
CHAPTER

1
Exponentiation
Algorithms

As hinted earlier in the course, one of the arithmetic operations that needs to be
optimized for both RSA encryption, RSA signatures as well as discrete-log based
systems is exponentiation. We now review various methods for fast exponentiation.

1.1 Basic Binary Ladders

The basic multiplication algorithm is based on binary ladders (we also commonly call
these square-and-multiply algorithms). The point is that they work as if we are doing
a recursion, except that they are still iterative.

Algorithm 1 BINEXP_LR
Require: A base x and an exponent y = (yd−1 . . . y0)2 in binary.
Ensure: xy.
1: z = x
2: for i = d− 2, . . . , 0 do
3: z := z2

4: if yi = 1 then
5: z := z · x
6: end if
7: end for
8: return z

For instance, the above algorithm will compute x23 as follows:

x23 = x24+22+2+1 =
(
((x2)2 · x)2 · x

)2 · x.
Note that if you want to do modular exponentiation (i.e., compute xy mod N),

you want to do modular multiplications in Steps 3. and 5.
This algorithm is essentially an “unrolled" version of the following simple recursive

algorithm POW below (which you will never use in practice for large exponents - why?).

An alternative way to compute x23 is as follows:

x23 = x · x2 · (x2)2 · (x8)2

1

2 Chapter 1. Exponentiation Algorithms

Algorithm 2 POW
Require: A base x and an exponent n.
Ensure: xn.
1: if n = 1 return x
2: if n is even return POW(x2, n/2)
3: if n is odd return POW(x2, (n− 1)/2) · x

This displays slightly better the binary expansion of the number 23. The right-to-left
binary ladder is then the following algorithm:

Algorithm 3 BINEXP_RL
Require: A base x and an exponent y = (yd−1 . . . y0)2 in binary.
Ensure: xy.
1: z := x
2: a := 1
3: for i = 0, . . . , d− 1 do
4: if yi = 1 then
5: a := z · a
6: end if
7: z := z2

8: end for
9: return a

A priori, the above algorithm seems to require the same number of multiplications
and squarings as Algorithm 3. There is one practical advantage of Algorithm 1 to
Algorithm 3, namely, that the multiplicand x in the former is fixed and in many cases
(e.g., primality testing, where x is small and one computes xn−1) the multiplication
z · x can be made quite fast.

To write the cost of the above algorithm, we assume that S is the cost of a squaring
and M is the cost of multiplication. The total cost is then (log y)S+HM where H is
the Hamming weight of the exponent y (i.e., the number of 1s in the binary expansion
of y).

1.2 Window exponentiation

There is an exponential algorithm that is slightly more general than the binary ladder
algorithms in the sense that it exploits the base-B representation of the exponent for
some B = 2b. It assumes that the exponents {x, x2, . . . , xB−1} have been precom-
puted. The algorithm is the following:

To illustrate the advantage of the windowing ladder, consider, e.g., computing x79.
First, 79 = (1001111)2 = (1033)4. For B = 22, the windowing ladder computes x79

as follows:
x79 =

((
x4
)4 · x3

)4
· x3

The cost of this algorithm is 6S+2M . On the other hand, the binary ladder algorithm

3 Chapter 1. Exponentiation Algorithms

Algorithm 4 WINDOWING LADDER
Require: A base x and an exponent y = (yd−1 . . . y0)B in base B = 2b. We assume

precomputed values of {xm : 0 < m < B, m is odd}.
Ensure: xy.
1: z := 1
2: for i = d− 1, . . . 0 do
3: Write yi =: 2c ·m where m is either 0 or odd.
4: z := (xm)2

c · z
5: if i > 0 then
6: z := z2

b

7: end if
8: end for
9: return z

computes it as follows:

x79 =

(((
x23 · x

)2
· x
)2

· x

)2

· x,

and the cost is obviously 6S + 4M . Of course, one should not forget the cost of the
precomputation of {x, x2, x3}. Yet, if the exponent y is large, the windowing ladder
saves multiplications.

1.3 Fixed-base ladders

The previous algorithm windowing ladder algorithm provides a hint on how to get a
very efficient exponentiation algorithms when the base x is fixed (i.e., we reuse it for
performing multiple exponentiations with different y’s).

In this case, we can simply do a large precomputation to store all the values

{x`Bj

: 1 ≤ ` ≤ B − 1, 1 ≤ j ≤ d− 1}.

Once this computation has been done, the algorithm then becomes very simple as

all we need is a multiplication for each B-ary digit, making a total of
log y

logB
multipli-

cations.

Algorithm 5 FIXED-BASE LADDER
Require: A base x and an exponent y = (yd−1 . . . y0)B in base B = 2b. We assume

precomputed values of {xm : 0 < m < B}.
Ensure: xy.
1: z := 1
2: for j = d− 1, . . . 0 do
3: z := xyj ·Bj · z
4: end for
5: return z

4 Chapter 1. Exponentiation Algorithms

1.4 Addition/Lucas chains/Montgomery ladder

We will see how this method works in the context of primality testing a little later in
the course. For the moment, all of the previous methods motivate the following basic
question:

Question 1.4.1. What is the length of the shortest addition chain sequence a0, a1, . . . , ar
such that a0 = 1 and ar = y? Here, addition chain sequence is defined as a sequence of
positive integers with the property that for every index i, there exist indices 0 ≤ j, k < i

such that ai = aj + ak.

The question of the length `(y) of the shortest addition chain for the number y is an
interesting one. It is difficult to compute the exact value of `(y). Yet, Erdös showed
that (see [?])

`(y) = log y + (1 + o(1))
log y

log log y
.

In practice, it is hard to compute the optimal addition chain, so one typically uses an
almost optimal chain (as we see in the examples above).

Lucas chains are special types of addition chains introduced by Peter Montgomery
[?], originally as a method of speeding up scalar multiplications on elliptic curves and
subsequently, as performing exponentiations. It is an addition chain a0, a1, . . . , ar such
that a0 = 1, for each index i, there exist indices 1 ≤ j, k < i such that ai = aj+ak with
either aj = ak or |aj−ak| = am for some m. These are helpful to compute recurrences
of the form Xm+n = f(Xm, Xn, Xm−n). Montgomery also computes lower bounds on
the lengths of Lucas chains in [?].

The concept of Lucas chains led Montgomery to propose a ladder that ended up
being helpful not only for elliptic curve scalar multiplications, but also for general
exponentiations. To explain the Montgomery ladder, let y = (yd−1 . . . y0)2 be the
binary expansion of the exponent and for each j, let Lj = (yd−1 . . . yj)2. Let Hj =

Lj + 1. Then

Lj = 2Lj+1 + yj = Lj+1 +Hj+1 + yj − 1 = 2Hj+1 + yj − 2.

The idea of the Montgomery ladder is to use to registers z0 and z1 in which one would
store xLj and xHj at any given step. Since

(Lj , Hj) =

{
(2Lj+1, Lj+1 +Hj+1) if yj = 0

(Lj+1 +Hj+1, 2Hj+1) if yj = 1,

this leads to the following algorithm:
Even if it might seem a priori that the Montgomery ladder has more multiplica-

tions than the LR or RL binary ladders, it should be noted that there are three main
reasons why the Montgomery ladder is of interest:

1. (Fixed R1/R0) - this properly was crucially used by Montgomery for speeding
up elliptic curve scalar multiplication (we will see how this work later in the
course, so we will not discuss it now).

5 Chapter 1. Exponentiation Algorithms

Algorithm 6 MONTGOMERY LADDER
Require: A base x and an exponent y = (yd−1 . . . y0)2.
Ensure: xy.
1: z0 := 1, z1 = x
2: for j = d− 1, . . . 0 do
3: if yj = 0 then
4: z1 := z0 · z1, z0 := (z0)

2

5: else
6: z0 = z0 · z1, z1 := (z1)

2

7: end if
8: end for
9: return z0

2. (Parallelization) - note that each pair of multiplications (in Line 4 and Line
6) can be parallelized as the multiplications are independent. For modular
exponentiation, this can be an advantage - if the cost of modular multiplication
is M , modular squaring is slightly faster, so the cost of each of these lines on a
machine with two processors is M .

3. (Common multiplicand) - it should be noted that the two pairs of multiplications
(both Lines 4 and 6) have a common multiplicand - if yj = b then the two
multiplications are zb · z¬b and (zb)

2. This allows for some practical speedups,
originally used for speeding up the above binary ladders [?]. The basic idea
is to express the two multiplications in terms of logical operations. Since the
common multiplicand in both cases is zb, we write

zcom := z0 ∧ z1, zb,c := zcom ⊕ zb, z¬b,c := zcom ⊕ z¬b,

and observe that z¬b = zcom + z¬b,c. We then have

zb · z¬b = zb · zcom + zb · z¬b,c,

and
(zb)

2 = zb · zcom + zb · zb,c.

Since zb · zcom is common for the two products, it can be computed only once.
The gain from the above computation comes from the fact that, on average, the
Hamming weights of zcom, zb,c and z¬b,c are half the Hamming weights of the
inputs, thus, the multiplications zb · zb,c, zb · zcom and zb · z¬b,c requiring half less
binary additions.

1.5 Exercises

Exercise 1.1 (SAGE). Here, you will do a few basic SAGE exercises related to some
bit operations.

1. Write a simple one-line command (in SAGE) that calculates 34324324 modulo

6 Chapter 1. Exponentiation Algorithms

21000000 using the Python/SAGE generic % (modulo) operator. Time the cal-
culation. You probably notice that it is quite slow. Using the Python “AND"
operator &, show how to write another one-line command that speeds this up.
Give a short justification of why you are getting the same answer. Now, imple-
ment a function myLSB(N, k) that takes as input integers N and k and outputs
the k least significant bits in the binary representation of N .

2. Recall Python’s right-shift (» k) and left-shift (« k) operators. Implement a
function myMSB(N, k) that takes an integer N and an integer k and returns the
k most significant bits of the binary representation of N .

Exercise 1.2 (SAGE). Implement Montgomery_mult and Montgomery_exp corre-
sponding to the Montgomery multiplication and exponentiation respectively. Test
the correctness of your functions using the % operator and compare the timing.

Exercise 1.3. 1. Write a recursive function Fibo_recursive(n) (i.e., your func-
tion calls itself) that outputs the n-th Fibonacci number (1, 1, 2, 3, 5, 8, 13,
...).

2. Write an iterative function Fibo_iterative(n) (i.e., using a for loop) that
outputs the n-th Fibonacci number.

3. Run your two functions on n = 32, time and compare the results.

Exercise 1.4. For an integer n ≥ 1, let `(n) be the shortest length of an addition
chain a0 = 1 < a1 < ... < a`(n) = n (i.e., for every integer k such that 1 ≤ k ≤ `(n)

there are indices 0 ≤ i, j < k such that ai + aj = ak). In this exercise, we are going
to show that `(n) ∼ log2(n).

1. Show that if 2s ≤ n < 2s+1 and s ≥ 1 then s ≤ `(n) ≤ 2s.

2. Prove that if r ≥ 1, s ≥ 0 are integers such that 2rs ≤ n < 2r(s+1) then there
is an addition chain1 for n of length at most (r + 1)s+ 2r − 2 and which starts
with ai = i for all i ∈ {0, ..., 2r − 2}, that is:

a0 = 1, a1 = 2, a2 = 3, ..., a2r−2 = 2r − 1.

Hints: proceed by induction on s. In the induction step, you can work with the euclidean

division of n by 2r (and use the induction hypothesis on the quotient).

3. By choosing r = dlog(log(n))e for n ≥ 3 in b), where log = ln is the logarithm
in base e, deduce that `(n) ≤ log2(n)(1 + o(1)) as n→ +∞.

Exercise 1.5. Find an addition chain a0 = 1 < a1 < ... < a15 = 2047 of length 15
for n = 2047.

1To be very precise for the case s = 0, we should say "there is an addition chain for max{n, 2r−1}".

	Contents
	Exponentiation Algorithms
	Basic Binary Ladders
	Window exponentiation
	Fixed-base ladders
	Addition/Lucas chains/Montgomery ladder
	Exercises

