

Exercise sheet 8

Exercise 5.34. Recall

$$(-L)^\alpha x = \frac{\sin(\alpha\pi)}{\pi} \int_0^\infty t^{\alpha-1} (t-L)^{-1} (-L)x dt. \quad (1)$$

As suggested, we split the integral into two parts: $\int_0^\infty = \int_0^K + \int_K^\infty$ for some positive K we are going to choose later. We start with bounding the first integral:

$$\begin{aligned} \left\| \int_0^K t^{\alpha-1} (t-L)^{-1} (-L)x dt \right\| &= \left\| \int_0^K t^{\alpha-1} (x - t(t-L)^{-1}x) dt \right\| \\ &= \left\| \alpha^{-1} K^\alpha x - \int_0^K t^\alpha (t-L)^{-1} x dt \right\| \\ &\leq \alpha^{-1} K^\alpha \|x\| + \int_0^K t^\alpha \| (t-L)^{-1} \| \|x\| dt \\ &\leq \alpha^{-1} K^\alpha \|x\| + \|(-L)^{-1}\| (\alpha+1)^{-1} K^{\alpha+1} \|x\|, \end{aligned} \quad (2)$$

where we used the fact that the whole positive complex half-plane belong to the resolvent set of L . This condition also allows us to bound the second integral:

$$\left\| \int_K^\infty t^{\alpha-1} (t-L)^{-1} (-L)x dt \right\| \leq \int_K^\infty t^{\alpha-2} \|Lx\| dt = (1-\alpha)^{-1} K^{\alpha-1} \|Lx\|. \quad (3)$$

Therefore

$$\|(-L)^\alpha x\| \leq \pi^{-1} (\alpha^{-1} K^\alpha \|x\| + \|(-L)^{-1}\| (\alpha+1)^{-1} K^{\alpha+1} \|x\| + (1-\alpha)^{-1} K^{\alpha-1} \|Lx\|). \quad (4)$$

Take $K = \|Lx\|/\|x\|$. Then we get

$$\begin{aligned} \|(-L)^\alpha x\| &\leq \pi^{-1} (\alpha^{-1} \|Lx\|^\alpha \|x\|^{1-\alpha} + (\alpha+1)^{-1} \|(-L)^{-1}\| \|Lx\|^{\alpha+1} \|x\|^{-\alpha} + (1-\alpha)^{-1} \|Lx\|^\alpha \|x\|^{1-\alpha}) \\ &\leq \pi^{-1} \left(\alpha^{-1} + (\alpha+1)^{-1} \|(-L)^{-1}\| \sup_{y \in \mathcal{D}(L)} (\|Ly\|/\|y\|) + (1-\alpha)^{-1} \right) \|Lx\|^\alpha \|x\|^{1-\alpha} \end{aligned} \quad (5)$$

since $x \in \mathcal{D}(L)$.

Exercise 5.35. Since B is a bounded operator from \mathcal{B}_α to B , we have $\|Bx\| \leq C\|x\|_\alpha = C\|(-L)^\alpha x\|$ for some constant $C > 0$. From the previous exercise, we therefore have

$$\|Bx\| \leq C\|Lx\|^\alpha \|x\|^{1-\alpha} \quad (6)$$

for some other $C > 0$. Let us show that the prescribed bound also works. Define

$$f(\epsilon) = \epsilon\|Lx\| + \epsilon^{-\alpha/(1-\alpha)}\|x\|. \quad (7)$$

Let us compute its minimum for $\epsilon \geq 0$. The candidates are $\epsilon = 0$ and the critical point:

$$0 = f'(\epsilon_*) = \|Lx\| - \frac{\alpha}{1-\alpha} \epsilon_*^{-1/(1-\alpha)} \|x\|; \quad (8)$$

$$\epsilon_* = \left(\frac{\alpha}{1-\alpha} \frac{\|x\|}{\|Lx\|} \right)^{1-\alpha}. \quad (9)$$

. Since $f''(\epsilon) \geq 0$ for any $\epsilon \geq 0$, and $\epsilon_* > 0$ the minimum is at the critical point. Therefore for any $\epsilon \geq 0$,

$$f(\epsilon) \geq f(\epsilon_*) = \left(\left(\frac{\alpha}{1-\alpha} \right)^{1-\alpha} + \left(\frac{\alpha}{1-\alpha} \right)^{-\alpha} \right) \|Lx\|^\alpha \|x\|^{1-\alpha} = \frac{1}{1-\alpha} \left(\frac{\alpha}{1-\alpha} \right)^{-\alpha} \|Lx\|^\alpha \|x\|^{1-\alpha} \geq \frac{1}{C} \|Bx\| \quad (10)$$

for some constant $C > 0$ independent on ϵ .

Exercise 5.37. For $\alpha = 0$, commutativity follows trivially. Suppose $\alpha > 0$. Since the domain of $(-L)^\alpha$ is the range of $(-L)^{-\alpha}$, we have to check $S(t)(-L)^\alpha x = (-L)^\alpha S(t)x$ for any $x = (-L)^{-\alpha}y$ for some $y \in \mathcal{B}$:

$$S(t)(-L)^\alpha((-L)^{-\alpha}y) = S(t)y; \quad (11)$$

$$\begin{aligned} (-L)^\alpha S(t)((-L)^{-\alpha}y) &= (-L)^\alpha S(t) \frac{1}{\Gamma(\alpha)} \int_0^\infty u^{\alpha-1} S(u)y du \\ &= (-L)^\alpha \frac{1}{\Gamma(\alpha)} \int_0^\infty u^{\alpha-1} S(u)S(t)y du \\ &= (-L)^\alpha(-L)^{-\alpha}(S(t)y) = S(t)y. \end{aligned} \quad (12)$$

Suppose $\alpha < 0$. We have to check $S(t)(-L)^\alpha x = (-L)^\alpha S(t)x$ for any $x \in \mathcal{B}$:

$$S(t)(-L)^\alpha x = S(t) \frac{1}{\Gamma(-\alpha)} \int_0^\infty u^{-\alpha-1} S(u)x du = \frac{1}{\Gamma(-\alpha)} \int_0^\infty u^{-\alpha-1} S(u)S(t)x du = (-L)^\alpha S(t)x. \quad (13)$$

Finally, $S(t)$ leaves \mathcal{B}_α invariant for any $\alpha > 0$. Indeed, for any $x \in \mathcal{B}_\alpha = \text{range}(-L)^{-\alpha}$, $x = (-L)^{-\alpha}y$ for some $y \in \mathcal{B}$. Therefore $S(t)x = S(t)(-L)^{-\alpha}y = (-L)^{-\alpha}S(t)y \in \text{range}(-L)^{-\alpha} = \mathcal{B}_\alpha$.

Exercise 5.43.