
CHAPTER

1
Arithmetic with Large
Integers

The goal of this and the next lecture is to explain how computers and other hard-
ware platforms perform basic operations with large integers in the context of public
key cryptographic protocols. On a hardware platform, non-negative integers will be
represented in base B where B is typically a power of 2 (e.g., B could be 232 for a
32-bit architecture). Each integer n is then represented by

n =

s−1∑
i=0

niB
i, 0 ≤ ni ≤ B − 1.

Here, the ni’s are blocks, the least significant one being n0 and the most significant
one being ns−1.

1.1 Complexity of algorithms

Often, we will need to give mathematical estimates for the complexity of various
algorithms. We do that via a special notation called big-O notation that we now
introduce.

1.1.1 Big-O-notation

Suppose that f, g : Z>0 → R are two functions of the positive integers n that take
real values. We say that g(n) = O(f(n)) if there exist constants C,N > 0 such
that |g(n)| ≤ C|f(n)| for all n ≥ N . Moreover, we say that g(n) = Θ(f(n)) if
g(n) = O(f(n)) and f(n) = O(g(n)). Very often, we will give the run-time of an
algorithm via this notation. We will write g(n) = o(f(n)) if f(n) 6= 0 for all large
enough n and g(n)/f(n) tends to 0 as n → +∞. Finally, we write f(n) ∼ g(n) if
f(n) 6= 0 for all large enough n and g(n)/f(n) tends to 1 as n→ +∞.

As an example, 2n2 + n = O(n2) since 2n2 + n ≤ 3n2 for all n ≥ 1. Moreover,
2n2 + n = Θ(n2), but n 6= Θ(n2) since n2 6= O(n) even if n = O(n2). As we see
examples of algorithms, we will get more and more used to this notation.

1

2 Chapter 1. Arithmetic with Large Integers

1.1.2 Remarks on big-O notation to keep in mind

Measuring run-time of various algorithms is a subtle question. The big-O notation
is one kind of asymptotic notation, an idea from mathematics that describes the
behavior of functions in the limit.

In practice, defining how long an algorithm takes to run is difficult: one cannot
usually give an answer in milliseconds because of the dependency on the machine
architecture. One can neither give an answer in CPU clock cycles (or as an operation
count) because that would be too specific to the particular data to be useful.

The simple way of looking at asymptotic notation is that it discards all the constant
factors in a function. In other words, an2 will always be bigger that bn if n is
sufficiently large (assuming everything is positive). Changing the constant factors a
and b does not change that - it changes the specific value of n where n2 is bigger, but
does not change that it happens. So we say that O(n2) is asymptotically larger than
O(n), and forget about those constants that we probably do not know anyway. That
is useful because the problems with large n are usually the ones where things slow
down enough that we really care. If n is small enough, the time taken is small and
the gains available from choosing different algorithms are small. When n gets large,
choosing a different algorithm can thus make a huge difference.

The big-O notation is a useful mathematical model that abstracts away enough
awkward-to-handle details that useful results can be found, but it is certainly not
a perfect measure for the complexity of algorithms. We do not deal with infinite
problems in practice and there are plenty of times when problems are small enough
that those constants are relevant for real-world performance and sometimes you just
have to time things with a clock rather than asymptotically.

1.2 Schoolbook, Karatsuba and Toom–Cook multipli-
cation

1.2.1 Schoolbook multiplication

Let us recall the basic multiplication of integers that we learned in school: to compute
123 · 323, we do

3 6 9

2 4 6

3 6 9

3 9 7 2 9

Simple as that, we will try to analyze the run-time and express it in big-O notation.
Suppose first that the two numbers have n digits each. To compute each of the rows,
we need n single digit multiplications, a total of n2 single digit multiplications. To
compute the final result out of these, we need to add n integers of at most 2n digits
each. This gives us a total of 3n2 elementary operations, i.e., the run-time of the
algorithm is O(n2). Note that in this estimate, we are, for example, not accounting
for the time it takes to shift an integer to the left. Yet, in computers, bit shifts are

3 Chapter 1. Arithmetic with Large Integers

typically considered very fast operations taking almost negligible amount of time.

1.2.2 Karatsuba multiplication

Let x and y be two base-b numbers of n digits each (in their b-base representation).
For simplicity, assume that n is even, i.e., n = 2m. Write x = x0 + bmx1 and
y = y0 + bmy1. Then

xy = x0y0 + (x0y1 + x1y0)bm + x1y1b
2m.

To compute xy, it thus suffices to perform the four multiplications x0y0, x1y0, x0y1
and x1y1. Karatsuba [?] observed that one only needs to do three multiplications:
(x0 + x1)(y0 + y1), x0y0 and x1y1, and perform four extra additions in order to get
the above product, since

x0y1 + x1y0 = (x0 + x1)(y0 + y1)− x0y0 − x1y1.

Applying this algorithm recursively, one computes the product xy in O(nlog2 3) ele-
mentary steps (you will see in the homework exercise why this is the run time). This
is asymptotically faster than the schoolbook algorithm (in fact, log2 3 ∼ 1, 585 < 2).

1.2.3 Toom–Cook multiplication

Toom–Cook’s method is based on the observation that, given two polynomials of
degree d (for some d),

p(x) = p0 + p1x+ · · ·+ pd−1x
d−1

and
q(x) = q0 + q1x+ · · ·+ qd−1x

d−1,

the product polynomial h(x) = p(x)q(x) = h0 + h1x + · · · + h2d−2x
2d−2 is com-

pletely determined by the values at 2d − 1 distinct points, e.g., at t = −d + 1,−n +

2, . . . , 0, 1, . . . , d − 1. If we now think of each polynomial as the base-b expansion of
an n-bit number, we can turn this idea into an algorithm for multiplying integers.

We illustrate this with an example: consider d = 3 and write the symbolic expres-
sions

r−2 = (p0 − 2p1 + 4p2)(q0 − 2q1 + 4q2)

r−1 = (p0 − p1 + p2)(q0 − q1 + q2)

r0 = p0q0

r1 = (p0 + p1 + p2)(q0 + q1 + q2)

r2 = (p0 + 2p1 + 4p2)(q0 + 2q1 + 4q2).

But now, one can use symbolic linear algebra to express the coefficients of h(x) in
terms of the rt’s (think of this as a precomputation, depending only on the parameter

4 Chapter 1. Arithmetic with Large Integers

d):

h0 = r0

h1 = r−2/12− 2r−1/3 + 2r1/3− r2/12

h2 = −r−2/24 + 2r−1/3− 5r0/4 + 2r1/3− r2/24

h3 = −r−2/12 + r−1/6− r1/6 + r2/12

h4 = r−2/24− r−1/6 + r0/4− r1/6 + r2/24.

Now, to multiply two base-b numbers x = x0 +x1b+x2b
2 and y = y0 +y1b+y2b

2,
we compute the corresponding rt’s by performing the corresponding additions and 5
multiplications. We then compute the hi’s above for i = 0, . . . , 4. Note that these
hi’s are not yet the base-b digits (they need not be in [0, b−1)). We adjust the carries
by a classical procedure known as carrying.

To compute the gain in the above procedure, we compare to Karatsuba’s algorithm
where we multiplied two size b2 numbers using 3 instead of 4 multiplications of size b
numbers. Here, we multiply two size b3 numbers using 5 instead of 9 multiplication,
so the gain factor is 9/5. If we recursively use the same Toom–Cook procedure to
multiply the smaller-size numbers in the computation of the rt’s, we obtain a total
of O(nlog3 5) small size multiplications (here, by small, we mean multiplications of
constant size independent of n). Since log3 5 < log2 3 (in Karatsuba’s run-time), the
Toom–Cook algorithm runs asymptotically faster in our case.

We can generalize the above procedure for any degree d: there are 2d−1 multipli-
cations in the computations of r−d+1, . . . , rd−1 and again, by a recursive application,
we obtain a total of O(nlogd(2d−1)) small multiplications. We can thus bring the
complexity to O(n1+ε) for any positive number ε > 0.

Note, however, that this is just an asymptotic analysis and is far from what one
expects in practice - in particular, the simple analysis above ignores completely the
bitwise operations used in the additions and multiplications by small constants (which
contribute significantly as the size of the numbers grows and as n → ∞). Even if
often multiplications by small constants are cheap, they grow significantly with the
size of the coefficients in the computations of the hi’s. Yet, the algorithm is certainly
of theoretical interest and in addition, it can be useful for special hardware where
multiplications are particularly expensive compared to additions.

1.3 Fast Fourier Transform (FFT) methods

To simplify the exposition, we will present a very similar algorithm that multiplies
quickly two polynomials.

5 Chapter 1. Arithmetic with Large Integers

1.3.1 Version for polynomials

Let p(X), q(X) ∈ R[X], both of degree n − 1. Without too much loss of generality,
we will assume that n = 2k is a power of 2. If

p(X) = a0 + a1X + · · ·+ an−1X
n−1 and q(X) = b0 + b1X + · · ·+ bn−1X

n−1,

then the product polynomial r(X) = p(X)q(X) = c0 + c1X + · · · + c2n−2X
2n−2 has

degree 2n − 2 and the coefficients are given by ck =
∑
i+j=k

0≤i,j≤n−1

aibj . Computing the

above product requires multiplying each ai with each bj and hence, n2 multiplications
(or less if some coefficients are 0). For each coefficient ck, the number of additions is
equal to the number of pairs (i, j) satisfying the conditions minus one. This yields a

total of
n−1∑
k=0

k+

2n−2∑
k=n

(2n− 2− k) = n2 − 2n+ 1 additions We thus have a run-time of

O(n2) elementary operations in R which makes the algorithm rather slow in practice
(here, multiplications in R are considered much more expensive than additions in R).

One can use another approach instead based on Fast Fourier Transform (FFT).
The idea is that any polynomial f(X) = u0 +u1X+ · · ·+un−1X

n−1 of degree exactly
n−1 is uniquely determined by its values at n distinct points (finding the polynomial
from the evaluations is known as interpolation). A good choice of evaluation points
are the numbers ωkn for 0 ≤ k ≤ n− 1, where ωn is a primitive nth root of unity (for
example ωn = e2πi/n). In what follows, we explain why this choice is good.

We now represent any polynomial f(X) of degree n− 1 by the vector in Rn of its
coefficients. The Discrete Fourier Transform (DFT) of f(X) for ωn is

DFTωn : u = (u0, u1, . . . , un−1) 7→ û =
(
û0, û1, . . . , ûn−1

)
, (1.1)

where ûj =
n−1∑
t=0

utω
jt
n = f(ωjn). The main point here is that there are algorithms

such as Algorithm ?? computing the DFT with a complexity better than the naïve
approach requiring O(n2) elementary operations in R. If this is the case, we speak of
Fast Fourier Transform (FFT).

The DFT-based algorithm to compute the product r(X) of two degree n − 1

polynomials p(X) and q(X) will essentially evaluate p(X) and q(X) at X = ωm2n
(here, ω2n is a primitive 2n-roots of unity) for every 0 ≤ m < 2n using the more
efficient algorithm and will then compute the products p(ωm2n)q(ωm2n) = r(ωm2n). This
is because of the basic convolution theorem according to which

DFTω2n(r(X)) = DFTω2n(p(X) · q(X)) = DFTω2n(p(X)) · DFTω2n(q(X)).

We will thus get more efficiently the discrete Fourier transform of the coefficient
vector of r(X). To get r(X) itself, we will use an inverse-FFT algorithm to compute
the inverse IDFTω2n

of the transformation (??). But the inverse can be performed
essentially via the same algorithm as RECURSIVE-DFT with the same complexity. The

6 Chapter 1. Arithmetic with Large Integers

inversion is based on the relation

1

2n
DFTω−1

2n
◦ DFTω2n = id .

Note that we consider a 2nth roots instead of a nth root because of r.

Algorithm 1 DFT-Product
Require: Two degree n− 1 polynomials p and q seen in Rn, ω2n a primitive 2n-root

of unity
Ensure: The vector of the coefficients of r = p · q in R2n−1

1: p̂ := DFTω2n
(p)

2: q̂ := DFTω2n
(q)

3: r̂ := p̂ · q̂
4: r :=

1

2n
DFTω−1

2n
(r̂)

5: return r

Example 1. For example, let p(X) = a0 + a1X and q(X) = b0 + b1X, so that n = 2.
Consider ω2n = e2πi/(2n) = i. Then,

DFTi(a0, a1) = [a0 + a1, a0 + a1i, a0 − a1, a0 − a1i]

and similarly for q. The product of these two vectors is

[

(a0 + a1)(b0 + b1),

(a0 + a1i)(b0 + b1i),

(a0 − a1)(b0 − b1),

(a0 − a1i)(b0 − b1i)
]

and the DFT of this last vector at ω−12n = −i is [4a0b0, 4(a0b1 + a1b0), 4a1b1, 0].

We now present a fast recursive algorithm (Algorithm ??) to compute the DFT.
It is based on the remark that, for n = 2k, f(X) = a0 + a1X + · · · + an−1X

n−1 =

(a0 + a2X
2 + · · ·+ an−2X

n−2) +X(a1 + a3X
2 + · · ·+ an−1X

n−2) so that evaluating
f(X) at a primitive nth root of unity can be done by evaluating two degree (n− 2)/2

polynomials at a primitive (n/2)th root of unity.

Let T (n) be the run-time (number of elementary steps, i.e., "addition" and "mul-
tiplication" of complex numbers). Steps 7. and 8. take a total of 2T (n/2) elementary
steps whereas steps 12− 16 take a linear (in n) number of steps, i.e., Θ(n). We thus
get a recurrence relation

T (n) = 2T (n/2) + Θ(n),

from which we compute T (n) = Θ(n log2 n). This is certainly asymptotically faster
than the naïve algorithm described in the beginning.

7 Chapter 1. Arithmetic with Large Integers

Algorithm 2 RECURSIVE-DFT
Require: An integer n = 2k and a vector a = (a0, a1, . . . , an−1).
Ensure: DFTωn(a) = â = (â0, â1, . . . , ân−1).
1: aeven := (a0, a2, . . . , an−2)
2: aodd := (a1, a3, . . . , an−1)
3: if n = 2 then
4: âeven := aeven

5: âodd := aodd

6: else
7: âeven := RECURSIVE-DFT(n/2,aeven)

8: âodd := RECURSIVE-DFT(n/2,aodd)
9: end if

10: ωn = e
2πi
n

11: w = 1
12: for i = 0, . . . , 2k−1 − 1 do
13: âi = âeveni + wâoddi

14: âi+2k−1 = âeveni − wâoddi .
15: w := w · ωn
16: end for
17: return â = (â0, . . . , ân−1).

1.3.2 Cooley–Tukey algorithm

The above recursive FFT algorithm is a particular case of a more general FFT algo-
rithm due to Cooley and Tukey [?], one of the most common and general variants of
FFT. Here, we assume that n = n1n2 and we arrange the coefficients into a 2D array.
One then expresses

̂ak1n2+k2 =

n1−1∑
m1=0

n2−1∑
m2=0

an1m2+m1
e−

2πi
n1n2

(n1m2+m1)(n2k1+k2) =

=

n1−1∑
m1=0

e−
2πi
n1n2

m1k2

(
n2−1∑
m2=0

an1m2+m1e
− 2πi
n2
m2k2

)
=

=

n1−1∑
m1=0

(
n2−1∑
m2=0

an1m2+m1
e−

2πi
n2
m2k2

)
e−

2πi
n1n2

m1(n2k1+k2).

The above formula shows that to perform a DFT of size n1n2, it suffices to perform:

1. n1 DFTs of size n2,

2. Multiplications by the appropriate roots of unity,

3. n2 DFTs of size n1.

1.3.2.1 RecursiveDFT as Radix-2 DIT

The algorithm RECURSIVE-DFT described above is a 2-radix decimation-in-time (radix-
2 DIT) form of the algorithm of Cooley–Tukey. There are other forms of Cooley–
Tukey that are useful in practice.

8 Chapter 1. Arithmetic with Large Integers

1.3.2.2 Data ordering, data access and variations

There are different variations of the above FFT algorithms according to the applica-
tion or the architecture. See [?] for a good overview of some of these variations of
FFT.

One particular aspect is designing an in-place algorithm: i.e., an algorithm that
overwrites its input with its output data that uses constant auxiliary storage. To get
an in-place Radix-2 DIT, one uses a technique known as bit-reversal.

Algorithm 3 IterativeDFT
Require: An integer n = 2k and a vector a = (a0, a1, . . . , an−1).
Ensure: A vector r containing DFTωn(a) = â = (â0, â1, . . . , ân−1).
1: bit-reverse-copy(a, r)
2: for s = 1, . . . , k do
3: m = 2s and ωm := exp(−2πi/m)
4: for ` = 0,m, 2m, . . . , 2k −m do
5: ω := 1
6: for j = 0, . . . ,m/2− 1 do
7: t := ωr[k + j +m/2]
8: u := r[k + j]
9: r[k + j] := u+ t

10: r[k + j +m/2] := u− t
11: ω := ωωm
12: end for
13: end for
14: end for
15: return r.

Dimitar’s
comment

Dimitar : Complete!

1.3.3 Multiplying large integers - the method of Schönhage–Strassen

An efficient algorithm based on FFT that multiplies two n-digit numbers was dis-
covered in 1971 by Schönhage and Strassen [?]. The run-time of this algorithm is
O(n log n log log n) which is less than the run-time of Karatsuba multiplication. Note
that it outperforms the method of Karatsuba and other older methods for numbers
of more than 10,000 decimal digits. It is currently a part of the GNU Multiprecision
Library and is used for at least 1728 to 7808 64-bit words (33,000 to 150,000 decimal
digits), depending on architecture. In addition, a Java implementation of the method
is used for implementing multiplication in Java for big integers of more than 74,000
decimal digits1.

The basic idea is the following: to multiply two numbers, e.g., 156 × 723, we

1The Java BigInteger class (https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html)
uses the algorithm of Schönhage and Strassen.

9 Chapter 1. Arithmetic with Large Integers

consider first the linear convolution sequence:

1 5 6

7 2 3

3 15 18

2 10 12

7 35 42

7 37 55 27 18

The sequence (7, 37, 55, 27, 18) is known as the linear (or acyclic) convolution of the
two sequences (1, 5, 6) and (7, 2, 3). In general, for two n-digit numbers, the length
of that sequence is always 2n − 1. There are two useful convolutions computed out
of that sequence: the cyclic convolution and the negacyclic convolution. The cyclic
convolution in the example above yields the sequence

55 27 18

+ 7 37

55 34 55

The negacyclic convolution is

55 27 18

− 7 37

55 20 −19

The key observation is that the product of two n-digit base-b numbers is equivalent
modulo bn−1 to the cyclic convolution obtained from the two sequences corresponding
to the base-b digits of the numbers. Similarly, the product of two n-digit base-b
numbers is equivalent modulo bn + 1 to the negacyclic convolution. The Schönhage–
Strassen’s algorithm relies on the negacyclic convolution rather than the cyclic one
for various efficiency (and other) reasons that we explain below.

The idea uses a weighted version of the DFT algorithm in order to compute what
is called the negacyclic convolution. More precisely, letting vx and vy be the vectors
of base-b digits of the numbers x and y, we have

CyclicConvolution(vx, vy) = IDFTω(DFTω(vx) · DFTω(vy)),

and

NegacyclicConvolution(vx, vy) = A−1 · IDFTω(DFTω(A · vx) · DFTω(A · vy)),

where A = diag(ωi)ni=0 where ω is a primitive 2nth root of unity.
In order to apply the recursive DFT algorithm in practice to integers in b-base

representation, we need to work modulo some number N (what is known as the
Number Theoretic Transform, or NTT). Over the real numbers R or the complex
numbers C, it was natural to use a primitive 2nth root of unity. Yet, it is not
automatic that such a root of unity would exist modulo N . We thus need to determine

10 Chapter 1. Arithmetic with Large Integers

a special modulus N for which we have a primitive root of unity. If N is sufficiently
large, then computing xy mod N yields the product xy.

A major part of the algorithm is the careful choice of N to ensure that multipli-
cations the primitive root and reductions modulo N are performed very efficiently
(essentially, using only bit shifts and additions).

Algorithm 4 Schönhage-Strassen’s algorithm
Require: Integers x and y; an integer n
Ensure: Computes xy mod 2n + 1 using the negacyclic convolution
1: Decompose both x and y into 2k equal parts where 2k | n and set n′ to be the

smallest integer that is at least 2n/2k+k and is divisible by 2k (n′ is the recursion
length)

2: Compute A · vx and A · vy via shifts (the jth component shifted by n′j/2k)
3: Compute DFTω(A · vx) and DFTω(A · vy) via the NTT variant of RECURSIVE-DFT

(using ω = 22n
′
/2k as a primitive 2kth root of unity, one performs multiplications

as shifts)
4: Apply recursively the algorithm to compute the element-wise product DFTω(A ·
vx) · DFTω(A · vy)

5: Compute IDFTω(DFTω(A · vx) · DFTω(A · vy)) using the NTT variant of
RECURSIVE-DFT (multiplications are again shifts)

6: Multiply the result vector by A−1 using shifts only
7: return Result after carrying modulo 2n + 1.

The complexity is thus expressed in terms of the parameter k in Step 1. The opti-
mal k is when 2k ∼

√
n and in this case, we obtain a complexity O(n log n log log n).

1.3.3.1 An algorithm for polynomial multiplication in Q[x].

Note that the rational numbers Q do not contain a primitive 2nth root of unity.
Instead, assuming that n = 2k, we consider the polynomials in Q[x] modulo xn + 1.
We have the following congruences of polynomials:

xn ≡ −1 mod xn + 1 and x2n ≡ 1 mod xn + 1.

This means that the polynomial ω = x mod xn + 1 is a 2nth root of unity. Since 2 is
invertible in Q, ω is a primitive 2nth root of unity. If we are able to replace arithmetic
in Q with arithmetic with rational polynomials modulo xn + 1, we will then be able
to compute the product of two polynomials in Q[x] of degrees at most n in O(n log n)

operations with polynomials mod xn + 1.

To make this precise, consider f, g ∈ Q[x] with deg(fg) ≤ 2n = 2k and let
m = 2bk/2c, t = 2n/m. Write the polynomials f and g as

f(x) = f0(x) + xmf1(x) + · · ·+ xm(t−1)ft−1(x)

and
g(x) = g0(x) + xmg1(x) + · · ·+ xm(t−1)gt−1(x),

11 Chapter 1. Arithmetic with Large Integers

where the degrees of the fi’s and gi’s are less than m. We then see that

f(x) = F (x, xm) for F (x, y) = f0(x) + yf1(x) + · · ·+ yt−1ft−1(x),

and
g(x) = G(x, xm) for G(x, y) = g0(x) + yg1(x) + · · ·+ yt−1gt−1(x).

The key observation is that in order to compute fg, it suffices to compute FG modulo
yt + 1. Indeed, if

F (x, y)G(x, y) = H(x, y) + q(x, y)(yt + 1).

then
f(x)g(x) ≡ H(x, xm) mod xmt + 1 = H(x, xm) mod xn + 1.

1.3.3.2 An algorithm for large integer multiplication.

We are not presenting the version of the algorithm of Schönhage and Strassen, but
rather, a version based on the Chinese remainder theorem. Suppose that one has two
large integers a =

∑
0≤i<`

ai2
Bi and b =

∑
0≤i<`

bi2
Bi. We will also assume that ` does

not exceed 2B (typical examples that occurs in practice is B = 64). In this case,
we can choose three auxiliary primes p1, p2 and p3 between 2B−1 and 2B . In order
to obtain ab, it suffices to compute ab mod pi for each i = 1, 2, 3 and then use the
Chinese remainder theorem. If the pi’s are chosen appropriately (i.e., such that pi−1

is divisible by a large power of 2) then a mod p1 can be computed using FFT modulo
pi (by the choice of pi, there will be a primitive 2nth root of unity modulo pi).

1.4 Recent developments and summary

In 2007, Fürer [?] presented an algorithm for asymptotically faster multiplication of
very large integers compared to the algorithm of Schönhage and Strassen.

Surprisingly, a recent algorithm of Harvey and van der Hoeven [?] multiplies two
n-bit integers in O(n log n) operations, thus, proving a long-standing conjecture of
Schönhage–Strassen.

In summary, we have seen the following multiplication algorithms with indicated
complexities:

Algorithm Complexity
Schoolbook Multiplication O(n2)

Karatsuba O(nlog2 3)

Toom–Cook O(n1+ε)

Fast Fourier Transform O(n log n)

Schönhage–Strassen O(n log n log log n)

Harvey–vdHoeven O(n log n)

12 Chapter 1. Arithmetic with Large Integers

1.5 Exercises

Exercise 1.1. 1. Prove in detail that if two maps T, g : R>0 → R>0 are bounded
on any bounded interval, satisfy T (x) = 2T (x/2) + g(x) for every real number
x ≥ 1 and g(x) = O(x), then T (x) = O(x log(x)).

2. Let a, b ≥ 2 be integers. Prove that if a map T : Z>0 → R>0 satisfies T (n) ≤
aT (dn/be) for all n ≥ 1, then T (n) = O(nlogb(a)).

Exercise 1.2 (SAGE). Write a SAGE function Karatsuba(A, B) that takes two
integers A and B and returns their product using the algorithm from ??. Run and
time the above algorithm on 100 pairs of uniformly random positive integers less than
2512.

Exercise 1.3. Prove the correctness of the RECURSIVE-DFT algorithm supposing n =

2k.

Exercise 1.4 (SAGE). 1. Write the function RecursiveDFT taking as input a vec-
tor a ∈ Zn (e.g., the coefficients of a polynomial p(x) of degree n) as well as
a parameter ω (e.g., a complex root of unity) and that outputs the vector
â = DFTω(a). Here we can assume that n = 2k is a power of 2.

2. Write the function InverseRecursiveDFT.

3. Write a function DFT_product that computes the product of two integers, using
fast Fourier transform. It is not needed to implement Schönhage-Strassen’s algorithm,

but you can use the idea that 2 is a primitive 2n-th root of unity in Z/(2n + 1)Z. Otherwise

working with complex roots of unity is fine.

	Exponentiation Algorithms
	Basic Binary Ladders
	Window exponentiation
	Fixed-base ladders
	Addition/Lucas chains/Montgomery ladder
	Exercises

