with unity). A commutative ring with unity R
is a set, together with two group operations “+" (addition) and “·" (multiplication)
that satisfies the following properties:

1. R is an abelian group under +,

2. R is closed under multiplication, · is commutative, associative and there exists
a multiplicative identity (unity) 1R ∈ R,

3. Multiplication and addition satisfy the distributive law, namely for any a, b, c ∈
R,

a · (b+ c) = a · b+ a · c.

Remark 3. Examples of commutative rings with unity are R = Z, R = Z/NZ or
R = Z[x]. An example of a commutative ring without unity is R = 2Z.

Remark 4. One easily shows the following two basic facts about commutative rings
with unity:

1. The multiplicative identity 1R is unique. Indeed, if 1′R, 1
′′
R ∈ R are two multi-

plicative identities, then
1′R = 1′R · 1′′R = 1′′R.

2. If 0R is the zero element of the additive group of R then 0R · a = 0R for any
a ∈ R. Indeed, by the distributive law,

a · 0R = a · (0R + 0R) = a · 0R + a · 0R =⇒ a · 0R = 0R.

Given a commutative ring R with unity, one can consider the set R× of units in R
(in other words those elements that have inverses in R). It is easy to check that R× is a

41
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group under multiplication. Note that Z× = {±1}, (Z/NZ)× = {a : gcd(a,N) = 1}.
In particular, (Z/NZ)× = Z/NZ− {0} if and only if N is prime.

Definition 4.1.2. Let R be a commutative ring with unity. We call a non-zero
element a ∈ R a zero divisor if there exists a′ ∈ R, a′ ̸= 0R such that a · a′ = 0R.

The ring Z has no zero divisors, whereas Z/NZ has zero divisors if and only if
N is composite. For instance, if N = pq then p mod N and q mod N are both zero
divisors.

4.1.2 Polynomial rings and quotient rings of polynomial rings

If K is a field then the polynomial ring in one variable over K is the set K[X] of
polynomials p(X) = a0+a1X+ · · ·+anXn with coefficients ai ∈ K. For the purpose
of the course, we will be mainly interested in polynomials with coefficients in finite
fields. Here, we recall basic facts about finite field extensions. The ring K[X] enjoys
several important properties.

First, we know that if f(X), g(X) ∈ K[X] with g(X) ̸= 0 then there exist unique
polynomials r(X) and q(X) of K[X] with deg r(X) < deg g(X) such that

f(X) = g(X)q(X) + r(X).

This is simply the division with remainder property for polynomials. This makes
R[X] into what we call Euclidean domain.

4.1.3 The Chinese remainder theorem for quotient rings of poly-
nomial rings

We will state it for polynomial rings only: suppose that K is a field and f ∈ K[X] is
a polynomial that factors as f(X) = f1(X)e1 . . . fr(X)er where f1(X), . . . , fr(X) are
distinct irreducible polynomials. We have the following:

Theorem 4.1.3 (Chinese remainder theorem). The standard projections K[X] →
K[X]/⟨fi(X)ei⟩ yield a ring homomorphism

R[X]→ R[X]/⟨f1(X)e1⟩ × · · · ×R[X]/⟨fr(X)er ⟩,

whose kernel is exactly the ideal ⟨f(X)⟩. There is thus an isomorphism

R[X]/⟨f(X)⟩ ∼= R[X]/⟨f1(X)e1⟩ × · · · ×R[X]/⟨fr(X)er ⟩.

4.2 Factorization of polynomials

Let Fq be the finite field of q elements for some q = pk. We will describe two classical
algorithms for factoring polynomials over Fq: Berlekamp’s algorithm and Cantor–
Zassenhaus algorithm.
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4.2.1 Testing polynomials for repeated factors

Let q = pk for some prime p and let f(X) ∈ Fq[X] be a polynomial. Suppose that
one wants to test whether there is a repeated factor in the decomposition of f(X)

into irreducibles. We start with the following observation:

Lemma 4.2.1. If f ′(X) = 0 then there exists a polynomial g(X) such that f(X) =

g(X)p.

Proof. Note that f ′(X) = 0 if and only if f(X) =

n∑
i=0

aiX
pi, this is to say f(X) =

g(Xp) where g(X) =

n∑
i=0

a
q/p
i Xi. But g(Xq) = g(X)q.

The lemma, together with the computation of gcd’s of polynomials can be used in
a recursive procedure to find the polynomial h(X) that is the (square-free) product
of all irreducible factors of f(X) with no multiplicities: set initially u(X) := f(X)

and h(X) := 1 and keep applying Lemma 4.2.1 to u(X) updating the latter with the
corresponding polynomial g(X) (from the Lemma) at each step until u′(X) ̸= 0. Com-
pute then v(X) := gcd(u(X), u′(X)). If v(X) = 1 then u(X) is square-free, update
h(X) := lcm(h(X), u(X)) and return h(X). Otherwise, the polynomial u(X)/v(X) is
square-free of degree less than deg u and one updates h(X) := lcm(h(X), u(X)/v(X)),
u(X) := v(X) and repeats the process with u(X) and h(X) until termination.

Since Berlekamp’s algorithm works only for square-free polynomials, we can re-
cover the irreducible factors of f(X) by computing the irreducible factors of the
resulting h(X).

Example 3. Consider f(X) = X5(X + 1) over F5[X]. Initially, we have u(X) =

X5(X + 1) and h(X) = 1. Then u′(X) = X5 and v(X) = gcd(f(X), f ′(X)) = X5,
so we update h(X) = (X + 1) and u(X) = X5. We apply Lemma 4.2.1 to update
u(X) := X. Repeating the process terminates the algorithm with h(X) := lcm(X,X+

1) = X(X + 1).

4.2.2 A brief summary of Berlekamp’s algorithm

Let f(X) ∈ Fq[X] be a polynomial of degree n that is square-free (i.e., that has no
repeated factors). The quotient ring

R = Fq[X]/⟨f(X)⟩

is the set of all polynomials of the form c0 + c1X + · · · + cn−1X
n−1, where addition

and multiplication are first performed in the usual way and the result is then taken
modulo f(X).

The idea of Berlekamp’s algorithm is that one can compute factors of f(X) by
taking gcd’s with special polynomials from the ring R that satisfy the same polynomial
equation as the elements of Fq, namely,

g(X)q − g(X) ≡ 0 mod f(X). (4.1)
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The reason this is the case is the following proposition

Proposition 4.2.2. If g(X) satisfies (4.1) then

f(X) =
∏
c∈Fq

gcd(f(X), g(X)− c). (4.2)

Proof. Note that the polynomials g(X) − c ∈ Fq[X] are pairwise relatively prime as
c ranges over Fq. Since gcd(f(X), g(X)− c) | f(X) then∏

c∈Fq

gcd(f(X), g(X)− c) | f(X).

Conversely, the polynomial Y q − Y ∈ Fq[Y ] factors as Y q − Y =
∏
c∈Fq

(Y − c), so

substituting Y = g(X), one gets

g(X)q − g(X) =
∏
c∈Fq

(g(X)− c).

Now, if f(X) | g(X)q − g(X) then

f(X) = gcd(g(X)q − g(X), f(X)) =
∏
c∈Fq

gcd(g(X)− c, f(X)).

This completes the proof.

Next, consider the set of all such special polynomials:

B(f) = {g(x) ∈ R : g(x)q − g(x) ≡ 0 mod f(x)}.

It is an easy exercise to show that B(f) is a commutative ring with unity that is
also a vector space over Fq (such a ring is commonly referred to as a commutative
Fq-algebra). It is known as the Berlekamp algebra. We now show how to calculate a
basis for this algebra and thus, design a factoring algorithm based on (4.2).

Consider the set {1, xq, x2q, . . . , x(n−1)q} of polynomials in Fq[x]. Each of these
polynomials can be written uniquely (division by f(x) with remainder) as

xiq = qi,0 + qi,1x+ · · ·+ qi,n−1x
n−1 + f(x)qi(x),

where qi,j ∈ Fq for j = 0, 1, . . . , n − 1. Consider the n × n-matrix Q over Fq whose

(i + 1)th column vector is the vector vi =


qi,0
qi,1
. . .

qi,n−1

. For any polynomial g(x) =

c0 + c1x+ · · ·+ cn−1x
n−1 ∈ R one can show that g(x) ∈ B(f) if and only if

(Q− I) · vg = 0,
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where vg =


c0
c1
. . .

cn−1

 and I is the n × n identity matrix. Indeed, given a vector v

representing some polynomial v(x) = v0 + v1X + · · ·+ vn−1X
n−1 in R, consider the

polynomial represented by the vector Qv. Then

vq = (v0 + v1X + · · ·+ vn−1X
n−1)q = v0 + v1X

q + · · ·+ vn−1X
(n−1)q ≡ Qv mod f

If v ∈ B(f) then vq ≡ v mod f , so we get (Q − I)v = 0 in R. In other words,
g(x) ∈ B(f) if and only if vg is in the kernel (null space) of the matrix Q− I. Next,
we relate the dimension of the kernel to the number of irreducible factors of g.

Lemma 4.2.3. The dimension of ker(Q − I) is equal to the number of irreducible
factors of f in Fq.

Proof. Let f =

r∏
i=1

gi where gi are irreducible and pairwise distinct. According to the

Chinese remainder theorem,

Fq[X]/⟨f(X)⟩ ∼=
r∏

i=1

Fq[X]/⟨gi(X)⟩,

where the isomorphism is given by h 7→ (h mod gi)ri=1. Now, each of the quotient
rings Fq[X]/⟨gi(X)⟩ is isomorphic to Fqdi where di = deg(gi). Now, using

hq = h ∈ R⇐⇒ hqi = hi, i = 1, . . . , r,

and hqi = hi ⇐⇒ hi ∈ Fq, we see that h ∈ ker(Q− I) if and only if (hi)ri=1 ∈ Fr
q (the

latter means that dimFq
(Q− I) = r).

Now, using reduction to reduced row echelon form, one can compute a basis for
B(f) by computing a basis for the kernel of Q − I. To get an algorithm, one takes
a basis vector in the kernel and its corresponding polynomial g(X) in the Berlekamp
algebra B(f) and computes gcd(f(X), g(X)− c), for c running over Fq, until a non-
trivial factor h(X) of f(X) is found. Since deg g(X) < deg f(X) for any g(X) ∈ B(f),
if dimFq

B(f) > 1 then there is at least one non-constant polynomial in B(f) and this
polynomial would always give us a non-trivial factorization. If one picks a constant
polynomial g(X) = c then one of the gcd’s will certainly be f(X) as g(X) − c ≡ 0.
Once a non-trivial factor h(X) of f(X) is found, one then repeats the above algorithm
with f(X)/h(X).

If n = deg f(X), Berlekamp’s algorithm can be implemented so as to use O(nω +

n1+εq) operations in Fq. Here, we assume that two k × k matrices can be multiplied
using O(kω) arithmetic operations (2 < ω ≤ 3). Moreover, we assume that two
polynomials of degree k can be multiplied using O(k1+ε) arithmetic operations for
some 0 < ε ≤ 1 that depends on the choice of the multiplication algorithm. Although
the running time is linear in q, the algorithm is deterministic. It is possible (using a
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refined method that we will not discuss here) to implement Berlekamp’s algorithm so
that it runs in expected polynomial time in log q.

4.2.3 A brief summary of the algorithm of Cantor–Zassenhaus

In order to find the product of all factors of f(X) of degree precisely n, one could
use the fact that gcd(f(X), Xqn −X) is the product of all irreducible factors of f(X)

whose degree is a divisor of n.
This leads to an efficient algorithm to compute the polynomials fd(X) that are the

product of all irreducible factors of f(X) of degree d. We therefore have to assume
f(X) square-free, which we can achieve in the same way as in the setup of Berlekamp’s
algorithm. To compute fd(X), we can proceed via the following steps:

1) Set r = 1

2) Calculate fr(X) = gcd(f(X), Xqr −X)

3) If r = d, return fr(X)

4) Update f(X) := f(X)/fr(X)

5) Set r := r + 1 and return to 2)

That way, fd(X) will contain the product of all irreducible factors of f(X) of degree
d, so we can assume throughout that f(X) is a square-free product of irreducible
factors of degree d. We also assume that p is odd. The basic idea of the Cantor–
Zassenhaus algorithm is simple: since f(X) | Xqd −X (assuming f(X) has no factor
X), we have

f(X) | Xqd−1 − 1 = (X(qd−1)/2 − 1)(X(qd−1)/2 + 1).

Thus, by computing gcd(f(X), X(qd−1)/2 ± 1), one could hope for obtaining a non-
trivial factor of f(X).

In order to make this idea work in practice, suppose that f(X) = g1(X) . . . gs(X)

where deg gi(X) = d then (as in Berlekamp)

R := Fq[X]/⟨f(X)⟩ ∼= Fq[X]/⟨g1(X)⟩ × · · · × Fq[X]/⟨gs(X)⟩ =: S.

The isomorphism is given by the map h(X) 7→ (h1(X), . . . , hs(X)) that sends h(X)

to the s-tuple of reductions hi(X) = h(X) mod gi(X). The algorithm uses cru-
cially the observation that since gi’s are irreducible then each of the quotient rings
Fq[X]/⟨gi(X)⟩ is a finite field of qd elements.

To explain how the algorithm works, we first state the following easy lemma (we
omit the proof that is quite straightforward):

Lemma 4.2.4. Let h(X) ∈ R be a polynomial that satisfies h(X) ̸= 0, 1,−1, but
hi(X) = 0, 1,−1, where hi(X) is the reduction of h(X) modulo gi(X). Then at least
two of the following three sets

S0 = {i : hi(X) = 0}
S1 = {i : hi(X) = 1}
S−1 = {i : hi(X) = −1}
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are non-empty and one can get non-trivial factors of f(X) by computing:

gcd(f(X), h(X)) =
∏

i∈S0
gi(X)

gcd(f(X), h(X)− 1) =
∏

i∈S1
gi(X)

gcd(f(X), h(X) + 1) =
∏

i∈S−1
gi(X).

To describe the algorithm, let f(X) = g1(X) · · · gs(X) ∈ Fq[X] be a product of s
irreducible factors, each of degree d, and assume that Fq has odd characteristic. Set
m := (qd−1)/2, and pick a random polynomial h(X) ̸= 0,±1 ∈ R, with corresponding
(h1(X), ..., hs(X)) ∈ S. If for some 1 ≤ i ≤ s we have hi(X) ̸= 0, then hi(X)q

d−1 = 1,
since hi(X) lives in a finite field with qd elements. Therefore, hi(X)m = 0,±1 for
all i = 1, ..., s. Thus, if a randomly chosen polynomial h(X) ∈ R happens to satisfy
h(X)m ̸≡ 0,±1 mod f(X), then h(X)m is a candidate for Lemma 4.2.4, and we get
a proper factor of f(X) by computing gcd(f(X), h(X)m), gcd(f(X), h(X)m− 1) and
gcd(f(X), h(X)m + 1).

Thus, one can implement the algorithm as follows: one picks a random polyno-
mial h(X) ∈ R and computes h(X)m mod f(X). If h(X)m ≡ 0,±1 mod f(X),
we chose another h(X) until we find one that satisfies h(X)m ̸≡ 0,±1 mod f(X).
One then calculates the three gcd’s: gcd(f(X), h(X)m), gcd(f(X), h(X)m − 1) and
gcd(f(X), h(X)m + 1). By Lemma 4.2.4, one of the three gcd’s necessarily gives a
non-trivial factor of f(X). So, in order to estimate the probability of failure, we need
an estimate of the probability of h(X)m being 0,±1.

Lemma 4.2.5. The probability that a randomly chosen h(X) ∈ R would satisfy

h(X)m ≡ 0,±1 mod f(X)

is less than 1/2.

Proof. Observing that Xqd−1 − 1 = (X(qd−1)/2 − 1)(X(qd−1)/2 + 1), for each i, there
are m := (qd − 1)/2 polynomials bi(X) of degree less than d such that bi(X)m ≡ 1

(mod gi(X)). Similarly, there are m polynomials bi(X) such that bi(X)m ≡ −1 (mod
gi(X)). Thus, the number of polynomials b(X) such that b(X)m ≡ ±1 (mod f(X))
is at most 2ms. Excluding the constant polynomials, we get that the number of non-
constant ones of degree less than n (with n the degree of f(X), which equals d · s) is
qn − q and thus, the probability of failure is bounded by

2ms − q + 1

qn − q
< 21−s ≤ 1

2
,

assuming that s > 1.
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5
Integer Factorization

As we have already mentioned, integer factorization is probably the most fundamental
tool for public-key cryptanalysis. The security of any RSA-related cryptographic
scheme depends on the complexity of factoring large integers. You saw last time that
one can efficiently factor polynomials of large degrees over large finite fields. As it is
usually the case in number theory, many problems turn out to be harder for integers
than for polynomials. This is the case with factorization. We now review some basic
and more advanced algorithms (both exponential and subexponential on the number
of digits of the integer).

5.1 Exponential-time versus subexponential-time al-
gorithms

5.1.1 Trial division

The simplest factoring algorithm is trial division: try to divide n by the sequence of
primes p1 = 2, p2 = 3, p3 = 5, . . . . Since a composite n has always a prime less than or
equal to

√
n then there are at most π(

√
n) =

√
n/ log

√
n primes to try. The method

is useful for a randomly selected integer, but not useful at all for special integers such
as RSA moduli.

5.1.2 Pollard’s p− 1-method

We now cover a basic, but important exponential factoring method, the Pollard’s p−1
method. Understand it will be important as it will (later in the course) allow us to
understand another factoring method, the elliptic curve factoring method (ECM) due
to Hendrik Lenstra.

The main idea behind Pollard’s p− 1-method is based on Fermat’s little theorem:
if p is a prime then p | 2M − 1 whenever p − 1 | M . For instance, given an integer
B, if M(B) denote the least common multiple of all integers up to B then (assuming
one can compute M(B)) one can try to compute gcd(2M(B)− 1, n) and hope this will
produce a non-trivial factor.

49
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The two main questions are thus how to compute efficiently M(B) and then to
understand when and how the above method can fail exactly.

For a given B, the complexity of the above algorithm is O(B logB log2 n). The
large the B is, the larger the complexity is, yet, the more likely it is that the algorithm
will find a factor. Clearly, the complexity of the algorithm is determined by the largest
prime q that divides p−1. If this prime happens to be relatively small, one can expect
that the method will succeed.

Example 4. Suppose that n = 10001.

5.1.3 The L-notation for complexity

We will often need a function that measures precisely subexponential complexity. Let
0 ≤ t ≤ 1 be a real number and let γ ∈ R>0. We define the function

Lx(t, γ) = e(γ+o(1))(log x)t(log log x)1−t

, x→∞.

Here, x is a complexity parameter and t is used to measure complexity that is between
polynomial and exponential. For example, note that Lx(0, γ) represents polynomial
complexity in x whereas Lx(1, γ) represents exponential complexity. Any 0 < t < 1

represents complexity that is both superpolynomial and subexponential. We will also
occasionally use Lx(t) = Lx(t, •) for brevity when the constant γ is irrelevant.

5.2 Methods based on x2 ≡ y2 mod n

Various factoring algorithms are based on a simple idea that dates back to Fermat.
We explain the development of this idea.

5.2.1 Fermat’s factorization method

If one can write n of the form n = a2−b2 = (a−b)(a+b) for which a−b > 1 then one
gets a non-trivial factorization. Now, if n is odd and n = uv then n has always such

a representation, i.e., n =

(
u+ v

2

)2

−
(
u− v
2

)2

. This gives rise to the following

simple idea: if we find integers x and y such that x2 ≡ y2 mod n then we can hope to
get a non-trivial factor of n by computing gcd(x − y, n). Fermat’s method attempts
at trying x = ⌊

√
n⌋ + 1, ⌊

√
n⌋ + 2, . . . until x2 − n is a perfect square. In practice,

this is quite slow and will only give an exponential time algorithm for factoring. Even
worse, it is not even compatible with the basic trial division algorithm.

5.2.2 Dixon’s Method and Morrison–Brillhart Approach

This method tries to avoid solving x2 ≡ y2 mod n directly, but solves it via combining
(via linear algebra) some congruences mod n that are easier to generate. Let B > 0

be a real number. We call an integer B-smooth if all of its prime factors are less than
or equal to B. Let P(B) be the set of all prime numbers ≤ B (the factor base) and
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let m = #P(B). The idea of the algorithm is to generate integers v, 1 ≤ v ≤ n such
that

v2 ≡
∏

p∈P(B)

pep(v) mod n, (5.1)

for some exponents e(p), i.e., such that v2 mod n is B-smooth. Once we have gener-
ated more than m such congruences, we can try to combine them (using linear algebra
over F2 only) to produce a right-hand side of the congruence that is a perfect square.
The phase where we generate the congruences will be called the relation generation
phase, whereas the phase where we solve the linear system will be called the linear
algebra phase.

Suppose that sufficiently many relations of type (5.1) have been generated. Each
such v gives rise to a vector (ep(v))p∈P(B) ∈ Zm

≥0. This step is going to try to find a
subset S of the generated v’s such that for all p ∈ P(B),∑

v∈S
ep(v) = 2sp, (5.2)

for some sp ∈ Z. Such a subset S should exist since the vectors (ep(v))p∈P(B) are lin-
early dependent (since the total number of relations is more than m = #P(B)). Such
a subset S can be found using Gaussian elimination reducing (mod 2) the equations
(5.2) for all p ∈ P(B).

The difficulty in the above method is a rigorous complexity analysis of the algo-
rithm. Obviously, this will depend on the complexity of the individual phases reducing
to the following questions:

Question 5.2.1. Which method is used in the relation generation stage?

Question 5.2.2. Which linear algebra improvements are used (e.g., linear algebra
with sparse matrices over F2)?

Here, we will discuss mainly the first question and only mention that there is a large
literature on the second question, i.e., the linear algebra phase [Wie86, LO90, Cop94].

For the relation generation phase, Dixon’s method [Dix81] is probably the simplest.
It consists of generating uniformly random integers v in the interval [1, n] and testing
v2 mod n for smoothness.

The method of Morrison–Brillhart is different: it produces smaller values of v2 mod

n to test for smoothness than Dixon’s method (by using continued fractions conver-
gents rather than choosing random v’s) and as such, increases the B-smoothness
probabilities. One of the homework problems asks you to develop in detail some as-
pects of the continued fractions method. The algorithm of Morrison–Brillhart was
used to factor the 7th Fermat number F7 = 22

7

+ 1. You will study this algorithm in
detail in your homework.

5.2.3 Smoothness bounds and smoothness probabilities

Let x ≥ 1 be a real number, let y ≥ 1 and let ψ(x, y) be the number of y-smooth
integers in the interval [1, x]. The function ψ(x, y) has been well-studied. It is also
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related to a special function known as the Dickman–de Bruijn function1 ρ.
Dickman first showed that for any fixed u ≥ 1, ψ(x, x1/u) has a non-zero limit as

x→∞ [Dic30]. Later on, de Bruijn [dB51] studied more elaborately the asymptotic
behavior of ψ(x, y). We summarize these in the following:

Theorem 5.2.3. (i) The Dickman–de Bruijn function ρ(u) is non-negative for u > 0,
decreasing for u > 1, and satisfies the asymptotic estimate

log ρ(u) = −(1 + o(1))u log u, u→∞.

(ii) For any fixed ϵ > 0, we have

ψ(x, x1/u) ∼ xρ(u) ∼ xu−u as x→∞.

provided that u ≤ log(x)1−ϵ.

We will not prove it here, but will rather apply it to a basic optimization problem
that turns out to be quite useful in the analysis of several cryptographic algorithms
(see the exercises from the new Homework 6).

Finally, the function Lx(t, γ) is useful when we estimate smoothness probabilities
as the following exercise suggests:

Proposition 5.2.4 (smoothness probabilities). Let α, β, r, s ∈ R>0 be given with
s < r ≤ 1. The probability that a random positive integer less than or equal to
Lx(r, α) is Lx(s, β)-smooth is Lx(r − s,−α(r − s)/β) as x→∞.

You will prove this on the new homework as well. All of these results will be used
throughout the course, so you are encouraged to do the exercises thoroughly.

5.2.4 Analysis of Dixon’s method

One method that we can rigorously analyse via Proposition 5.2.4 is Dixon’s method.
To simplify the analysis, we assume that we use trial division in the test for B-
smoothness. To apply Proposition 5.2.4, we write B = Ln(s, β) where s and β will
be determined subsequently.

Proposition 5.2.5. The optimal smoothness bound B is obtained for s = 1/2 and
β = 1/2. For that B, one obtains opitimal complexity of Dixon’s algorithm that is
Ln(1/2, 2).

Proof. The size of the factor base is #P = π(B) = Ln(s, β), so we need to collect that
many relations. The time it takes to test a given number for B-smoothness is then
Ln(s, β). By Proposition 5.2.4, the probability that a random number ≤ n = Ln(1, 1)

1The Dickman–de Bruijn function ρ(u) is a continuous function that satisfies the delay differential
equation

uρ′(u) + ρ(u− 1) = 0.

with initial conditions ρ(u) = 1, 0 ≤ u ≤ 1. A heuristic argument by Dickman shows that ρ(u) =
ψ(x,x1/u)

x
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is B-smooth is then Ln(1 − s,−(1 − s)/β) and hence, the run-time for the relation
collection stage is

Ln(s, β)︸ ︷︷ ︸
test for smoothness

· Ln(s, β)︸ ︷︷ ︸
# of relations needed

· Ln(1− s,−(1− s)/β)−1︸ ︷︷ ︸
inverse of smoothness probability

= Ln(s, 2β)·Ln(1−s, (1−s)/β).

It is not hard to show that the optimal run-time is achieved when s = 1 − s, i.e.,

s = 1/2. In this case, the runtime is Ln

(
1

2
, 2β +

1

2β

)
which is minimized for β = 1/2,

thus, getting a complexity of Ln(1/2, 2).

5.3 Basics sieving methods - linear and quadratic sieves

The sieving techniques are more efficient alternatives to Dixon’s method or the method
of Morrison–Brillhart to the relation-generation phase.

The idea is based on the following observation: if v(i) = i+ ⌊
√
n⌋ where i is small

then we see that
v(i)2 − n ∼ 2i

√
n,

hence, these values are smaller compared to the values generated by Dixon’s method.
Moreover, if p | v(i)2 − n then p | v(i + pj)2 − n (again, this assumes that i as well
as i + pj are small). This observation gives us a way to much more efficiently test
for smoothness via a sieve: let L be a bound and consider all v(i) for 0 < i ≤ L

at once. Take a sequence {s(i)}Li=1 where we initially set s(i) = (i + ⌊
√
n⌋)2 − n

originally. We then proceed as follows: for each p in the factor base P(B), find the
roots of the polynomial f(x) = (x+ ⌊

√
n⌋)2−n modulo p and for each root r, divide

s(r+pj) by p for all possible j’s. After that procedure, we will know that for numbers
that are B-smooth, s(i) will be 1. The efficiency gain here is that we are not testing
individually sampled numbers for smoothness, but test all numbers at the same time
with a single loop over the factor base (finding the roots r is easy!).

5.3.1 Linear sieve

Before the above idea evolved, there was a sieve method proposed by Schroeppel
called the linear sieve. Here, the idea was to test for smoothness numbers of the form(

i+ ⌊
√
n⌋
) (
j + ⌊

√
n⌋
)
− n ∼ (i+ j)

√
n.

Compared to the method of Morrison–Brillhart, the numbers generated by the linear
sieve were larger. Yet, their smoothness can be tested via a sieve method (as above).
The disadvantage to the above method is that the left-hand side is not a square
and hence, each of the numbers (i + ⌊

√
n⌋) had to go into the matrix in the linear

algebra phase. Yet, since the runtime of Morrison–Brillhart back in the days was
not analyzed yet, at least in theory, Schroeppel’s method was the first one to give
a heuristic subexponential time factoring method. Schroeppel’s idea was to factor
the 8th Fermat number F8 = 22

8

+ 1 and he managed to succeed with the relation
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generation stage. Yet, before he ran the linear algebra phase, the number was factored
(somehow by chance) via the Pollard rho method.

5.3.2 Quadratic sieve

This is the basic idea of using i = j in the linear sieve was due to Pomerance
[Pom82, Pom85] and led to the development of the quadratic sieve. We should point
out the qualitative difference in complexity with Dixon’s method (that has optimal
complexity Ln(1/2, 2)). To analyze the most basic version of this method, choose a
smoothness bound B = Ln(1/2, 1/2) and assume that v2 mod n is a number around√
n = Ln(1, 1/2). One then calculates naïvely that the smoothness probability is

Ln(1/2,−1/2).
Thus, if we are interested in finding Ln(1/2, 1/2) different relations, we need to

test
Ln(1/2, 1/2) · Ln(1/2,−1/2)−1 = Ln(1/2, 1).

different integers i. Our sieving array length L is then Ln(1/2, 1). This is already
better than the Dixon’s method whose complexity was calculated to be Ln(1/2, 2).

Remark 5. We should point out that v(i)2 − n is not quite behaving as a random
number: indeed, if p is a prime dividing v(i)2 − n then n is a square modulo p, i.e.,
only about half of the primes ≤ B occur in the factorisation of v(i)2 − n. One then
expects that the size of the factor base is about π(B)/2. The smoothness probabilities
are not too different from the above naïve smoothness probabilities. Dimitar : Give
a reference.

5.4 Number Field Sieve

The number field sieve is currently the most practical general-purpose integer factor-
ization method. It is based on an idea of Pollard who tried to factor integers of the
form x3 + d for small d. For a detailed account of the method, see [LL93b].

5.4.1 The idea of the general number field sieve

Even if one is not able to analyze it rigorously, the method outperforms the quadratic
sieve even for integers of less than 100 digits. The conceptual reason for that is that
the numbers tested for smoothness are of order no(1) as n→∞ whereas the quadratic
sieve methods use numbers of size nc for a fixed c.

Let f ∈ Z[x] be a monic irreducible polynomial of degree d and suppose that m
is an integer such that f(m) ≡ 0 mod n. Let α be a root of f . The map α 7→ m then
gives a homomorphism ϕ : Z[α]→ Z/nZ. Suppose that we find a set S of polynomials
g such that ∏

g∈S
g(α) is a square in Z[α] (5.3)
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and ∏
g∈S

g(m) is a square in Z. (5.4)

Then we will get the congruence

x2 = ϕ

∏
g∈S

g(α)

 =
∏
g∈S

g(m) ≡ y2 mod n.

Then we have a chance of factoring n. We have already seen the example of the
factoring methods based on solving the congruence x2 ≡ y2 mod n, so in order for
that to work, there are several questions we need to discuss:

Question 5.4.1. What is a suitable notion of smoothness in Z[α] so that we can
combine various algebraic numbers g(α) to get a square? How do we factor g(α) intro
primes to get a vector of exponents?

Question 5.4.2. How do we guarantee that the g(m)’s are small so that we can study
their probabilities of smoothness?

5.4.2 The choice of m and f

Before we approach Question 5.4.1, we tackle Question 5.4.2. Suppose that we fix the
degree of our polynomial f , say d (we will later on discuss how to choose the d). We
start by choosing the m by setting m = ⌊n1/d⌋. We then write n in base m, i.e.,

n = cdm
d + cd−1m

d−1 + · · ·+ c0, 0 ≤ ci < m, ∀i = 0, 1, . . . , d.

since md ≤ n < (m + 1)d, if n is sufficiently large compared to d (see homework
exercise), we can show that cd = 1. Consider then the monic polynomial f(t) =

td + cd−1t
d−1 + · · · + c0. Since most of the monic polynomials of a given degree

and integer coefficients are irreducible, odds are that f will be irreducible (see the
homework for the case when f turns out to be reducible).

Assume that f is irreducible. For the polynomials g we can then take g(x) = a−bx
where 0 < b ≤ B and |a| ≤ B for some bound B. If B is chosen sufficiently small,
the numbers g(m) will then be quite small and hence, we may hope to test them
efficiently for smoothness. In addition, for a fixed b we have the advantage of being
able to sieve over the a’s in a similar way as in the quadratic sieve.

Remark 6. Assume that it happens that f is reducible, i.e., f(t) = g(t)h(t) for non-
constant polynomials g and h. In this case, we expect that g(m)h(m) will yield
a non-trivial factorisation of n. This is indeed proven by Brillhart, Filaseta and
Odlyzko [BFO81].

Remark 7. Expressed in terms of ideals, the NFS algorithm is based on the following
high-level idea: if α is a root of the (irreducible) polynomial f , one can consider the
ideal I = ⟨α − m,n⟩. One than wants to find algebraic numbers u, v ∈ Q(α) such
that u2 − v2 ∈ I. If one then considers the ideal J = ⟨u ± v, α −m,n⟩, chances are
that computing the gcd of N(J) and n will produce a non-trivial factor.
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5.4.3 The norm map N : Q(α)→ Q

We now have to go back to Question 5.4.1 and decide how to test the elements
g(α) ∈ Z[α] for smoothness. In general, the ring Z[α] will not be what we call a
unique factorization domain. For instance, if f(x) = x2 + 5 then α =

√
−5 and we

see that
6 = 2 · 3 = (1 +

√
−5) · (1−

√
−5),

where the elements 2, 3, 1 ±
√
−5 ∈ Z[

√
−5] are what we call irreducible. We thus

need a different way of testing for smoothness than just trying to factor g(α).
One thing to try is to use the norm map. Let α = α1, α2, . . . , αd be all the roots

of f(t) in C. We define

N(h(α)) :=

d∏
i=1

h(αi), h(x) ∈ Q[x].

It is clear that if γ is a square in Z[α] then N(γ) is a square in Z. The latter is a
necessary, but not a sufficient condition for γ to be a square in Z[α]. Yet, we start
with arranging for that condition to hold first. To do that, note that

N(a−bα) =
d∏

i=1

(a−bαi) = bd
d∏

i=1

(a/b−αi) = bdf(a/b) = ad+cd−1a
d−1b+· · ·+c0bd =: F (a, b).

Define F (a, b) = bdf(a/b). Then F is a homogeneous polynomial of degree d in two
variables.

If B is a smoothness bound, we call an algebraic integer a− bα ∈ Z[α] B-smooth
if N(a− bα) is B-smooth. With that, we can (via the same linear algebra method as
before) combine smooth algebraic integers so the resulting norm is a perfect square.

Yet, even if N

∏
g∈S

g(α)

 is a perfect square in Z, it does not follow that
∏
g∈S

g(α)

is a perfect square in Z[α] and this is one of the challenges we will have to resolve.

Remark 8. Consider the Gaussian integers Q(i) and note that N(2) = 4 is a perfect
square. Yet, it is easy to check that 2 is not a perfect square in Q(i).

Before we discuss the question of sufficiency, we note that we will be sieving for tuples
(a, b) such that F (a, b)G(a, b) is smooth where G(a, b) = a−mb. We will set the linear
algebra stage for F (a, b) and G(a, b) separately to ensure that they are both squares
in Z. We will thus need to collect twice as many relations, i.e., > 2π(B) as opposed
to > π(B) in the case of the quadratic sieve.

5.4.4 Several remarks on sieving

Here, we discuss the first idea to tackle the problem of the squareness of a − bα.
Although it will not solve it completely, it will be a good step forward.

Let p ≤ B be a prime and let r be an element of {0, . . . , p− 1} such that f(r) ≡
0 mod p.
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One can thus define vp,r(a − bα) to be the exponent of p dividing F (a, b) if a ≡
br mod p and 0 otherwise. Let v(γ) = (vp,r(γ))p,r for all p ≤ B and 0 ≤ r < p.

Proposition 5.4.3. Let S be a set of coprime pairs (a, b) such that each a − bα

is B-smooth in the sense that its norm N(a − bα) is B-smooth as an integer. Let
K = Q(α) be the number field generated by α and let OK denote its ring of integers.
If

∏
(a,b)∈S

(a− bα) is a perfect square in OK then we have

∑
(a,b)∈S

v(a− bα) ≡ 0 mod 2.

Proof. Here, we will be using an important property of the ring OK , namely, that it
admits a unique factorization of prime ideals (in other words, that OK is a Dedekind
domain; this may be a new notion for you, but it should not scare you; all we will be
using is the unique factorization of ideals property).

Given r and p as above, consider the ideal ⟨p, r − α⟩ ⊂ OK . First, it is not the
unit ideal since the norm of the element r − α is N(r − α) = f(r) ≡ 0 mod p, i.e., is
divisible by p. Denote by P1, . . . , Pk all prime ideals of OK dividing ⟨p, r − α⟩.

Now, take the unique factorization of the principal ideal ⟨a − bα⟩ and consider
the exponents a1, . . . , ak of the prime ideals P1, . . . , Pk, respectively in the unique
factorization of that principal ideal. One can see that if a given ai > 0 then a ≡
br mod p and hence, all the ai’s are positive. In addition, the only prime divisors of
⟨p⟩ that divide ⟨a − bα⟩ are P1, . . . , Pk. This tells us that the p-part of the norm of
the algebraic integer a− bα is exactly the norm of P a1

1 . . . P ak

k , i.e.,

pvp(a−bα) = N(P1)
a1 · · · · ·N(Pk)

ak .

Let N(Pi) = pei . Then

∑
(a,b)∈S

vp,r(a− bα) =
∑

(a,b)∈S

k∑
i=1

aiei =

k∑
i=1

ei
∑

(a,b)∈S

vPi
(a− bα).

Since
∏

(a,b)∈S

(a − bα) is assumed to be a square in OK , it follows (again, using the

unique factorization of ideals) that
∑

(a,b)∈S vPi
(a− bα) and hence,∑

(a,b)∈S

vp,r(a− bα) ≡ 0 mod 2,

for all p and all r that satisfy f(r) ≡ 0 mod p.

5.4.5 Several remarks on the “sufficiency of the squareness of
the norm"

As mentioned above, the squareness of the norm (in Z) of an algebraic integer α ∈ Z[α]

does not imply the squareness of α as an element of Z[α]. We saw that if we pick
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any a ∈ Z that is a non-square and view it as an element of Z[i] then N(a) = a2 is a
perfect square, but a is not a square in Z[i]. Even if this is the case, the ring Z[i] has
an advantage to a general ring Z[α], namely, Z[i] happens to be a unique factorization
domain (i.e., we can factor uniquely (up to what we call a unit)) elements of that ring
into a product of irreducibles. As mentioned above Z[

√
−5], for instance, is not a

unique factorization domain.
We saw that even if OK is not a unique factorization domain, it is at least a

domain with unique factorization of ideals, so we can use that to make a step forward
via Proposition 5.4.3. For concreteness, let β =

∏
(a,b)∈S

(a− bα). We saw that, at least

if Z[α] = OK , we can ensure that ⟨β⟩ = I2 for some ideal I ⊂ OK .
There are the following obstructions remaining:

1. If Z[α] = OK then we at least have ⟨β⟩ being the square of an ideal J in OK .
Yet, it may not be the case that Z[α] = OK .

2. Even if ⟨β⟩ = I2 there is no guarantee that I will be a principal ideal.

3. Even if I = ⟨γ⟩ is principal for some γ ∈ OK , there is no guarantee that β = γ2.

4. Even if β = γ2 for some γ ∈ OK , there is no guarantee that γ ∈ Z[α].

Note the following

• Obstruction (i) is related to the index of the quotient group OK/Z[α].

• Obstruction (ii) is related to the class group ClK .

• Obstruction (iii) is related to the unit group O×K .

We start by addressing the last issue. One can use the following lemma for that:

Lemma 5.4.4. Suppose that f(x) ∈ Z[x] is a monic irreducible polynomial and let
α ∈ C be a root of f . Let K = Q(α) and let OK be the ring of algebraic integers of
K. Given any β ∈ OK , we have f ′(α)β ∈ Z[α].

Proof.

Having this lemma, we can set the square-finding problem in OK as opposed to
Z[α]. Indeed, if we setup the problem for

∏
(a − bα) being a square γ for γ ∈ OK

then to get a square in Z[α], all we do is take f ′(α)γ.
To overcome the rest of the difficulties, one can use an idea of Adleman: let

x = y2 ∈ Z be a perfect square and let p a prime number. The Legendre symbol(
y2

p

)
is (y2)(p−1)/2 ≡ yp−1 ≡ 1 mod p (by Fermat’s theorem). Thus, if

(
x

p

)
is equal

to 1 for many primes, then x is a square with high probability.
How do we use this observation to test whether an integer x ∈ Z is a perfect

square: if we select k random primes q < |x| and test whether
(
x

q

)
= 1 for each of

this q’s. If this is the case, at least heuristically, the probability that x is not a perfect
square will be 2−k.
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Proposition 5.4.5. Let S be such that
∏

(a,b)∈S

(a− bα) is a square in Z[α]. Let q be

an odd prime number, s ∈ {0, . . . , q− 1} satisfying f(s) ≡ 0 mod q, a− bs ̸≡ 0 mod q

for all (a, b) ∈ S and f ′(s) ̸≡ 0 mod q. Then
∏

(a,b)∈S

(
a− bs
q

)
= 1.

5.4.6 On taking square roots

Even if the above methods tell us that both
∏

(a,b)∈S(a− bα) = γ2 and
∏

(a,b)∈S(a−
bm) = v2 are squares, they do not tell us how to compute the square roots. From
that point of view, the rational side of the NFS is easier and is very much the same
as in the quadratic sieve.

However, the problem of computing the square root γ is more challenging. In
this case, we need to find γ = a0 + a1α + · · · + ad−1α

d−1 and then consider u =

a0 + a1m+ · · ·+ ad−1m
d−1. This means that we need to compute ai mod n.

There are two approaches for doing the latter:

1. Compute ai mod p for lots of small primes p and use the Chinese remainder
theorem.

2. Fix a prime p and compute ai mod pn for many n (Hensel’s lifting).

Whereas approach i) is more efficient from the point of view of large integer arith-
metic (we do not need to compute with large integers if we keep the p’s small), this
approach suffers from the drawback that modulo each p, there are two distinct square
roots and we do not know which one exactly we should take.

Approach ii) does not have this problem; yet, it requires larger integer arithmetic
as the exponent n gets larger.

5.4.7 On the complexity analysis

We first start with explaining some of the intuition behind the algorithm and only
formalize that later. The numbers we want to find smooth are all of the form (a −
bm)N(a− bα). Here, a and b will run over coprime pairs of integers with |a| ≤ B and
0 < b ≤ B. Our starting point are the following observations:

• In order to keep a− bm small, we want to choose a large d since m = ⌊n1/d⌋.

• We can also bound the size of N(a − bα) = F (a, b) by (d + 1)Bdm ≤ (d +

1)Bdn1/d. The size of (a− bm)N(a− bα) is thus bounded by (d+ 1)Bd+1n2/d.
This shows that we do not want to choose d too large.

• There is a tradeoff in the choice of B: to keep the smoothness probabilities
large, we need a small B; yet, if B is too small then we may not have enough
pairs (a, b) such that (a− bm)N(a− bα) is smooth.

• A lower bound for the run-time of the algorithm is B2 (sieving over all pairs
(a, b)).
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We thus reduce the question to an optimization problem for d and B in terms of n (you
may see some of the rigorous analysis on the homeworks). Overall, the complexity of
the number field sieve is Ln(1/3, (64/9)

3) which makes it asymptotically better than
the quadratic sieve algorithm.

Remark 9. It should be pointed out that the above analysis is not a rigorous run-time
analysis. It makes the heuristic assumption that the norms N(a − bα) behave like
random integers.

5.4.8 More details on the run-time analysis

Great survey references for the analytic number theory estimates and their application
in the analysis of the sieving algorithms:

• Granville’s survey - [Gra08a],

• Pomerance ICM paper - [Pom95],

• Pomerance - paper on multiplicative independence [Pom96],



CHAPTER

6
The Discrete
Logarithm Problem
over Finite Fields

6.1 Introduction to the Discrete Logarithm Problem

The discrete logarithm problem for a cyclic group is extremely simple to state: let N
be a positive integer and let G be a cyclic group of order N generated by an element
g (we write G = ⟨g⟩).

Discrete Logarithm Problem: Given h ∈ G, find logg h, that is, find the unique
x ∈ [0, N − 1] for which h = gx.

As stated, the problem is rather meaningless unless one specifies the explicit repre-
sentation of the group G. We take some simple examples to illustrate how different
the problem can be on different presentations1 of the elements of a cyclic group:

1. If G = Z/NZ is represented by {0, 1, . . . , N−1} with the addition law being the
integer addition taken modulo N and if g = 1, the above question is completely
trivial since the discrete log of any element x is x itself. What happens is g is
not 1?

2. Suppose that p is a prime and that G = (Z/pZ)× is represented as the non-
trivial residues {1, 2, . . . , p − 1} modulo p where the group law is integer mul-
tiplication taken modulo p, the problem is significantly harder. In this case, it
is not even obvious how much effort is needed to explicitly find a generator g.
Although it is not known how to solve the problem in polynomial time in log p,
it is possible to solve this question in subexponential time (in log p).

Note that in ii), one can exponentiate efficiently, i.e., given g ∈ G and x ∈ [0, p− 1],
one can compute gx in time polynomial in log p.

The discrete logarithm problem easily reduces to the case when the order of the
group is prime. In fact, you will do this in the first exercise for the course:

Exercise 6.1. Suppose that |G | = pe11 . . . pekk . Given a generator g ∈ G and h =

gx ∈ G, use the Chinese remainder theorem to show how to reduce the computation
1Note that the word presentation here is not exactly the same as the typical group-theoretic

meaning of presentation where we present a group with generators and relations.
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of x to the computation of x modulo peii for every i = 1, . . . , k. Explain why it is not
a good idea to use cyclic groups whose order is a smooth integer, i.e., an integer that
factorizes into a product of small primes. This algorithm is basic and is known as the
Pohlig–Hellman method.

Yet, the lack of a polynomial time algorithm for solving the problem in ii) is more
or less assumed as one of the building axioms of cryptography nowadays allowing for
the design of various schemes whose security is built upon this axiom.

Question 6.1.1. Are there other presentations of a cyclic group that make the prob-
lem even harder?

Any attempt to find such a presentation will mean that this presentation does not
allow one to apply index calculus, the only known algorithm for solving the discrete
logarithm problem for (Z/pZ)× in subexponential time (to be discussed in detail).
We will discuss this method in more details in this lecture.

6.2 The Pollard’s rho method

6.2.1 Description of the algorithm

The Pollard’s rho algorithm was proposed in 1975 as an integer factorization method [Pol75].
A few years later, Pollard realized that this method [Pol78] can be used to solve the
discrete logarithm problem on a generic cyclic group. Here, generic means that the
application of the algorithm is independent of representation of the group elements
(i.e., it can work for any representation as long as the computation of the group is
efficient). Let G be a cyclic group of prime order N and let g ∈ G be a generator.
The Pollard’s rho method aims to find two distinct pairs (a′, b′) and (a′′, b′′) such that
ga

′
hb

′
= ga

′′
hb

′′
. The occurrence of finding these distinct pairs is called a collision.

When a non-trivial collision has been found, the solution to the discrete logarithm
problem is x ≡ (a′ − a′′)(b′′ − b′)−1 mod |G |.

The algorithm is based on computing a simple dynamical system: given an iter-
ation function f : G→ G, the Pollard’s rho method calculates a sequence of points
xi+1 = f(xi), i ≥ 0, starting from a point x0 ∈ G chosen uniformly at random.
Given xi = gaihbi and ai, bi ∈ [0, n − 1], f computes xi+1, ai+1 and bi+1 such that
xi+1 = gai+1hbi+1 . The original iteration function (dynamical system) proposed by
Pollard is

xi+1 = f(xi) =


gxi, if xi ∈ P0

x2i , if xi ∈ P1

hxi, if xi ∈ P2

where G =

2⊔
i=0

Pi is partitioned into three disjoint sets P0, P1 and P2. This sequence

of points eventually collides (as operations are performed over a finite cyclic group).
Denote by λ and µ ≥ 1 the smallest numbers such that xλ = xλ+µ holds. The
value λ is called the tail and µ the cycle length. The advantage of the Pollard rho
method is that it can be implemented using a constant amount of memory by using
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Floyd’s cycle finding method [Knu97, Ex. 3.1.6] or other elementary cycle detection
algorithms. This is an improvement to, e.g., Shanks’ baby-step-giant-step method
[Sha71] that has the same run-time, but uses non-constant memory.

Typically, we consider a random partition among a set of admissible partitions,
that is, partitions for which P0, P1 and P2 have approximately the same size N/3.
The choice of the partition is relevant since it might affect the complexity analysis of
the algorithm.

6.2.2 Complexity analysis of Pollard rho

Although deceptively simple, a rigorous complexity analysis of Pollard’s rho method
for the discrete logarithm problem is currently out of scope. Heuristically, the algo-
rithm runs in O(

√
|G |). The reason the run-time is heuristic is that the model of

analysis that one uses to rigorously show this bound (Model 2 below) has not been
properly compared to Model 1. In both models, one views the collision time T as
a random variable2 and describes the statistics of this random variable. Ideally, one
would like to prove a statement according to which with high probability, a collision
occurs after O(

√
|G|) steps. Yet, we need to specify what we mean when we say with

high probability.

Model 1 (random partitions). Here, it is assumed that the partition is chosen
uniformly at random among a set of admissible partitions and thus, the distribution
of T is determined by the randomness of that partition only. Let X0, X1, . . . , Xn, . . .

be the random variables indicating the position of the walk after step i.

Model 2 (pseudo-random walks). This aims at approximating Model 1. The
problem is that we know very little about quantifying this approximation. The idea

behind the approximation is that instead of using the random partition G =

2⊔
i=0

Pi,

at each step k, Xk+1 will be obtained from Xk by using (with probability 1/3) a
random move out of the three possible moves. This gives us the model of a random
walk on what one calls the Pollard rho graph (a 3-regular graph whose vertices are
the elements of G and whose edges are determined by the moves). Of course, once we
obtain a collision, the walk should no longer be random, but deterministic. This is why
we talk about pseudo-random walks. In this case (for the classical Pollard rho), one
can show rigorously that the collision time is O(

√
|G |). In fact, this was not known

until very recently: the desired bound of O(
√
|G |) was rigorously established using

Markov chains by Kim, Montenegro, Peres and Tetali [KMPT10] (see also [MV06] for
a weaker, but easier bound). Note that the squaring step is essential for obtaining
the correct upper bound. Both arguments rely on establishing rapid mixing results
for random walks in the Pollard rho graph.

2T is a stopping time.
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6.3 Index calculus for prime fields and for extension
fields

Index calculus is an algorithm for solving discrete log based on the notion of a factor
base. The idea is that one first computes the discrete logarithm for a subset of small
elements of the group (the factor base) by collecting sufficiently many relations and
then solving a system of linear equations. Then, one computes the logarithm of a
particular element using the calculated logarithms of the elements of the factor base.
In order to be able to successfully apply such an algorithm, one typically needs a
norm on the group elements. The algorithm was first discovered by Kraitchik in
1922 and was later on rediscovered by Merkle in 1977 in the context of public-key
cryptography. The most commonly used version of the algorithm is due to Adleman.
An improvement of Coppersmith for finite fields of small characteristic leads to a
subexponential run-time L|G |(1/3) (currently, the most efficient known algorithm).

6.3.1 Discrete logarithm over prime fields

To illustrate the idea, we consider the case G = F×p and the elements of G viewed as
elements of {0, 1, . . . , p − 1}. We thus have a natural definition norm, so as a factor
base, one can try to use the subset P ⊂ F×p of primes of norm ≤ B for some suitably
chosen smoothness bound B. The relations will then be of the form

gu =
∏
ℓ∈P

ℓαu,ℓ , (6.1)

where g is a generator of F×p and u ∈ {0, 1, . . . , p − 2}. Such a relation results in a
relation

u ≡
∑
ℓ∈P

αu,ℓ logg ℓ mod p− 1. (6.2)

Thus, if we collect more than |P | relations, we can hope for solving for the values
logg p by linear algebra. This observation, together with the smoothness probabilities
discussed in Section 5.2.3 already give us an algorithm that we can efficiently imple-
ment and rigorously analyze: we picks u ∈ {0, 1, . . . , p − 2} at random and compute
gu mod p − 1 and test for smoothness. Since gu is distributed uniformly at random,
we can use the smoothness probabilities to calculate the chance of success. For the
second stage, the idea is quite similar except that we choose a random u now test
hgu mod p − 1 for being B-smooth. If it happens that hgu = ℓβ1

1 . . . ℓβk

k mod p, we
calculate

logg h = β1 logg ℓ1 + · · ·+ βk logg ℓk − u.

For the complexity analysis, one can use smoothness bound Lp(1/2,
√
1/2) as well

as the smoothness probabilities discussed above to show that the relation collection
stage takes time Lp(1/2,

√
2). Solving the (sparse) linear system takes also time

Lp(1/2,
√
2). The runtime for the computation of the discrete logarithm given the

discrete logarithms of the primes in the factor base is Lp(1/2,
√

1/2). Thus, the above
version of index calculus gives Lp(1/2,

√
2) to solve the discrete logarithm problem.
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6.3.2 Discrete logarithm over extension fields

Here, we assume that q = pn for some n > 1 and we look at G = F×q . Let g ∈ F×q
will be a generator.

Assumption 1 : We will also assume that p is fixed (e.g., p = 2) and n→∞.

The elements of F×pn are represented as polynomials of degree at most n over Fp.
The key notions in the prime field case were prime element and a norm. It turns
out that if n > 1, the norm of an element α ∈ F×pn can be defined as pdeg(f) where
f ∈ Fp[X], deg(f) < n is the polynomial representing α. One can declare that α is
prime if f is irreducible.

Exercise 6.2. Given a polynomial of degree n and the notions developed in the
previous problem, discuss how you would test that an element of F×pn represented by
a given polynomial is B-smooth for some B. What is the time complexity of this
test?

Let B = Lpn−1(1/2, β) for β > 0 be a smoothness bound and let P1, . . . , Pk be
irreducible polynomials of Fp[X] of degrees less than or equal to B. We can use the
smoothness test from the previous exercise to do the relations collection stage: pick a
random integer v ∈ [0, pn− 1] and test gv for smoothness. If it happens to be smooth
(i.e., equal to P e1,v

1 . . . P
ek,v

k then you add the relation

v = e1,v logg P1 + · · ·+ ek,v logg Pk mod pn − 1.

We have the following result (the latest improvement of which is due to Soundarara-
jan) about smoothness probabilities for polynomials (see [Gra08b, §5.2]):

Theorem 6.3.1. Suppose that m is a smoothness bound and that Np(n,m) is the
number of monic polynomials of degree n in Fp[X] that are products of irreducible
polynomials each of which has degree at most m. If u = n/m then one has the
following asymptotic formula:

Np(n,m) =
pn

u(1+o(1))u
,

uniformly over all p ≥ (n log2 n)1/m for u→∞ and m→∞.

Exercise 6.3. What is the total time complexity for gathering sufficiently many
relations so that you can solve for logg P1, . . . , logg Pk? Express your answer as Ln

and the number β that appears in the smoothness bound. Observe that if p is fixed,
and m = B = Lpn−1(1/2, β), the formula is applicable, so you can approximate the
smoothness probability with u−u (here, you need to be a bit more careful since your
polynomials may have degrees less than n, but you should be able to show that the
probability can still be approximated by (n/m)−(n/m)).
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6.4 Applications of discrete log

Let Fq be a finite field and let g be a generator for the multiplicative group F×q .
Given h ∈ F×q , the discrete logarithm problem is the problem of computing x such
that gx = h. The security of multiple cryptographic schemes rely on the difficulty of
solving this problem.

6.4.1 ElGamal encryption

The protocol consists of three components: key generator, encryption algorithm and
decryption algorithm.

Key generation: Alice generates a multiplicative cyclic group G of order q and a
generator g. Alice then chooses a random x ∈ [0, q− 1] and computes h = gx. Alice’s
public key is (Fq, q, g, h). Alice’s private key is x.

Encryption: To encrypt a message m to Alice under her public key, Bob chooses a
random y ∈ [0, q − 1] (the ephemeral key) and computes c1 = gy and s = hy (a
shared secret). Bob then converts the message m into an element m′ ∈ G and then
calculates c2 = m′ · s. Bob sends the ciphertext c = (c1, c2) to Alice.

Decryption: The decryption algorithm works as follows: to decrypt the ciphertext
c = (c1, c2), Alice first calculates the shared secret s = cx1 with her private key and
then computes c2 · s−1. The decryption is correct since

c2 · (cx1)−1 = m′ · hy · (gxy)−1 = m′ · gxy · g−xy = m′.

The ElGamal cryptosystem is typically used as a key encryption key system (i.e., one
uses it to encrypt a key that is used to encrypt a long message via a symmetric key
encryption protocol). This allows for encryption of messages with arbitrary lengths
without directly converting them to elements of G.

6.4.2 Diffie–Hellman key exchange

The Diffie–Hellman key exchange protocol is a basic method for key exchange between
two parties, Alice and Bob. As in the case of ElGamal, a cyclic group G of order q is
generated and a generator g of G is computed. Alice picks a random a ∈ [0, q−1] and
Bob picks a random b ∈ [0, q − 1]. Alice sends ga to Bob and Bob sends gb to Alice.
Both parties can compute gab. It is clear that an adversary only knows (g, ga, gb)

and needs to compute gab (the computational Diffie–Hellman problem or CDH). If
one can solve discrete log, one can obviously solve CDH. The most serious limitation
of Diffie–Hellman protocol in practice is the lack of authentication. Communications
using Diffie–Hellman all by itself are vulnerable to man-in-the-middle attacks. Ide-
ally, Diffie–Hellman should be used in conjunction with a recognized authentication
method such as digital signatures to verify the identities of the users over the public
communications medium.
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4.2.1 Other applications.

The hardness of the discrete logarithm problem is a fundamental assumption not
only for encryption schemes, but also for signature schemes, such as the digital signa-
ture scheme (DSA), the elliptic curve digital signature scheme (ECDSA), pairing-
based signature schemes. In addition, the Massey–Omura protocol, a three-pass
protocol for sending messages that allows one party to securely send a message to
a second party without the need to exchange or distribute encryption keys, is also
based on DLP.





CHAPTER

7
Introduction to Elliptic
Curves

7.1 Why elliptic curve groups or groups of points on
Jacobians of curves?

Here, we motivate with a very particular complexity comparison why elliptic curves
are attractive for cryptography in practice. In order to do this, we do not need to
know much about elliptic curves yet besides the fact that the best currently known
attack on ECDLP on a curve E over Fp (at least on the curves used in practice) is a
generic Pollard rho attack that runs with complexity O(2n/2) where n is the number
binary digits of p.

7.1.1 Practical implications

Recall from last time that the complexity of the classical Pollard rho method on a
generic cyclic group G was CPR(n) = 2n/2, where n is the number of binary digits of
|G| (here, we ignore the constant which is rather small in practice - for the classical
Pollard rho with three partitions, it is about C = 1.4 and decreases, getting closer to
the constant C =

√
π/2 from the birthday bound as we increase the number of par-

titions). Moreover, we mentioned (see [Odl84] for details) that index calculus for Fp

has complexity Lp(1/3, c) where c = (64/9)1/3 ∼ 1.92. We should point out that this
is the same complexity as the complexity of the general number field sieve method for
factoring integer that is used in breaking RSA (see [LL93a]). In terms of the number
N of binary digits of p, the complexity is CIC(N) = exp(c(logN)1/3(log logN)2/3).
To compare the security of the elliptic curve discrete log versus the finite field discrete
log, we need the two key sizes n and N to satisfy CPR(n) = CIC(N). Some algebra
shows that this occurs whenever

n = γ(logN)1/3(log logN)2/3,

where γ = 2c/(log 2)2/3 ∼ 4.91. This means that forN = 1024, the corresponding n =

173. This is already a huge improvement making elliptic curves rather attractive as
opposed to finite fields when it comes down to the difficulty of discrete log. The shorter
key sizes have significant advantages for implementations on constrained devices such
as mobile phones, smart cards, RFIDs, sensor networks, etc., thus making elliptic
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curves rather attractive from a purely practical point of view (see also [BSS00, Ch.I].

7.2 Introduction to elliptic curves

Basic references for this part are [ST92] and [Sil92]. We postpone the more thorough
discussion until after we describe the background on algebraic geometry. For the
moment, we restrict ourselves to Weierstrass equations only in order to get some
basic idea of what is involved in elliptic curve cryptography.

7.2.1 Weierstrass equations

Let F be any field and let F be the algebraic closure of F . For the moment (until we
properly introduce the notion of genus), an elliptic curve for us will be a projective
curve in P2(F ) given by the following cubic equation:

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (7.1)

where a1, a2, a3, a4, a6 ∈ F . We would further require that the curve is smooth, i.e.,
that the three partial derivatives ∂G/∂X, ∂G/∂Y and ∂G/∂Z do not simultaneously
vanish at any given point P = (X,Y, Z) on E (another ways to say the last condition
is to say that the curve does not have a singular point). We can detect this last
condition using only the coefficients a1, a2, a3, a4, a6 ∈ F by defining what is called the
discriminant of the elliptic curve E. For the moment, we will postpone the formulas
and refer to [Sil92, §III.1] or [BSS00, Ch.III] for the precise formulas. We should
mention that we are interested not on the Weierstrass equations, but on Weierstrass
equations up to isomorphism. We will postpone the definition of an isomorphism until
the next lecture. The projective Weierstrass equation (7.1) has a corresponding affine
Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (7.2)

obtained (whenever Z ̸= 0) by the substitution x = X/Z and y = Y/Z.
For the moment, we will say that two Weierstrass equations E and E′ over a field

F with variables (x, y) and (x′, y′) will be isomorphic if and only if there exist u ∈ F×

and r, s, t ∈ F such that the change of coordinates

x = u2x′ + r, y = u3y′ + su2x′ + t (7.3)

transforms E into E′. Clearly, any such transformation can be inverted. Note that
the transformation is defined over F . It is possible that two curves are not isomorphic
over F , but become isomorphic over a field extension of F .

Exercise 7.1. Read Section III.1 from Silverman and explain why if charF ̸= 2, 3,
then the general Weierstrass equation (7.2) of E can be transformed via an isomor-
phism of type (7.3) to a short Weierstrass equation:

E : y2 = x3 +Ax+B, (7.4)
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Figure 7.1: Elliptic curve group law on a short Weierstrass model y2 = x3 + ax+ b.

Short Weierstrass equations are convenient since we can explicitly write the discrim-

inant ∆ = −16(4A3 + 27B2) of the curve and the j-invariant j = −1728(4A)
3

∆
in

terms of the two coefficients A and B (note the j-invariant is an invariant of the
isomorphism class).

Exercise 7.2. Show that the curve defined by (7.4) is smooth if and only if ∆ ̸=
0. How does one interpret the latter condition in terms of the roots of the cubic
polynomial X3 +AX +B?

Finally, here is a simple, but important exercises that you should try:

Exercise 7.3. Suppose that we look at short Weierstrass equations over Fq, that is

E : y2 = x3 +Ax+B, A,B ∈ Fq.

Using the isomorphism transformation (7.3), compute the number of short Weierstrass
equations that are isomorphic to a given one y2 = x3 +A0x+B0.

7.2.2 The group law

What makes elliptic curves useful for cryptography is their group law. In order to
add two points P,Q ∈ E(F ), we draw the line connecting P and Q and consider the
third intersection point P ⊕Q with the curve. We then connect OE and P ⊕Q with a
line and define P +Q to be the third intersection point R of that line with the curve
(see Fig. 7.2.2). If either P and Q or OE and P ⊕ Q happen to coincide, we simply
consider the tangent line through the point (which exists since the curve is smooth
by assumption). It is not hard to check that P +OE = P , that P +Q = Q+ P and
that every element has an inverse.

What is less trivial is showing associativity of the operation ’+’, namely,

(P +Q) +R = P + (Q+R). (7.5)

The proof can be derived from the following lemma in algebraic geometry about plane
cubic curves:



72 Chapter 7. Introduction to Elliptic Curves

Lemma 7.2.1. Suppose that C1, C2 and C are three cubic curves in projective space
such that C passes through eight out of the nine intersection points1 of C1 and C2.
Then C passes through the ninth point as well.

The intuition behind the proof is that the family of cubic curves going through
a eight distinct points is essentially 1-dimensional and hence, if F1 and F2 are the
equations of C1 and C2, respectively, then the equation for C is λ1F1 + λ2F2 (note
that the set of cubics λ1F1 + λ2F2 is 1-dimensional). Thus, if both F1 and F2 vanish
at the ninth point then F also vanishes at that point2. We are now ready to establish
the associative law (7.5).

Proposition 7.2.2. The line through R and (P + Q) intersects the line through P

and Q+R at a point S that lies on the curve E.

Proof. The idea is to construct two cubics C1 and C2 such that C1 and C2 intersect at
the nine points OE , P,Q,R, P ⊕Q,Q⊕R,P +Q,Q+R and the point S. Equivalently,
the associative law (7.5) holds. To show how to apply Lemma 7.2.1, we construct first
C1 and C2. Given any two points P1, P2 ∈ E(F ), let ℓP1,P2

be the line through P1

and P2. Consider C1 to be the cubic that is the product of the linear forms defining
ℓP,Q+R, ℓQ,R and ℓOE ,P+Q. Similarly, C2 is the cubic that is the product of the linear
forms ℓP+Q,R, ℓP,Q and ℓOE ,Q+R. It is clear that the three cubics intersect at the
three points OE , P,Q,R, P ⊕Q,Q⊕R,P +Q,Q+R and S, and that the Weierstrass
E passes through eight of these points. By Lemma 7.2.1, E passes through S as well
which proves the statement and thus, the associative law.

7.2.3 Addition and doubling formulae

One can write formulas for addition and doubling using Weierstrass coordinates for E
and following the procedure described in the previous section (we will not spend too
much time on that). If P1 = (x1, y1) and P2 = (x2, y2) are two points on a Weierstrass
equation E given by (7.2), we let

λ =
y2 − y1
x2 − x1

, µ =
y1x2 − y2x1
x2 − x1

when x1 ̸= x2 and

λ =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
, µ =

−x31 + a4x1 + 2a6 − a3y1
2y1 + a1x1 + a3

when x1 = x2. If P3 = P1 + P2 ̸= OE then P3 = (x3, y3) is given by

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = −(λ+ a1)x3 − µ− a3.

Exercise 7.4. Using what you have seen in the previous section, if P = (x, y) is a
point on E, compute the coordinates of the point −P .

1To be fully precise, one has to count intersection points with their multiplicities. For the sake
of clarify of the argument, we will ignore these technicalities.

2Note that this is far from being a proof as the intuitive argument is not properly considering all
possible degeneracies.



73 Chapter 7. Introduction to Elliptic Curves

7.3 Elliptic curves over finite fields and Hasse–Weil
bounds

Let Fq be the finite field with q elements. We will consider elliptic curves given by
Weierstrass equations defined over Fq. A key endomorphism of the curve E is the
qth power Frobenius endomorphism φ : E → E defined on the Fq-rational points as
follows:

φ : E(Fq)→ E(Fq), (x, y) 7→ (xq, yq).

Although we have not yet introduced isogenies and endomorphisms properly, we in-
troduce this endomorphism now since it is key for detecting which points on E are
defined over Fq. The reason is that the Fq-rational points on E are precisely the
points that are fixed by φ, i.e., that satisfy φ(P ) = P (the reason is that the Galois
group Gal(Fq/Fq) is topologically generated by φ). We will now use that to sketch
a proof (modulo some facts that we will discuss in more detail in the future) of one
of the important results for elliptic curves over finite fields, namely, the Hasse–Weil
bounds:

Theorem 7.3.1. Let E/Fq be an elliptic curve. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Remark 10. Before we explain the proof, we outline an argument for why we expect
(heuristically) such a theorem to be true. Indeed, suppose that x ∈ Fq is picked at
random. If we substitute that x into the Weierstrass equation, we obtain a quadratic
equation for y which (if it has a solution) would generically have two solutions. Thus,
we expect at most 2q points. Yet, if we assume (heuristically) that the quadratic
equation is solvable with probability 1/2 over the choice of x, we get approximately
q solutions. The theorem makes the above argument rigorous.

The proof will use a simple, but powerful application of Cauchy–Schwarz inequal-
ity for quadratic forms. Before that, we introduce some basics on quadratic forms.
Suppose that G is an abelian group. A map q : G → Z is a quadratic form if the
associated form B : G×G→ Z defined by B(x, y) = q(x+y)− q(x)− q(y) is bilinear,
i.e., B(x1 + x2, y) = B(x1, y) + B(x2, y) and B(x, y1 + y2) = B(x, y1) + B(x, y2).
Furthermore, q is called positive definite if q(x) ≥ 0 for any x ∈ G.

Lemma 7.3.2. (Cauchy–Schwarz) Let G be an abelian group and let q : G→ Z be a
positive definite quadratic form with an associated bilinear form B(x, y) = q(x+ y)−
q(x)− q(y). Then for all x, y ∈ G, we have

|B(x, y)| ≤ 2
√
q(x)q(y).

Proof. Since q is a positive definite quadratic form, for any α, β ∈ Z, we have

0 ≤ q(αx+ βy) = α2q(x) + αβB(x, y) + β2q(y).

Since this is true for any α, β ∈ Z (for fixed x and y), the discriminant of the quadratic



74 Chapter 7. Introduction to Elliptic Curves

polynomial F (z) = q(x)z2 + L(x, y)z + q(y)2 has to be less than or equal to 0 which
yields the desired inequality.

In order to explain the proof, we need to mention a few important notions about
endomorphisms of elliptic curves to be introduced and thoroughly discussed through-
out the course:

• We will be studying maps (morphisms) ϕ : E → E that map the point at infinite
to itself and that are given by rational functions on the coordinates. Any such
map is necessarily a homomorphism on the group of points. These maps are
called endomorphisms and will appear several times for important applications.
The endomorphisms (under point addition and composition) form a ring End(E)

called the endomorphism ring of the elliptic curve.

• Every endomorphism is either trivial (sending all points to the point at infinity)
or surjective with a finite kernel.

• Every endomorphism ϕ : E → E has a degree deg(ϕ). In order to properly define
a degree, we need to introduce fields of rational functions on curves. In certain
nice cases (the separable case), this degree coincides with the cardinality of
ker(ϕ). This is NOT the case with the Frobenius endomorphism φ : E → E

(purely inseparable case) in which case the degree is q; yet, the kernel is
trivial. Yet, the endomorphism 1−φ is always separable, so the kernel is equal
to the degree.

• The multiplication-by-m map [m] : E → E is an endomorphism (showing that
Z ⊂ End(E) and that End(E) is a Z-module) and deg([m]) = m2.

• The degree map deg : End(E)→ Z>0 is a positive definite quadratic form.

Throughout the course, we will formally introduce and study the ring End(E) (under
addition and composition) of endomorphisms of E.

(Proof of Theorem 7.3.1). As we already mentioned, P ∈ E(Fq) if and only if φ(P ) =
P , i.e., if and only if P ∈ ker(1− φ). Now, the map 1− φ is an endomorphism of E
that (as mentioned above) is separable. Hence, #ker(1−φ) = deg(1−φ). We apply
Lemma 7.3.2 to q = deg, x = 1 and y = −φ to obtain

|q + 1− deg(1− φ)| ≤ 2
√
q,

i.e., to get |q + 1−#E(Fq)| ≤ 2
√
q.

Remark 11. The proof of this very simple, but fundamental statement already shows
that it is not only elliptic curves themselves that are important to consider, but also
algebraic maps between curves. This will be key for many applications related to
discrete log.

Exercise 7.5. Let Fq be a finite field where q is odd and let f(x) = ax3+bx2+cx+d ∈
Fq[x] be a cubic polynomial whose roots (over the algebraic closure Fq) are distinct.
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Let χ : F×q → {±1} be the quadratic character associated to that finite field, that is,
the homomorphism χ : F×q → {±1} defined by

χ(x) =

{
1 if x ∈ F×q is a square,

−1 else.

Extend χ to Fq by setting χ(0) = 0. Using the Hasse–Weil bounds for an appropriate
elliptic curve to prove that ∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ ≤ 2
√
q.





CHAPTER

8
Elliptic Curve
Cryptography

8.1 Elliptic Curve Cryptosystems

8.1.1 Scalar multiplication of points

A basic arithmetic operation with elliptic curves is a scalar multiplication of a point.
Let E be an elliptic curve over Fq, let P ∈ E(Fq) be a point and let k be an integer.
Computing kP then takes O(log k(log q)3) operations. Indeed, to compute kP via
the repeated doubling method, we have to perform log k point additions or doublings.
Each point addition or doubling requires O((log q)3) operations in Fq (addition, mul-
tiplication, division or subtraction). Dimitar : Fix this!

8.1.2 The elliptic curve discrete logarithm problem

Let E be an elliptic curve over Fq and let P ∈ E(Fq) be a point. The elliptic curve
discrete logarithm problem for E (with respect to base P ) is the following problem:

Elliptic Curve DLP: given P and Q = rP , compute efficiently the integer r mod N

where N is the order of P in E(Fq).

As we will see below, the security of many of the schemes depends on the difficulty
of solving the above problem.

8.1.3 Analogue of Diffie–Hellman key exchange

Alice chooses a secret multiplier a and sends aP to Bob. Bob chooses a secret multi-
plier b and sends bP to Alice. Both Alice and Bob can then compute abP . In order
for an adversary to be able to compute abP , the adversary has to solve the following
mathematical problem:

Elliptic Curve Diffie–Hellman (ECDH) Problem: Given P, aP, bP ∈ E(Fq),
compute abP .

Clearly, if one can solve the ECDL problem then one can solve the ECDH problem,
but not necessarily conversely (a difficult open question).

77
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8.1.4 Analogue of ElGamal encryption

Here, we choose an elliptic curve E/Fq and a point P ∈ E(Fq) of large prime order.
Bob chooses a random integer b (the secret key) and publishes Q = bP . To send a
message m to Bob, Alice first encodes m to a point Pm ∈ ⟨P ⟩. To encrypt Pm, Alice
picks a random integer r, computes (C1, C2) where C1 = Pm + rQ and C2 = rP and
sends it to Bob. In order to decrypt a ciphertext (C1, C2), Bob computes C1 − bC2.

8.1.5 Elliptic curve digital signature algorithm (ECDSA)

The elliptic curve digital signature algorithm (ECDSA) is a classical signature al-
gorithm whose security relies on the difficulty of the discrete logarithm problem. To
describe the algorithm, we define the signing key pair as follows: we first fix an elliptic
curve E/Fq and a point P ∈ E(Fq) of large order n. The group will be G = ⟨P ⟩.

Secret key: Alice’s secret key is a secret multiplier sA.

Public key: Alice’s public key is the point QA = sAP .

In addition, we use a cryptographic hash function H : {0, 1}∗ → [1, n− 1]. To sign a
message m, Alice performs the following steps:

1. Compute z = H(m)

2. Pick an invertible random k mod n and compute (x1, y1) = kP

3. Set r := x1 mod n, s := k−1(z + rsA) mod n and define σ := (r, s).

In order for Bob to verify the signature σ = (r, s) for the message m using only
the public key of Alice, Bob performs the following steps:

1. Compute z := H(m)

2. Compute u1 = zs−1 mod n and u2 = rs−1 mod n

3. (x1, y1) := u1P + u2QA

4. The signature is declared valid if x1 ≡ r1 mod n.

Showing correctness is easy - we simply write

(x1, y1) = u1P + u2Q = zs−1P + rs−1sAP = s−1(z + rsA)P = kP.

8.1.6 Encoding plaintexts into points on elliptic curves

The first problem we will discuss is how to embed plaintexts into points on the elliptic
curve so that the latter can be encrypted. Note that you never encrypt a “large doc-
ument" using elliptic curve encryption schemes. What you do to encrypt a document
is generate a symmetric key and encrypt with that symmetric key (much faster!) and
then encrypt the symmetric key with the elliptic curve public-key encryption scheme.
Suppose that your messages m satisfy 0 ≤ m < M (i.e., are in the interval [0,M).
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One way to encode these messages as points on an elliptic curve is the following:
pick an integer κ (to be determined later) and suppose that q > Mκ where q is the
size of the finite field over which E is defined. We fix an identification of the set of
integers {0, . . . ,M − 1} and a subset of elements of Fq. Given a message m, consider
the integers mκ+ j for 0 ≤ j < κ. Starting with j = 0, compute x = mκ+ j and test
whether f(x) = x3 + ax+ b is a square. If it is, then we output (x, y).

Now, given a point (x, y) ∈ E(Fq), we determine m by simply taking m = ⌊x/κ⌋
(here, by abuse of notation, x denotes the integer corresponding to the x-coordinate
of the point (an element of Fq). The probability of failing to encode m with a point
(x, y) ∈ E(Fq) is given by the probability of f(x) being non-square for x = mκ + j

for all j = 0, 1, . . . , κ− 1. Since f(x) is a square for about 50% of the values of x, this
algorithm will fail to produce a square with probability 2−κ. If we choose κ sufficiently
large, then we will have a very high probability to produce a point Pm ∈ E(Fq).

8.2 Elliptic Curve Factorisation Algorithm

8.2.1 Point addition and point doubling formulas

We recall the basic addition and doubling formulas. Let P1 = (x1, y1) and P2 =

(x2, y2) be two points on the elliptic curve E : y2 = x3 + ax + b. The coordinates
(x3, y3) of the point P1 + P2 are then given byx3 =

(
y2−y1

x2−x1

)2
− x1 − x2,

y3 = −y1 +
(

y2−y1

x2−x1

)
(x1 − x3).

(8.1)

If P = (x, y) then the coordinates (x′, y′) of the point 2P are given byx′ =
(

3x2+a
2y

)2
− 2x,

y′ = −y +
(

3x2+a
2y

)
(x− x′).

(8.2)

The formulas themselves will not be so important. What will be important are
the denominators appearing in the coordinates of the resulting point.

8.2.2 Arithmetic with points over Z/nZ

Proposition 8.2.1. Let n be an odd integer and let E : y2 = x3 + ax + b be an
elliptic curve with a, b ∈ Z and gcd(4a3 +27b2, n) = 1. Let P1, P2 be two points on E
whose coordinates have denominators prime to n. Then P1 +P2 has coordinates with
denominators coprime to n if and only if there is no prime p | n such that the points
P1 mod p and P2 mod p on the elliptic curve E mod p (obtained from E by reducing
the coefficients mod p) add up to the point at infinity for E mod p.

Proof. Suppose first that P1, P2 and P1 + P2 all have coordinates with denominators
prime to n. Let p | n be any prime divisor. We have to show that (P1 mod p) +



80 Chapter 8. Elliptic Curve Cryptography

(P2 mod p) ̸= 0 mod P . The statement is clear if x1 ̸≡ x2 mod p. Suppose that
x1 ≡ x2 mod p. We will consider two cases:

Case 1: P1 = P2. In this case, we are using the doubling formulas (8.2) and we will
be done if we check that p ∤ 2y1. Suppose that p | 2y1. Then the enumerator 3x21 + a

must necessarily be divisible by p (since the coordinates of P1+P2 have denominators
coprime to p). This will mean that p | x31+ax1+ b as well and hence, x1 is a repeated
root of x3+ax+b mod p. This contradicts the fact that the discriminant of the curve
is not divisible by p.

Case 2: P1 ̸= P2. In this case, we use the addition formulas (8.1). Writing x2 =

x1 + prx for some x ̸≡ 0 mod p, we see that y2 = y1 + pry for some y. We write

y22 = x32 + ax2 + b = (x1 + prx)3 + a(x1 + prx) + b = x31 + ax1 + b+ prx(3x21 + a) =

= y21 + prx(3x21 + a) mod pr+1.

Now, the points P1 mod p and P2 mod p are equal. If their sum is 0 mod p then
y1 ≡ y2 ≡ 0 mod p (again, (8.2)). This would imply that pr+1 | y22 − y21 and hence,
3x21 + a ≡ 0 mod p. This again implies that x3 + ax+ b has multiple roots which is a
contradiction.

Conversely, suppose that P1 mod p + P2 mod p ̸= 0 mod p for every p | n. We
would like to show that the denominators of the coordinates of P1 + P2 are coprime
to n. If x(P1) ̸≡ x(P2) mod p then the denominators of the coordinates of P1 + P2

are clearly not divisible by p by (8.1). If x(P1) ≡ x(P2) mod p) there are two cases:
1) P1 = P2 (in this case, we use doubling formulas); 2) P1 ̸= P2 (in this case, we use
addition formulas). In both cases, one proves that the denominators of the rational
coordinates of P1 + P2 are not divisible by p.

8.2.3 Lenstra’s ECM method

Let (E,P ) be a pair of an elliptic curve with integer coefficients and a point on E.
Suppose that B and C are two bounds (to be determined later) and define

k =
∏
ℓ≤B

ℓαℓ ,

where αℓ is the largest exponent such that ℓαℓ ≤ C. The idea of the method is to try
to compute kP modulo n. This computation will only be useful if in the process we
encounter a denominator in the addition or doubling formulas (x2 − x1 or 2y1) that
is not coprime to n. According to Proposition 8.2.1, this will happen if there some
partial sum k1P occurring on the way of the computation for which k1(P mod p) = 0,
i.e., the point P mod p has order dividing k1. This is very similar to having a prime
factor p in the Pollard’s (p− 1)-method for which p− 1 is smooth.

The hope is that the denominator occurring will have a non-trivial common divisor
with n. If this divisor were n, that would mean that for every p | n, k1(P mod p) = 0.
This is unlikely, especially if we have two large prime divisors of n. Hence, a failure
in the addition or doubling formulas in the intermediate computations of kP would
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mean that one may be computing a non-trivial factor of n.
Just as in Pollard’s (p − 1)-method, the larger B is, the bigger the probability

is that kP mod 0 mod p for some p | n. The larger B is, the more time it takes to
compute kP . The role of the parameter C is to bound the primes p | n for which
it is likely that kP mod p = 0 mod p. Indeed, suppose that p is a primes such that
p + 1 + 2

√
p < C and that #E(Fp) is B-smooth. It then follows from the Hasse

bound that k is a multiple of #E(Fp) and hence, that kP mod p = 0 mod p (just as
in Pollard’s (p− 1) method the exponent is a multiple of p− 1).

Suppose now that p is a prime for which #E(Fp) ≤ p+1+2
√
p < C and #E(Fp)

is B-smooth. Then, m | k and hence, kP = O mod p. To compute kP mod n in
practice, we do the following: we first compute

2P, 22P, . . . , 2α2P.

We then compute
3(2α2P ), 32(2α2P ), . . . , 3α3(2α2P ),

then
5(2α23α3P ), 52(2α23α3P ), . . . , 5α5(2α23α3P ).

and so on until we go over the primes p ≤ B. If at some point in the computation
we obtain a denominator that is not prime to n, we either get a non-trivial factor of
n (if the gcd is not n) or we restart the procedure by choosing another pair (E,P ).
Finally, if all the computations are successful, we choose a different pair (E,P ) and
start again.

8.3 Elliptic Curve Primality Testing

8.3.1 Pocklington’s test

Just as Lenstra’s ECM method uses elliptic curves to generalizes Pollard’s (p − 1)-
method (based on the group (Z/pZ)×, there is an elliptic curve primality testing
method generalizing a classical primality testing method based on the group (Z/nZ)×

known as Pocklington’s test. We start by describing the latter:

Proposition 8.3.1 ((Pocklington’s test)). Let n > 1 be an integer such that n − 1

has a prime divisor q >
√
n − 1. Suppose that there exists an element a ∈ (Z/nZ)×

such that

1. an−1 ≡ 1 mod n,

2. gcd
(
a(n−1)/q − 1, n

)
= 1.

Then n is prime.

Proof. Suppose that n is not prime. Then there exists a prime divisor p | n with
p ≤
√
n. In particular, q > p − 1 and hence, gcd(q, p − 1) = 1. We can thus find an
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integer s such that sq ≡ p− 1 mod p. It then follows that

a
n−1
q ≡ a(p−1)

(n−1)
q ≡ a

sq(n−1)
q ≡ a(p−1)(n−1) ≡ 1 mod p,

and hence, gcd
(
a(n−1)/q − 1, n

)
> 1, a contradiction with the assumption that n is

composite. Hence, n is prime.

8.3.2 The algorithm of Goldwasser–Killian–Atkin

If we are to generalize Pocklington’s test to elliptic curves, it is important to first
determine the analogue of the number n− 1. Recall that when n is prime, this is the
order of the group (Z/nZ)×. It is thus natural to search for a similar integer m that,
when n is prime, is the number of points on an elliptic curve over Z/nZ. Suppose that
you have any point-counting method A (we just mentioned the algorithm of Schoof–
Elkies–Atkin that is used in practice although we did not go over the algorithm itself).

To find such a number, we will be taking elliptic curves over Z/nZ and try to
run A on E. If n is prime, A is guaranteed to compute the number m = #E(Fn).
If n is not prime, A (run on the “set" E(Z/nZ)) either returns some number m or
it encounters an undefined expression (in either the addition or doubling formulas).
In the latter case (just as in Lenstra’s factoring method), this means that we have
encountered a denominator having a non-trivial common factor with n.

To make things more precise, consider the following proposition that serves as a
basis for the primality test using elliptic curves due to Goldwasser, Killian and Atkin:

Proposition 8.3.2. Let E : y2 = x3 + ax + b be an elliptic curve over Z/nZ and
let m be an integer. Suppose that there is a prime q dividing m that is greater than
(n1/4 + 1)2. If there exists a point P on E such that: i) mP = O; ii) (m/q)P is
defined and not equal to O then n is prime.

Proof. If n is composite, let p ≤
√
n be a prime divisor. Consider the elliptic curve

E′ that is the curve E taken modulo p and let m′ = #E′(Fp). By the Hasse–Weil
bounds,

m′ ≤ p+ 1 + 2
√
p = (p1/2 + 1)2 ≤ (n1/4 + 1)2.

This means that gcd(q,m′) = 1 and hence, there exists an integer s, such that sq ≡
1 mod m′. It then follows that

(m/q)P ′ = sq(m/q)P ′ = mP ′ = 0 ∈ E(Fp),

which is a contradiction with the assumption that n is composite.

The idea of the algorithm is then to choose three random numbers (a, x, y) and
compute

b = y2 − x3 − ax mod n.

The point P = (x, y) is then a point on the curve E : y2 = x3 + ax + b mod n. We
then try the point-counting algorithm A on E. If it does abort, that means that n
is not a prime number (we have found a non-trivial factor of n). Suppose that the
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algorithm outputs m. If one can write m = kq for a small k and probable prime q
(probable in the sense of any probabilistic primality test) then we keep the curve and
compute mP and kP . If mP ̸= 0 then n cannot be prime (since if it were, then mP
would have been 0 as the order of the group E(Fn) would have been m). If kP = 0

then we discard E and start over.
Suppose now that mP = 0 but kP ̸= 0. Then, if q were indeed prime, then

Proposition 8.3.2 would tell us that n is prime. To test the primality of q, we apply
this same algorithm recursively.
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9.1 History of Lattices

Lattices are interesting mathematical structures extensively studied in mathematics,
physics, chemistry, computer science and many other subjects. Back in the 19th
century, Gauss and Lagrange studied lattices in order to give proofs of the quadratic
reciprocity and the four-square theorem. It was Minkowski who developed geometry
of numbers in the 19th century via the study of lattices.

Computational aspects of lattices did not come until the early 1980’s with the
famous work of Lenstra, Lenstra and Lovász (LLL) on lattice basis reduction algo-
rithms [LLL82]. The LLL algorithm was originally used for factoring polynomials
over Q and for breaking several cryptosystems.

Later on (mid-1990’s), Ajtai [Ajt96] proved an unexpected worst-case to average-
case reduction theorem for lattice problems, a statement that allowed for constructing
one-way functions based on worst-case hardness conjectures. In subsequent joint work
with Dwork, he constructed the first lattice-based cryptosystem, the Ajtai–Dwork
cryptosystem [AD97]. As the scheme was not secure for any realistic keys, it was
primarily of theoretical interest.

Subsequently, Goldreich, Goldwasser and Halevi [GGH97] proposed a public-key
encryption scheme based on the closest-vector problem (CVP). Around that time, the
NTRUEncrypt scheme was proposed [HPS98].

9.2 Lattices and Lattice-based Cryptography

9.2.1 Lattices in Rn

By a lattice of Rn we mean a discrete subgroup of Rn. Here, discrete means that for
each point x in the lattice, there is a neighborhood of x in Rn which intersects the
lattice only at x. One can show that any discrete subgroup of Rn is free of rank at
most n. By a (full-rank) lattice L of Rn, we mean discrete subgroup of Rn of rank
exactly n. Unless explicitly specified, for the rest of the chapter, we will use the term
lattice to mean a full-rank lattice.

85
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Given a basis B = {b1, . . . ,bn} of Rn, we define the lattice

L(B) := Zb1 +Zb2 + · · ·+ Zbn .

Moreover, associated to B is the n-by-n basis matrix B whose columns are the vectors
b1, . . . ,bn written in terms of the standard basis.

If B and B′ are two bases of the same lattice L ⊂ Rn then one sees immediately
that the change of basis matrix U satisfies det(U) = ±1 (indeed, both U and its
inverse have integer determinants and hence which forces det(U) to be ±1).

9.2.2 The discriminant of a lattice

Given a basis B = {b1, . . . ,bn} ⊂ Rn, we define the discriminant disc(L(B)) of the
lattice L(B) as the volume of the fundamental parallelepiped P(B) associated to B.
The latter is defined as

P(B) := {x1 b1 + · · ·+ xn bn : xi ∈ [0, 1), i = 1, . . . , n}.

One can prove that

disc(L(B)) := det(BtB)1/2 = |det(B)|,

where B is the associated basis matrix.

9.2.3 Theory of short vectors in lattices and Minkowski’s theo-
rems

Given a lattice L, we use λ1(L) to denote the length of a shortest vector of L. Scaling
L by a constant scales λ1(L) by the same constant. One can thus scale the lattice so
that disc(L) = 1. A question studied in the 19th century was whether λ1(L) can be
arbitrary large for such a lattice. It turns out that the answer was negative as the
following theorem of Hermite shows:

Theorem 9.2.1 (Hermite’1870). For each n, there exists a constant Cn such that
for any lattice L of dimension n,

λ1(L) ≤ Cn · disc(L)1/n.

In fact, one defines the Hermite constant as follows:

Definition 9.2.2 (Hermite constant). For each n, define

γn := sup
L⊂Rn

(
λ1(L)

disc(L)1/n

)2

,

where the infimum is taken over all lattices L ⊂ Rn of dimension n.

Hermite’s theorem shows that this supremum is finite. Note the square in the defi-
nition of γn - it appears in the definition for historical reasons as most of the theory
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was developed in terms of positive-definite quadratic forms instead of lattices.
One of the first results of Minkowski’s theory provides an upper bound for γn. We

start by the following famous theorem of Minkowski:

Theorem 9.2.3 (Minkowski). Let L ⊂ Rn be a lattice. Any convex and centrally
symmetric body S ⊂ Rn that satisfies vol(S) > 2n disc(L) has a non-zero lattice point.

Proof. Dimitar : Give a proof for completeness.

As a corollary, we obtain

Corollary 9.2.4 (Minkowski’s first theorem). For every n, γn < n.

Proof. Dimitar : Give a proof for completeness.

Remark 12. Let L := L(B) where B is the basis consisting of the columns of the
matrix

B =

(
1 0

α p

)
,

where α ∈ Z is such that α2 ≡ −1 mod p - note that such an α exists since p ≡
1 mod 4. It follows by Minkowski’s first theorem (Corollary 9.2.4) that γ2 < 2. Since
disc(L) = p then the square-norm of the shortest vector in L will be less than 2p.

But notice that any vector v =

(
a

b

)
∈ L satisfies p | (a2 + b2). Thus, Minkowski’s

theorem implies that there exists (a, b) such that p = a2 + b2. This proves that any
prime number of the form p = 4k + 1 is a sum of two squares. We will see later how
to efficiently find such a pair (a, b) that represent p using the LLL algorithm. See
proposition 9.4.1.

The Hermite constants γn are only known for n ≤ 8. Yet, for arbitrary n, one
knows the following asymptotic lower and upper bounds (valid for large n):√

n

2πe
≤ γn ≤

√
n

πe
.

Shortest Vector Problem (SVP): Given a basis B of a lattice L ⊂ Rn, find a
vector v ∈ L such that ∥v∥ = λ1(L).

The SVP in its most basic form is an NP-hard problem under randomized reduc-
tions meaning that an algorithm for this problem would yield a randomized algorithm
for any problem in NP. As such, one often talks about an approximate SVP where the
goal is to find a vector v whose norm is bounded by γλ1(L) for some approximation
factor γ > 0. We call this problem the γ-approximate SVP problem (sometimes, one
calls this the GapSVP problem).

Closest Vector Problem (CVP): Given a basis B of a lattice L ⊂ Rn and a vector
w ∈ Rn, find a vector v ∈ L such that ∥w − v∥ = dist(w,L).

Similarly to the SVP problem, we talk about the γ-approximate CVP problem.
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Finally, there is one more related problem to consider, the Shortest Independent
Vectors Problem (SIVP).

9.2.4 Lattice-based cryptography

• Ajtai–Dwork cryptosystem

• Goldreich–Goldwasser–Halevi (GGH) cryptosystem

• NTRU cryptosystem

9.3 The LLL Algorithm

9.3.1 The case of dim(L) = 2

Given a lattice L = Zb1 +Zb2 ⊂ R2, one way to reduce the basis is as follows: if
∥b1 ∥ > ∥b2 ∥ then swap b1 and b2; else, we are tempted to find the component of

the component of b2 orthogonal to b1, i.e., b′2 := b2−µb1 for µ =
⟨b2,b1⟩
⟨b1,b1⟩

. The

family {b1,b
′
2} is orthogonal, yet, b′2 need not be in L since µ need not necessarily an

integer. Instead, we try to update b2 := b2−⌊µ⌉b1. If the updated b2 is still longer
than b1, we terminate; else, we repeat the above process. Gauss proved that the above
algorithm always terminates and also, the vector b1 obtained upon termination is a
shortest non-zero vector.

For instance, if b1 = (3, 0) and b2 = (4, 1) then µ = 4/3. Hence, we reduce
to b1 = (3, 0) and b2 = (4, 1) − (3, 0) = (1, 1). But now, the vector b1 that we
started might have been too large. At this point, we can swap the two vectors to
obtain b1 = (1, 1) and b2 = (3, 0). We repeat the process computing µ = 3/2, thus,
reducing to b1 = (1, 1) and b2 = (−2, 1).

9.3.2 The notion of a reduced basis

Definition 9.3.1 (Gram–Schmidt orthogonalization). Given linearly independent
vectors b1, . . . ,bn ⊂ Rn, the Gram–Schmidt orthogonalization are the vectors

b̂i := bi−
i−1∑
j=1

µi,jb̂j ,

where µi,j =
⟨bi, b̂j⟩
⟨b̂j , b̂j⟩

.

Definition 9.3.2 (Reduced basis). A basis B = {b1, . . . ,bn} ⊂ Rn is called δ-LLL
reduced if the following conditions are satisfied

1. (size reduced) |µi,j | ≤ 1/2 for all 1 ≤ j < i ≤ n.

2. (Lovász condition) δ∥b̂i∥2 ≤ ∥µi+1,ib̂i + b̂i+1∥2 for all 1 ≤ i < n.
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The intuition behind the last definition is the following: if we write the basis B in
terms of the Gram–Schmidt basis, the first property bounds the size of the off-diagonal
entries. More precisely, the Gram–Schmidt basis satisfies:

∥b̂1∥ ≤ 1
2∥b̂1∥ . . . ≤ 1

2∥b̂1∥
0 ∥b̂2∥ . . . ≤ 1

2∥b̂2∥
. . .

0 0 . . . ∥b̂n∥



The second property tells us that b̂i+1 is not much shorter than b̂i. Indeed,

δ∥b̂i∥2 ≤ ∥µi+1,ib̂i + b̂i+1∥2 = µ2
i+1,i∥b̂i∥2 + ∥b̂i+1∥2 ≤

1

4
∥b̂i∥2 + ∥b̂i+1∥2,

hence,

∥b̂i+1∥2 ≥
(
δ − 1

4

)
∥b̂i∥2 (9.1)

This allows us to show that the vector b1 is not too long:

Lemma 9.3.3. One has ∥b1 ∥ ≤
(
δ − 1

4

)−n−1
2

λ1(L).

Proof. It follows from (9.1) that

∥b̂i∥ ≥
(
δ − 1

4

) i−1
2

∥b1 ∥.

Next, we show that
λ1(L) ≥ min{∥b̂1∥, . . . , ∥b̂n∥}.

Indeed, let x ∈ L be a (shortest) vector of length λ1. One can write x = c1 b1 + · · ·+
cr br for some ci ∈ Z and r ≤ n such that cr ̸= 0. We now express the bi’s in terms
of the Gram–Schmidt b̂i’s to obtain (for some coefficients ν1, . . . , νr ∈ R)

∥x∥2 = c2r∥b̂r∥2 + ∥ν1b̂1 + · · ·+ νr−1b̂r−1∥2 ≥ ∥b̂r∥2 ≥ min{∥b̂1∥2, . . . , ∥b̂n∥2}.

Note that νr = cr since b̂r − br lies in the span of b1, ...,br−1. Hence,

λ1(L) ≥
(
δ − 1

4

)n−1
2

∥b1 ∥,

and hence,

∥b1 ∥ ≤
(
δ − 1

4

)−n−1
2

λ1(L),

which proves the lemma.
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9.3.3 The algorithm

The algorithm of Lenstra–Lenstra–Lovász (Algorithm 14) alternates two phases - a
reduction phase and a swapping phase. We will show below that, if it terminates,
then it produces a correct LLL-reduced basis. We also show that it always terminates
via a potential argument that helps us also analyze its runtime.

Algorithm 14 LLL
Require: {b1, . . . ,bn} - a lattice basis
Require: δ - parameter (typically, δ = 3/4)
Ensure: A δ-LLL reduced basis

Reduction stage:
1: {b̂1, . . . , b̂n} := GramSchmidt(b1, . . . ,bn)
2: for i = 2, . . . , n do
3: for j = i− 1, . . . , 1 do
4: µi,j ← ⟨bi, b̂j⟩/⟨b̂j , b̂j⟩
5: bi ← bi−⌊µi,j⌉bj

6: end for
7: end for

Swap stage:
8: for i = 1, . . . , n− 1 do
9: if δ∥b̂i∥2 > ∥µi+1,ib̂i + b̂i+1∥2 then

10: bi ↔ bi+1

11: goto Step 1
12: end if
13: end for
14: return {b1, . . . ,bn}

9.3.4 Correctness

Lemma 9.3.4. Assuming that the above procedure terminates, then the output is a
δ-LLL reduced basis.

Proof. Assuming that the procedure terminates, checking the Lovász condition (con-
dition 2.) is straightforward: if it fails for some i then the algorithm swaps bi ↔ bi+1

and keeps iterating. We thus only need to check condition 1. But this is an easy
consequence of Steps 4. and 5. of the reduction stage: indeed,

µnew
i,j = µold

i,j − ⌊µold
i,j ⌉ ≤ 1/2.

Since there are no more swaps before termination of the algorithm, the updated µi,j ’s
satisfy condition 1.

9.3.5 Termination

The argument for termination of the LLL algorithm is based on a potential function.
Given a basis B = {b1, . . . ,bn}, define

Φ(B) := Φ1(B) · · · · · Φn(B),
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where Φi(B) := det (L(b1, . . . ,bi)) = ∥b̂1∥ · · · · · ∥b̂i∥.

Lemma 9.3.5. (i) The reduction step does not change the potential function.
(ii) The swap step lowers the potential function by a constant factor.

Proof. (i) This is obvious since Φi = ∥b̂1∥ · · · · · ∥b̂i∥ and the reduction step does not
change the Gram–Schmidt basis.
(ii) Note that changing the order of bi and bi+1 changes only Φi (since changing the
order of the vectors in a basis does not change the determinant).

Φi(Bold) = det(b1, . . . ,bi), and Φi(Bnew) = det(b1, . . . ,bi−1,bi+1).

Applying Gram–Schmidt orthogonalization to the (old) basis {b1, . . . ,bi} and the
(new) basis {b1, . . . ,bi−1,bi+1} does not alter the first i− 1 orthogonal vectors. For
the second basis, the ith vector is precisely the component of bi+1 orthogonal to
{b̂1, . . . , b̂i−1}, i.e., b̂i+1+µi+1,ib̂i. In addition, the swapping condition implies that

∥b̂i+1∥2 + µ2
i+1,i∥b̂i∥2 ≤ δ∥bi ∥2 =⇒ ∥b̂i+1 + µi+1,ib̂i∥ ≤

√
δ.

Thus,
Φi(Bnew)
Φi(Bold)

=
∥b̂i+1 + µi+1,ib̂i∥

∥b̂i∥
≤
√
δ.

On the other hand, Φ(B) ≥ 1 since we are working with integral lattices.

9.3.6 Complexity analysis

To estimate the complexity, it suffices to understand the size of the initial value of
Φ(B).

Lemma 9.3.6. The initial value Φ(B) is bounded by 2N where N is polynomial in the
dimension n and the number of bits of the basis B. In addition, at each intermediate
step of the algorithm, Φ(B) ≥ 1.

Proof. The lemma follows from

Φ(B) ≤ max
i
∥bi ∥O(n2),

which is a direct consequence of the definition of Φ(B) that.

This lemma, together with Lemma 9.3.5 shows that the number of iterations in
the LLL algorithm is at most polynomial in n and the number of bits of the original
basis B.

9.4 Applications

9.4.1 Basic number theoretic applications

The original idea behind lattice-basis reduction (going back to Gauss and Lagrange)
was to prove quadratic reciprocity and the four-square theorem, respectively. Let us
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illustrate these types of applications by proving the following basic and well-known
fact:

Proposition 9.4.1. (i) Every prime of the form p = 4k+1 is a sum of two squares.

(ii) There exists an efficient algorithm (polynomial in log p) to find such a represen-
tation.

Proof. Part (i) was already proved in Remark 12. We did this by considering the
lattice L generated by the columns of the the matrix

B =

(
1 0

α p

)
,

where α2 ≡ −1 mod p. A shortest vector v =

(
a

b

)
was then shown to satisfy p | (a2+

b2). For part (ii), we need to find a shortest vector efficiently. We apply the LLL
algorithm to the original basis B to get a LLL-reduced basis B′ = {b1,b2} for L. We
know that b1 is not too long, i.e.,

∥b1 ∥ ≤
(
δ − 1

4

)−1/2
disc(B)1/2.

For δ > 3/4, we obtain ∥b1 ∥2 < 2p which means that LLL finds such a representation.

9.4.2 Finding exact shortest vectors

The LLL can give us an algorithm running in time 2O(n2) to compute an exact shortest
vector in a lattice L of dimension n.

Corollary 9.4.2. Let L be a lattice of dimension n in Rn. Then the shortest vector
problem for L can be solved in time 2O(n2).

Proof. Consider a shortest vector v =
∑n

i=1 ci bi where B = {b1, . . . ,bn} is a LLL-
reduced basis. Consider also the Gram–Schmidt orthogonalization {b̂1, . . . , b̂n}. Let
i be the smallest index such that ci ̸= 0.

We claim that |ci| ≤ 2O(n). To see this, first note that the argument of Lemma 9.3.3
yields

∥b̂i∥ ≥
(
δ − 1

4

)i−1

∥b̂1∥ =
(
δ − 1

4

)i−1

∥b1 ∥.

Next, since ci = ĉi, where v =
∑n

i=1 ĉib̂i, one can write

∥b1 ∥ ≥ ∥v∥ ≤ ci∥b̂i∥ ≤ ci
(
δ − 1

4

)i−1

∥b1 ∥.

Hence,

ci ≤
(

4

4δ − 1

) i−1
2

.
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This yields an algorithm for finding an exact short vector with complexity 2O(n2):
once we have LLL-reduced the basis, we try all possibilities for c1 (including c1 = 0)
and for each one of these possibilities, recursively find the shortest vector in the
translated lattice c1 b1 +L(B′) where B′ = {c2, . . . ,bn}. This yields an algorithm
with complexity 2O(n2).

9.4.3 Attack on RSA with low public exponent

9.4.3.1 Coppersmith’s method for finding small roots.

Coppersmith proposed a method based on LLL for finding all small roots of a polyno-
mial modulo N even if the factorization of N is unknown [Cop01] (see also [Bon99]).
This leads to an attack on the RSA cryptosystem with small exponents (Coppersmith’s
attack) which we explain later.

Theorem 9.4.3 (Coppersmith’s small root finding). Suppose that N is a modulus and
f(X) ∈ (Z/NZ)[X] be a monic polynomial of degree d. One can compute efficiently
all x ∈ Z, |x| ≤ N1/d such that f(X) ≡ 0 mod N .

Proof. Let B = N1/d and let f(X) = adX
D + · · ·+ a1X + a0. If

|aiBi| < N

d+ 1
, i = 0, . . . , d, (9.2)

then it follows that every solution x, |x| ≤ B of f(x) ≡ 0 mod N is an integer solution
of f(x) = 0. Indeed, for any such x, we have

|f(x)| ≤
d∑

i=0

|aiBi| < N.

This allows us to compute the roots of f by using any standard root-finding technique
over the reals (e.g., Newton’s method).

The problem is that (9.2) need not hold for f . To solve this, we can consider
multiples of f taken modulo N . More precisely, any linear combination of the poly-
nomials {N,NX,NX2, . . . , Nxd−1, f(x)} have the same roots as f modulo N . Thus,
one can hope to find a linear combination g that satisfies (9.2). This is equivalent to
finding a short vector in the following lattice:

L :=


N a0

BN Ba1
. . .

...
Bd−1N Bd−1ad−1

Bd


To find a short vector, we will apply the LLL algorithm. First, we bound the first
successive minima of the lattice. Since

det(L) = N ·BN · · · · ·Bd−1N ·Bd = NdBd(d+1)/2,
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we obtain that LLL yields a vector whose length is bounded by

∥v∥2 ≤ Cλ1(L) ≤ C
√
d+ 1det(L)

1
d+1 = C

√
d+ 1N

d
d+1Bd/2,

where C depends only on d and not on N . In the second inequality, we have used
Minkowski’s theorem to bound the first successive minima in terms of the determinant
of the lattice. We can now take B sufficiently small, namely B ≤ C ′N

2
d(d+1) to obtain

∥v∥2 ≤ C(C ′)d/2
√
d+ 1N

d
d+1N

1
d+1 = C(C ′)d/2

√
d+ 1N.

Now, if we choose (C ′)d/2C
√
d+ 1 ≤ 1

d+1 , i.e.,

C ′ ≤
(

1

C(d+ 1)3/2

) 2
d

,

we obtain inequality (9.2). Note that this method does not recover the roots up to
N1/d but only up to cN2/(d(d+1)) for some constant c. We need to write a slightly
different lattice problem to get to N1/d. There are two major ways to improve the
exponent:

1. Consider a larger class of polynomials, namely,

L2 := {N,Nx,Nx2, . . . , Nxd−1, f(x), f(x)x, . . . , f(x)xd−1}.

This yields a lattice of dimension 2d whose determinant is

det(L2) = NdB2d(2d−1)/2.

The enabling condition is then of the form

B ≤ C ′N1/(2d−1),

i.e., the exponent is improved from 2/d(d+ 1) to 1/(2d− 1).

2. Considering high powers of f and N . Dimitar : To be completed.

9.4.3.2 Coppersmith’s attack on RSA.

Early proposals for instantiating the RSA cryptosystems used small public exponents.
The smallest possible value is e = 3 for obvious efficiency reasons.

In addition, it is well-known that deterministic encryption with the RSA method is
not secure since an eavesdropper can recognize chosen ciphertexts. A typical example
is the following - if an attacker knows that a ciphertext corresponds to an interesting
plaintext message, the attacker might try to learn information any time the message
is transmitted. By performing statistical analysis, an attacker might try to correlate
a ciphertext of a plaintext message with other actions or information. More precisely,
deterministic encryption with RSA can never be semantically secure.
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To remedy this problem, one uses random paddings of plaintext messages. To
encrypt a message M , one concatenates a random m-bit pad to the message M , i.e.,
encrypts a message M ′ = 2mM + r for a random r ∈ {0, 2m − 1}.

Theorem 9.4.4. Let the modulus N be an n-bit number. Let C1 and C2 be two
ciphertexts corresponding to the same message M padded with two different m-bit
pads r1, r2 and RSA-encrypted with public exponent e = 3. If m ≤ ⌊n/e2⌋ then one
can efficiently recover M .

Before we prove the theorem, we record an important attack known as the related
message attack :

Lemma 9.4.5 (related message attack). Let e = 3 and let M1,M2 ∈ (Z/NZ)× be two
plaintext messages related via M2 = ℓ(M1) for a known linear function ℓ(x) = ax+ b

with a, b ̸= 0. If one has access to C1 = Me
1 mod N and C2 = Me

2 mod N together
with the RSA public information, one can efficiently recover M1 and M2.

Proof. Consider the polynomials

g1(x) = xe − C1 and g2(x) = ℓ(x)e − C2 ∈ (Z/NZ)[x].

The condition of the lemma implies that x = M1 is a common root of the two
polynomials. We can thus try to find this common root using the Euclidean algorithm.
In order for that strategy to work, we only need to check that gcd(g1(x), g2(x)) =

x−M1. Write g1(x) = (x−M1)h1(x), where h1(x) is a quadratic polynomial. Since
the function g1 : Z/NZ→ Z/NZ is bijective, g1 has a unique root M1, i.e., h1(X) is
irreducible in (Z/NZ)[x]. It follows that gcd(g1, g2) is either x −M1 or g1(x) itself.
Since b ̸= 0, this greatest common divisor cannot be g1(x) and hence, it is x −M1.
Thus, the Euclidean algorithm will find the root.

Proof of Theorem 9.4.4. Consider the two bivariate polynomials

g1(x, y) = xe − C1 and g2(x, y) = (x+ y)e − C2.

Here, x is supposed to represent M1 and y is supposed to represent r2 − r1 (the
difference between the two pads). The idea will be to use Coppersmith’s method for
finding small roots modulo N (without knowing the factorization of N) in order to
find y = r2 − r1. To do that, we take the resultant of the two bivariate polynomials
with respect to x, i.e., compute the univariate polynomial

h(y) = resx(g1, g2).

Recall that the resultant of two polynomials f1(x), f2(x) is defined as

res(f1, f2) :=
∏
(α,β)

(α− β),

where the product is taken over all pairs (α, β) of a root of f1 and a root of f2.
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To complete the attack, we claim that ∆ = r2 − r1 is a root of the resultant
polynomial. Indeed, this is a consequence of the fact that g1(M,∆) = 0 = g2(M,∆),
i.e., the two polynomials g1(x,∆) and g2(x,∆) have a common root x =M . Now, ∆
is a root of h(y) and |∆| < 2m < N1/e2 , hence, we can run Coppersmith’s method
(Theorem 9.4.3) to find a list of candidates ∆ of polynomial size. For each such
candidate, note that M2 = ℓ(M1) where ℓ(x) = x−∆ is a linear function. Hence, the
related message attack of Lemma 9.4.5 yields M .

9.4.4 Approximate GCD problem.

The approximate GCD problem is the following problem: given a set of large integers
x0, x1, . . . , xt randomly chosen close to multiples of a large integer p, find p. We can
parametrize it more formally as follows:

(ρ, η, γ)-approximate GCD problem. Given t samples from the distributionDγ,ρ(p)

for a η-bit number p, find p. Here, Dγ,ρ(p) is the distribution that chooses a uniformly
random q ←R Z ∩ [0, 2γ/p), r ←R Z ∩ (−2ρ, 2ρ) and outputs the number pq + r.

1. Simultaneous Diophantine Approximation (SDA)

2. Lagarias’ algorithm based on LLL

For each i = 0, . . . , t, let xi = pqi+ri. Consider the lattice L given by the columns
of the following (t+ 1)× (t+ 1) matrix:

M =


2ρ

x1 −x0
x2 −x0

. . .

xt −x0


The high-level idea is that the vector

v =M ·


q0
q1
...
qt

 =


2ρq0

x0q0

(
x1

x0
− q1

q0

)
...
x0q0

(
xt

x0
− qt

q0

)


will be a short vector in L for a certain range of parameters (ρ, η, γ). Indeed, we
estimate

|2ρq0| ≤ 2ρ+γ−η, and
∣∣∣∣x0q0(x1x0 − q1

q0

)∣∣∣∣ ≤ 2ρ+γ−η,

and hence, ∥v∥ ≤ 2ρ+γ−η√t+ 1.
Dimitar : Discuss range of parameters.
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9.5 The NTRU Cryptosystem

The NTRU cryptosystem was originally developed by Hoffstein and further developed
by Hoffstein, Pipher and Silverman [HPS98]. The basic algebraic operations of NTRU
are:

1. Multiplication of polynomials in the ring R := Z[X]/⟨XN − 1⟩ for a suitable N ,

2. Convolution product in ZN denoted by ⋆.

9.5.1 Key generation

There are three public parameters:

• N - degree of the polynomials,

• p - small modulus,

• q - large modulus.

The private key is generated as follows: generate random polynomials F,G ∈
{−1, 0, 1}N and define f = 1 + pF and g = pG.

The public key is defined as h = f−1 ⋆ g

9.5.2 Encryption

To encrypt a message m ∈ {−1, 0, 1}N , we choose a random r ∈ {−1, 0, 1}N and
define the encryption of m as

c = m+ r ⋆ h.

9.5.3 Decryption

To decrypt a ciphertext e, compute

a = f ⋆ c mod q,

and take m := centermod(a) mod p, where centermod is the unique lift from (Z/qZ)N

to ZN that sends each coordinate a mod q to the unique integer ã in (−q/2, q/2).

9.5.4 Correctness

To check the correctness, write

a = f ⋆ c mod q = f ⋆ (m+ r ⋆ h) mod q =

= f ⋆m+ f ⋆ r ⋆ f−1 ⋆ g mod q = f ⋆m+ r ⋆ g mod q.

But the coordinates of the vectors f ⋆m+ r ⋆ g are small, hence,

centermod(a) = f ⋆m+ r ⋆ g ∈ ZN ,
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and hence,

centermod(a) mod p = (1 + pF) ⋆m+ pr ⋆G mod p = m,

thus, proving the correctness.

9.5.5 Analysis

To analyze the security of NTRUEncrypt, we consider the so-called convolution modular
lattice, that is, the lattice Lh that is the Z-span of the columns of the following 2N -
by-2N matrix:

Lh :=



1 0 . . . 0 0 0 . . . 0

0 1 . . . 0 0 0 . . . 0
...

. . .
0 0 . . . 1 0 0 . . . 0

h0 hN−1 . . . h1 q 0 . . . 0

h1 h0 . . . h2 0 q 0
...

. . .
...

...
. . .

hN−1 hN−2 . . . h0 0 0 . . . q


Another way of describing it is as as

Lh = {(a,b) : b ≡ a ⋆ h mod q}.

Note that the NTRUEncrypt private key (f ,g) is a short vector in this lattice. The
LLL algorithm can thus help us find a short vector in the lattice.

9.6 Block Korkine–Zolotarev (BKZ) Algorithm

The Korkine–Zolotarev (or Hermite–Korkine–Zolotarev) algorithm is another lattice
basis reduction algorithm. Unlike the LLL algorithm, it runs in exponential time, yet,
it yields a basis with a much lower orthogonality defect (at most O(nn) as opposed
to the O(2n2

) in LLL). To define the notion of a Korkine–Zolotarev reduced basis we
use the same notation as before for the Gram–Schmidt matrix and additionally, write
πi : R

n → Rn−i+1 for the projection map onto the span of {bi, . . . ,bn}. We also use

µi,j :=
⟨bi, b̂j⟩
⟨b̂j , b̂j⟩

.

Definition 9.6.1 (Korkine–Zolotarev reduced basis). A basis B = {b1, . . . ,bn} is
called KZ-reduced if the following two conditions are satisfied

1. b̂i is the shortest vector in πi(L(B)) for every i = 1, . . . , n,

2. For all j < i, |µi,j | < 1/2.
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The notion of a KZ-reduced basis was proposed as a strengthening of Hermite
reduction. The first algorithm to construct a KZ-reduced basis was proposed by
Kannan [Kan83].





CHAPTER

10
Fully Homomorphic
Encryption

10.1 Homomorphic encryption schemes - basic no-
tions

10.2 Additively homomorphic encryption schemes

We start with some simpler schemes that are homomorphic with respect to addition
and not multiplication, yet, they still have powerful practical applications.

10.2.1 Paillier’s scheme

KeyGen: An RSA modulus N = pq, λ = lcm(p− 1, q − 1) (secret key).

Encrypt: To encrypt a message 0 ≤ m < N , select a random r, 0 < r < N such
that (r,N) = 1 and compute

C = EncPK(m, r) := gm · rN mod N2.

Decrypt: To decrypt a ciphertext C, we compute

L(Cλ mod N2) · µ mod N,

where L(x) denotes the largest integer value v ≥ 0 such that x − 1 ≥ vN and
µ := (L(gλ mod N2))−1 mod N .

Homomorphic addition: Given two plaintexts m1,m2 with ciphertexts C1 = Enc
and C2, respectively, one can define the homomorphic addition as

C1 ⊕ C2 = C1 · C2 mod N2 = gm1+m2(r1r2)
N mod N2.

The decryption is then

DecSK(C1 ⊕ C2) = m1 +m2 mod N.

101



102 Chapter 10. Fully Homomorphic Encryption

The security of the scheme relies on the decisional composite residuosity assumption.
Dimitar : State the assumption.

Decisional Composite Residuosity Assumption (DCRA): Given a composite
number N and an integer x, it is hard to decide whether x is an N -residue modulo
N2, i.e., whether there exists a number y such that

x ≡ yN mod N2.

10.2.2 The scheme of Damgaard–Jurik

The scheme of Damgaard–Jurik [DJ] works modulo ns+1 for an RSA modulus n and
a positive integer s. It uses that the group (Z/ns+1Z)× ∼= G ×H for a cyclic group
G of order ns and H ∼= (Z/NZ)×. The case s = 1 recovers exactly Paillier’s scheme.

Yet, the scheme provides some advantage to the scheme of Paillier: 1) the choice
of g; 2) the block size.

KeyGen: An RSA modulus n = pq, λ = lcm(p − 1, q − 1). In this scheme, we take
g = 1 +N mod Ns+1

Encrypt: Given a message m, we generate a random nonce r and define a ciphertext

C(m, r) := (1 +N)m · rN
s

mod Ns+1.

Decrypt:
Dimitar : Complete the section!

10.3 Learning with errors (LWE) problem

The learning-with-errors problem (LWE) is an important problem (conjectured to
be hard by Regev [Reg09]) that has significant implications in public-key cryptog-
raphy, including the constructions of almost all of the practical fully-homomorphic
encryption schemes. We start with a more in-depth discussion of this problem,

10.3.1 Learning parity with noise (LPN) problem

• Parity learning problem (easy with Gaussian elimination),

• Learning parity with noise (LPN) - significantly harder,

• The subexponential algorithm of Blum–Kalai–Wasserman [BKW00].

For a given integer n, one is interested in finding s ∈ (Z/2Z)n given a set of
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equations

⟨s,a1⟩ = b1

. . .

⟨s,am⟩ = bm

where ai are chosen uniformly at random from the uniform distribution on (Z/2Z)n.
A significantly harder problem is when each equation holds with probability with

probability 1 − ε for some ε > 0 (the Learning Parity with Noise (LPN) problem).
In this case, a straightforward application of Gaussian elimination would give us
uncertainty as the following simple probability lemma shows:

Lemma 10.3.1. If the samples (a1, b1), . . . , (ar, br) are corrupted by noise ε <
1

2
then the probability that ⟨s,a1⟩ + · · · + ⟨s,ar⟩ is equal to b1 + · · · + br is equal to
1

2
+

1

2
(1− 2ε)

r.

Proof. Follows by straightforward induction on r.

Assuming that we want to guess the first bit of s, the above lemma shows that
if we naïvely perform Gaussian elimination, the probability of guessing it correctly is
1

2
+2−Θ(n), i.e., we only get a negligible advantage over a random guess. To obtain a

non-negligible advantage over a random guess (i.e., guessing the bit with probability
1

2
+ polylog(n)−1), one should repeat the above procedure Θ(2n) times. The naïve

algorithm is thus exponential in the dimension n.
The first proposed subexponential algorithm was due to Blum, Kalai and Wasser-

man [BKW00] (known as the BKW algorithm). The idea of the algorithm is simple:
by drawing many more samples than the minimum needed for Gaussian elimination,
one can hope to write the basis vector (1, 0, . . . , 0) as the sum of O(log n) instead of
n sample vectors ai, thus, keeping the advantage polylogarithmic in n.

This last idea is applicable to other important hardness problems - it was used
by Kumar and Sivakumar [KS01] as well as by Ajtai et al. [AKS01] to find the first
algorithm for solving the shortest vector problem in time O(2n).

Finally, it is worth mentioning that there has been progress on quantum algorithms
for solving LPN:

• The quantum attack of Esser, Kübler and May [EKM17] revisiting the attack
of Blum, Kalai and Wasserman (BKW),

• Subsequent improvements of [Jia20] and most recently [TV22].

10.3.2 LWE problem

The LWE problem generalizes the LPN problem to any modulus q [Reg09]. The
original motivation of Regev was to understand the difficulty of solving the LPN
problem. The main result of Regev [Reg09, Thm.1.1] was that if one can solve LWE
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for a certain noise distribution then there exists an efficient quantum algorithm to
approximate the decisional version of the approximate SVP and the SIVP problem. Of
course, this qualitative result needs to be made quantitatively precise.

There are two major versions - a continuous one and a discrete one which we
present below. In addition to the search problem, there is also a decisional problem.

10.3.2.1 Continuous version.

Let s ∈ (Z/qZ)n be a vector. Let χ be an arbitrary distribution over the torus
T = R/Z. Define a distribution As,χ over (Z/qZ)n ×T as follows:

1. Choose a uniformly random a ∈ (Z/qZ)n,

2. Choose a random sample e← χ from the distribution χ.

3. Compute b = ϕ(⟨a, s⟩) + e ∈ T. Here, ⟨a, s⟩/q. Here, ϕ : Z/qZ→ q−1Z/Z ⊂ T

is the identification sending u mod q to ũ/q mod Z where ũ ∈ Z is an arbitrary
element lifting u to Z.

4. Output (a, s).

The LWE problem is the problem of finding s given access to polynomially many
samples from the distribution As,χ. More formally, given a number of samples m, we
define the distribution

Definition 10.3.2 (continuous LWE distribution). The continuous LWE distribution
on the set (Z/qZ)mn × Tm is defined as

cLWE(q, n,m, χ) := {(A,b) : b = [ϕ(As)+e]q, A←R (Z/qZ)m×n, s←R (Z/qZ)n, e← χm}.

10.3.2.2 Discrete version.

To describe the discrete version, consider the following parameters:

• q - modulus

• n - the dimension

• m - the number of samples

• χ - distribution on Z/qZ supported on small integers, i.e., a distribution such
that

Pr[x← χ : |x| > αq] < negl(n),

for some α ≪ 1. Example is a Gaussian distribution supported on the small
integers Dimitar : Be more precise .

Definition 10.3.3 (Discrete LWE distribution). The discrete LWE distribution on
the set (Z/qZ)m(n+1) is defined as follows:

LWE(q, n,m, χ) := {(A,b) : b = [As+e]q, A←R (Z/qZ)m×n, s←R (Z/qZ)n, e← χm}.
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10.3.3 Decisional LWE problem

The search problem of computing s from the pair (A,b) can be reduced (for various
ranges of parameters) to the problem of distinguishing (A,b) from a uniform pair from
(Z/qZ)(m+1)×n [Reg09, Lem.4.2], [MP12]. The Decision LWE hardness assumption
DLWE(q, n,m, α) is defined as follows:

10.3.4 Reductions

The first statement shows that if one can solve DLWE in the average case (for a random
value of s) then one can solve DLWE in the worst case (for any value of s):

Lemma 10.3.4 (worst-case to average-case reduction). Suppose that one has an
algorithm D (called distinguisher) that accepts samples from As,χ with probability
close to 1 and rejects samples from the uniform distribution U on (Z/qZ)n+1 with
probability close to 1 for a non-negligible fraction of all possible s ∈ (Z/qZ)n. Then
there exists a distinguisher D′ that distinguishes As,χ from U for all s.

Regev [Reg09] also describes a worst-case to average-case quantum reduction from
solving the shortest vector problem on an n-dimensional lattice to solving a random
instance of LWE (the approximation factor is n/α).

Lemma 10.3.5 (decision-to-search/discrete). Suppose that one has a distinguisher
D that distinguishes samples from As,χ from samples from the uniform distribution
U for all s. Then there exists an algorithm A that, given samples from As,χ, outputs
s with probability exponentially close to 1. Dimitar : Be a bit more clear on the
complexities.

Finally, given a distribution χ on T, one can discretize it to obtain a discrete
distribution χ on (Z/qZ) in the natural way: given a sample x← χ, we consider the
sample

x = ⌊qx⌉ mod q ∈ Z/qZ.

More formally, if χ : T→ R>0 is the probability density function of χ, we define the
probability density function χ : Z/qZ→ R>0 as

χ(u) :=

∫ (u+1/2)/q

(u−1/2)/q
χ(t)dt.

The following is an easy lemma that shows how to reduce the discrete version to
a continuous one.

Lemma 10.3.6 (discrete-to-continuous). Let n, q and χ (on T) be parameters as
above for the continuous LWE problem. Suppose that there is an algorithm W to
solve the continuous LWE problem in polynomial time. Then there is an algorithm
W ′ that solves the discrete LWE problem for n, q and the distribution χ on (Z/qZ)

that is the discretization of χ.
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10.3.5 Quantum reduction to approximate SVP

10.3.6 Regev’s public-key cryptosystem

Regev [Reg09] proposes a cryptosystem based on the hardness of LWE. The parame-
ters are m, q and a probability distribution χ on T .
Dimitar : Conditions on the parameters?

KeyGen: The secret key SK is a vector s ∈ (Z/qZ)n chosen uniformly at random. To
define the public key PK, choose m vectors ai ∈ (Z/qZ)n independently and uniformly
at random as well as errors e1, . . . , em ∈ T independently according to the distribution
χ. The public key PK is then (ai, bi := ⟨ai, s⟩/q + ei).

Encrypt: To encrypt a bit x ∈ {0, 1}, choose a random subset S ⊂ {1, . . . ,m} and
define

Enc(x) =

(∑
i∈S

ai, x/2 +
∑
i∈S

bi

)

Decrypt: To decrypt a ciphertext (a, b), compute e = b− ⟨a, s⟩/q and define

Dec(a, b) :=

{
0 if |e| < 1/4,

1 otherwise.

The correctness is established in the following lemma:

Lemma 10.3.7. Assume that for any k ∈ {0, . . . ,m}, χ⋆k satisfies

Pr
e←χ⋆k

[|e| < 1/4] > 1− δ.

Then the probability of a decryption error is at most δ, that is, for any x ∈ {0, 1}, if
we use the above scheme to encrypt x and then decrypt the ciphertext, the result will
be x with probability at least 1− δ.

Proof.

10.4 Ring Learning with Errors (Ring-LWE) Problem

10.4.1 Motivation

We start by considering a very simple hash function based on another classical prob-
lem, the Short Integer Solution (SIS) problem:

Short Integer Solution (SIS) Problem: Given parameters, n, m, q and an input
matrix A ∈ (Z/qZ)n×m, the goal is to find a non-zero vector e ∈ {−1, 0, 1}m such
that

A · e ≡ 0 mod q.



107 Chapter 10. Fully Homomorphic Encryption

This yields a very simple hash function: hA(e) = A · e for e ∈ {0, 1}m which is
provably secure if worst-case lattice problems are hard.

The main issue with the construction is efficiency: reading the public description
requires time O(nm log q) while collision is found in 2O(m) time. Can we modify the
construction to optimize the performance? More specifically, is it possible to obtain
a construction whose public description requires time linear in m.

10.4.2 Formulation and basic properties

We first formulate the RingLWE problem:

RingLWE Problem: Given n = 2s, and integers m and a modulus q, the in-
put consists of samples a1, . . . , am chosen uniformly at random from the ring Rq :=

Z[x]/⟨xn + 1, q⟩ together with b1, . . . , bm ∈ Rq such that ai = bis + ei where s ∈ Rq

is secret and e1, . . . , em ∈ χ, where χ is a distribution over short elements of Rq. The
goal is to compute s.

Note that we take s ∈ Rq not to be random, but worst-case. If needed, one can
randomize. There is a corresponding decisional version of the problem:

Decisional RingLWE Problem: Given n = 2s, and integers m and a modulus
q as well as a1, . . . , am chosen uniformly at random from the ring Rq together with
b1, . . . , bm ∈ Rq such that ai = bis + ei where s ∈ Rq is secret and e1, . . . , em ∈
χ, where χ is a distribution over short elements of Rq. The goal is to distinguish
{(ai, bi) : i = 1, . . . ,m} from uniformly random pairs from R2

q.

10.4.3 Encryption schemes based on RingLWE

We now present two basic encryption schemes (a symmetric one and a public-key
encryption one) based on the difficulty of solving RingLWE.

10.4.3.1 Symmetric encryption scheme

KeyGen: the secret key is a uniformly random element SK ∈ Rq.

Encrypt: Plaintext messages are polynomials in Rq whose coefficients are elements
of {0, 1}. We denote the set of such messages by Bq. To encrypt a plaintext message
µ ∈ B, one chooses random polynomials a ∈ Rq, e ∈ χ and defines the ciphertext

Cm = (a, b := a · SK+e+ ⌊q/2⌉µ).

Decrypt: To decrypt a ciphertext C, the owner of SK simply computes b−a ·SK and
round to the nearest multiple of ⌊q/2⌉. The decryption is correct as long as e < q/4.

10.4.3.2 Public-key encryption scheme

There is also a public key encryption scheme:
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KeyGen: The secret key is a short vector SK ∈ Rq drawn from a distribution χ. The
public key is a pair PK := (a, b) where a ∈R Rq is uniformly random and b = a · SK+e
where e← χ is a drawn from a noise distribution.

Encrypt: To encrypt a message µ ∈ Bq, choose u, e0, e1 ← χ and compute the
ciphertext

C = au+ e0, bu+ e1 + ⌊q/2⌉µ mod q ∈ R2
q.

Decrypt: To decrypt a ciphertext C = (C0, C1), compute C1 − SK ·C0 = eu + e1 −
SK ·e0 and perform the rounding procedure. The scheme will be correct as long as
|eu+ e1 − SK ·e0| < q/4.

10.5 Fully homomorphic encryption schemes

10.5.1 Historical overview

• First generation: Gentry (ideal lattices) [Gen09], van Dijk (integer arithmetic)
[vDGHV10] - issues with growing noise. Ad hoc hardness assumptions (not
standard classical assumptions) needed for bootstrapping.

• Second generation: Brakerski–Gentry–Vaikuntanathan [BGV12], Brakerski–Vaikuntanathan
[BV14] - slowing noise growth from linear to logarithmic in the degree of the
function, hence evaluation of circuits of fixed polynomial depth (levelled schemes)
as well as bootstrappable schemes. More standard hardness assumptions.

• Third generation: GSW [GSW13] - asymmetric multiplication (i.e., encryption
of µ1× µ2 is not the same as the encryption of µ2× µ1 allowing for even slower
noise rates. Less efficient than second generation schemes, yet, conceptually
simpler.

10.5.2 Gentry’s original idea

Here, we present the integral version of [vDGHV10]: the secret key is a large odd
number p. A bit b ∈ {0, 1} will be encrypted into a ciphertext that is close to a
multiple of p: more precisely, b gets encrypted to c = pq + 2r + b so that c mod p is
congruent to b modulo 2, where the numbers q and r are random and r ≪ |p|. To
decrypt the ciphertext, one reduces it modulo p to get an integer in [−p/2, p/2) and
outputs the parity of the result, i.e., b = (c mod p) mod 2.

Given two ciphertexts, c1 = pq1+2r1+b1 and c2 = pq2+2r2+b2, the homomorphic
sum and product are given by

c+ = p(q1 + q2) + 2(r1 + r2) + b1 ⊕ b2

and
c× = p(q1c2 + q2c1) + 2(b1r2 + b2r1 + 2r1r2) + b1b2.

respectively.
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1. The scheme of [vDGHV10] is proven to be secure if the Approximate GCD
problem described in Section 9.4.4 is assumed to be hard.

2. Two problems: 1) non-compactness of the ciphertext, and 2) homomorphic
evaluation (capacity) bound to low-degree polynomials;

10.5.3 Bootstrapping

To solve the problem of the limited homomorphic capacity, Gentry observed that
one can turn any homomorphic scheme that can homomorphically evaluate its own
decryption circuit (for any ciphertext) as well as a NAND gate. Gentry calls a scheme
with these properties bootstrappable.

The idea is simple: if one publishes EncSK(SK) then for any two ciphertexts c1 and
c2, it is possible to homomorphically evaluate the function

Fc1,c2(SK) := NAND(DecSK(c1), DecSK(c2)).

This function depends on two fixed ciphertexts, c1 and c2 and it takes as input a secret
key, decrypts the two ciphertexts and computes the NAND of the resulting plaintexts.
If the homomorphic capacity of the scheme is sufficient to evaluate (homomorphi-
cally) the functions Fc1,c2 for any two ciphertexts c1, c2 then the scheme is called
bootstrappable.

The property of being bootstrappable guarantees that as long as the ciphertexts are
properly decryptable, the homomorphic NAND is properly evaluated. Since it is applied
to fresh encryption of the secret key SK and the ciphertexts are used in the definition
of the function, the homomorphic NAND can be applied an arbitrary number of times
while keeping the ciphertext compact (i.e., not increasing the size of the ciphertext),
thus, obtaining a compact fully homomorphic encryption scheme.
Dimitar : Explain better. Not very clear.

10.5.4 Modulus and key switching

10.5.4.1 Modulus switching

Modulus switching allows to convert a system of approximate linear equations for one
modulus into a system of approximate linear equations for another modulus.

Lemma 10.5.1. Suppose that s,u ∈ (Z/qZ)n are such that

[⟨s,u⟩]q = b
⌊q
2

⌋
+ δ,

where δ .... Then if u′ =
⌊
q′u

q

⌉
then

[⟨s,u′⟩]q′ = b

⌊
q′

2

⌋
+ δ′,

where δ′ ...
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Proof.

It is useful for replacing arithmetic modulo a large modulus q with arithmetic
modulo a smaller modulus p at the expense of a slight noise increase when the secret
key s is a vector of small norm. Dimitar : Explain which schemes would benefit
from reducing the modulus.

10.5.4.2 Key switching

Key switching allows one to convert approximate linear relations for one secret key s

into approximate linear relations for another secret key s′.

10.5.5 The Brakerski–Fan–Vercauteren (BFV) scheme

A commonly known second-generation scheme is the scheme of Brakerski/Fan–Vercauteren
(BFV) which we now describe.

The plaintext space in the BFV scheme is the ring Rp = (Z/pZ)[X]/⟨XN +1⟩ and
the ciphertext space is Rq×Rq where Rq = (Z/qZ)[X]/⟨XN+1⟩ for a larger modulus
q > p. Typically, p is either a power of 2 or a prime. We also let R = Z[X]/⟨XN +1⟩.

KeyGen: the secret key SK is a random polynomial from Rp with small coefficients
(i.e., coefficients in {−1, 0, 1}). The public key PK = (PK1, PK2) is generated as follows:
PK2 ∈R Rq is a random element and PK1 = −(PK2 · SK+e) ∈ Rq. Dimitar : Explain
how SK is lifted as well as how e is sampled.

Encrypt: To encrypt a plaintext message µ ∈ Rp, one chooses random polynomials
u ∈ R, e1, e2 ∈ Rq and defines the ciphertext C = (a, b) where

a = [PK1 ·u+ e1 +∆µ]q, b = [PK2 ·u+ e2]q.

Here ∆ = ⌊q/p⌋ is the scaling factor.

Decrypt: To decrypt a ciphertext C = (a, b), the owner of SK simply computes⌊
p

q
(a+ b · SK)

⌉
mod p.

To verify that the decryption is correct, note that

a+ b · SK = PK1 ·u+ e1 +∆µ+ (PK2 ·u+ e2) · SK =

= −(a · SK+e) · u+ e1 +∆µ+ (a · u+ e2) · SK =

= ∆µ− e · u+ e1 + e2 · SK .

The error term v = −e · u + e1 + e2 · SK has small norm since the polynomials
e, e1, e2 and SK all have small coefficients. The decryption will be correct as long as

p

q
· ∥v∥ ≤ 1

2
.
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EvalAdd: To perform homomorphic addition, consider two ciphertexts C1 = (a1, b1)

and C2 = (a2, b2). Adding them component-wise yields the ciphertext C = C1+C2 =

(a, b) where

a = a1 + a2 = [PK1 ·(u1 + u2) + (e
(1)
1 + e

(2)
1 ) + ∆(µ1 + µ2)]q,

b = b1 + b2 = [PK2 ·(u1 + u2) + (e
(1)
2 + e

(2)
2 )]q.

Dimitar : Discuss how the noise grows.

EvalMult/Relinearization: To perform homomorphic multiplication, consider two
ciphertexts C1 = (a1, b1) and C2 = (a2, b2). We express the plaintexts as

µ1 =
p

q

(
ã1 + SK ·̃b2

)
and µ2 =

p

q

(
ã2 + SK ·̃b2

)
.

The homomorphic multiplication is achieved via a technique known as relinearlization
that works as follows: write the plaintext product as

µ1µ2 ≃
p

q

b̃1b̃2︸︷︷︸
C0

+ SK(ã1b̃2 + ã2b̃1︸ ︷︷ ︸
C1

) + SK2 ã1ã2︸︷︷︸
C2

 .

The SK2-term now needs to be relinearized in order for us to interpret the above
ciphertext as a linear function in SK. The main idea is to mask SK2 by its encryption
under another classical RLWE homomorphic encryption scheme Dimitar : MAKE
PRECISE! , i.e., generate a random element a0 ∈ Rq and consider the relinearization

key
RK = (RK0, RK1) = ([−a0 · SK+e+ SK2]q, [a0]q),

where e is a small noise. We can then write a valid ciphertext for µ1 · µ2 as

c = (a1, a2)⊠BFV (a2, b2) := (C0 + C2 · RK0, C1 + C2 · RK1).

To check that this is a valid ciphertext, we write the decryption function

BFVDec(c) =
p

q
(C0 + C2 · RK0 + SK ·(C1 + C2 · RK1)) =

=
p

q
(C0 + C1 SK+C2(RK0 + SK · RK1)) = µ1µ2 − C2e.

Now, the problem is that even if e is small, C2 can be any element modq and
hence, C2e can be arbitrary large, thus blowing up the noise in the decryption. To
remedy this issue, Fan–Vercauteren [FV12] originally propose two ideas (variants)
which we explain in detail below:

1. Slicing the relinearization key.

2. Modulus switching.
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10.5.5.1 Slicing the relinearization key.

10.5.5.2 Modulus switching.

10.5.6 BGV scheme

The BGV scheme is a second generation levelled scheme that that does not require
Gentry’s bootstrapping [BGV12]. Instead, it uses modulus switching for noise man-
agement.
Dimitar : Complete!

10.5.7 Cheon–Kim–Kim–Song (CKKS) scheme

The Cheon–Kim–Kim–Song (CKKS) scheme [CKKS17] is a homomorphic encryption
scheme for approximate arithmetic. There is an original version based on the hardness
of LWE, but as usual, this version is not efficient in terms of the ciphertext size. For
an efficient version, we use the version based on RingLWE.

We will explain what the latter means by just looking at the way it encrypts and
decrypts messages: the secret key is an element SK ∈ R while the public key is a pair
(a, b := −a · SK+e) ∈ R2

q where e ∈ R is an error (chosen according to some error
distribution).

(CKKS) Encryption: Using the public key PK = (a, b), we encrypt a message
µ ∈ R as follows: choose a random u ∈ R according to a distribution χenc and two
error terms e0, e1 ∈ R and output the ciphertext

C := (bu+ µ, au).

(CKKS) Decryption: The owner of the secret key SK can decrypt a ciphertext
C = (C0, C1) by simply computing

C0 + C1 · µ.

Notice that this yields µ + e ∼ µ - an approximate plaintext, the reason why the
scheme is an HE scheme for approximate arithmetic.

10.5.8 The GSW scheme

The GSW scheme [GSW13] is a third generation asymmetric scheme that we now
review in detail.

10.5.8.1 High level intuition

Dimitar : Missing quantifiers - where does the key belong to, the message, Cu?
Be more precise.
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If s is the secret key (a vector), to encrypt a message u, construct a matrix Cu

(the ciphertext) that has s as an eigenvector with eigenvalue u. Then homomorphic
addition and multiplication is given by matrix addition and matrix multiplication:

(Cu1
+ Cu2

)s = (u1 + u2)s, (Cu1
Cu2

)s = u1u2s.

This is insecure as one can compute the eigenvectors (one of them being the secret
key) given the matrix (ciphertext) C.

10.5.8.2 Approximate eigenvectors

To remedy for this, we use approximate eigenvectors, i.e., the public key will be an
approximate eigenvector such that

Cus = us+ e, (10.1)

where e is a small noise. This idea will not help over the reals as computing eigenvec-
tors is robust against small errors. Yet, over a discrete field (e.g., modulo an integer
q) that can help.

What is the problem with the above scheme? It is the accumulation of noise after
performing several multiplications. Let’s do a calculation: if Cui

s = uis+ ei then

Cu2(Cu1s) = Cu2 (u1s+ e1) = u2 · u1s+ u1e2 + Cu2e1,

and hence, the noise of the product is u1e2+Cu2
e1 which can be large even if e1 and

e2 are small.

10.5.8.3 Small plaintext scalars and ciphertext matrices

To fix the problem with the growing noise, we want to ensure that both the plaintext
scalars as well as the ciphertext matrices are small.

To ensure that plaintexts are small, one can use an important property from
logic (or digital electronics) called functional completeness of the NAND gate, that is,
the property that any other logic function (e.g., AND, OR, NOT) can be expressed as a
combination of NAND gates. If we treat the plaintext inputs as bits, a NAND gate can
be expressed mathematically as NAND(x, y) = 1 − xy over Z/qZ, thus ensuring that
the output is also small.

For the ciphertext, we use a useful tool from lattice-based cryptography known as
the flattening gadget on the second ciphertext C2: a flattening gadget takes a vector
of high norm and represents it in higher dimensions by a vector of low norm while
preserving some basic linear-algebraic properties. More precisely, we want a function
f : Z/qZ→ (Z/qZ)ℓ for some ℓ such that

1. For every x ∈ Z/qZ, the ℓ∞-norm of f(x) is much smaller than q,

2. Recovering x from f(x) is a linear operation, that is, there exists a gadget vector
g such that z = ⟨g, f(z)⟩.
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The important point is that f is a non-linear function, yet, f−1 is a linear function.
For that reason, the literature often uses the notation g−1 for f to indicate that g
(the inverse of f) is a linear function.

Example 5. A natural example of flattening gadget comes from the binary repre-
sentation of x: if x = xℓ−1xℓ−2 . . . x0(2) then we can define f(x) = (x0, . . . , xℓ−1)

and g = (1, 21, . . . , 2ℓ−1). It then follows that x = ⟨g, f(x)⟩. This example natu-
rally generalizes to vectors of size n: if v = (x1, . . . , xn) then we define G−1(x) =

(f(x1)|f(x2)| . . . |f(xn)) ∈ (Z/qZ)nℓ. In this case, instead of a gadget vector, one uses
a gadget matrix

G :=


1 2 . . . 2ℓ−1

. . .
1 2 . . . 2ℓ−1

 ∈ (Z/qZ)n×nℓ.

In this case, G · G−1(x) = x and ∥G−1(x)∥ ≤ 1. Similarly, one can generalize the
flattening gadget to matrices, namely, if M = [c1|c2| . . . |cm] ∈ (Z/qZ)n×m, define

G−1(M) := (G−1(c1)| . . . |G−1(cm)).

We can thus modify the GSW scheme as follows: instead of using the version from
Section 10.5.8.2, we integrate G into (10.1), that is, we require that the ciphertext Cu

satisfies
Cus = uGs+ e, (10.2)

for a small e.
We modify the homomorphic multiplication accordingly: if we now define the

homomorphic product as
C1 ⊠ C2 := C1G

−1C2 (10.3)

then

Cu1
⊠ Cu2

s := u2Cu1
s+G−1Cu2

e2 = u2u1s+ u2e1 +G−1Cu2
e2.

Since u2e1 is small (assuming u2 is small, e.g., a bit) and G−1Cu2
has low norm, then

the vector u2e1 +G−1Cu2e2 is of low norm, i.e., Cu1 ⊠Cu2 can be a valid ciphertext
for u1u2.

10.5.8.4 Leveled homomorphic encryption

10.5.8.5 GSW can be made bootstrappable

10.5.9 TFHE scheme

• FHEW - Micciancio–Ducas [DM15]

• TFHE - [CGGI20]

• Scheme switching - CHIMERA [BGGJ20]
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