
Exercise sheet 6

Exercise 5.2. Suppose (x, t) → S(t)x is continuous. Note that if limn→∞ ∥S(tn)∥ < ∞ for any tn → 0+ such
that the limit exists then ∥S(t)∥ ≤ Meat for some M,a > 0 for any t ≥ 0. Indeed, in this case, there exist C, δ > 0
such that supt∈[0,δ] ∥S(t)∥ ≤ C. Then any t ≥ 0 can be expressed as t = δp+ q, where p is a non-negative integer
and q ∈ [0, δ). Then by the semigroup property, ∥S(t)∥ ≤ ∥S(δ)∥p∥S(q)∥ ≤ Cp+1, which does not exceed Meat for
properly chosen M,a > 0.

Therefore for the bound ∥S(t)∥ ≤ Meat to fail, we need a sequence tn → 0+ such that limn→∞ ∥S(tn)∥ = ∞. If
such sequence exists then there exists a sequence {xn} contained in a unit ball such that limn→∞ ∥S(tn)xn∥ = ∞.
Take yn = xn/

√
∥S(tn)xn∥; clearly, yn → 0, while limn→∞ ∥S(tn)yn∥ = ∞, which is impossible if (x, t) → S(t)x is

continuous at zero.
In fact, ∥S(t)∥ ≤ Meat for any t ≥ 0 whenever S is a semigroup on B and t → S(t)x is continuous at zero

for any x ∈ B. Indeed, if the operator norm bound fails then, as we demonstrated above, there exists a sequence
tn → 0+ such that limn→∞ ∥S(tn)∥ = ∞. Since S(tn)x converges to x in B for any x, ∥S(tn)x∥ → ∥x∥, and therefore
supn ∥S(tn)x∥ < ∞ for any x. But then supn ∥S(tn)∥ < ∞ by Banach-Steinhaus theorem, which is a contradiction.

Suppose now t → S(t)x is continuous at zero for any x and ∥S(t)∥ ≤ Meat for any t ≥ 0. Take some (t, x) and
any {(tn, xn)} converging to (t, x):

∥S(tn)xn − S(t)x∥ ≤ ∥S(tn)∥∥(xn − x)∥+ ∥(S(tn)− S(t))x∥ ≤ Meatn∥(xn − x)∥+ ∥(S(tn)− S(t))x∥. (1)

The first term converges to zero. We claim that t → S(t)x is continuous for any x at any t as well, implying that the
second term also vanishes.

Let tn → t and sn = min(tn, t). Then

∥(S(tn)− S(t))x∥ ≤ ∥S(sn)∥∥(S(tn − sn)− S(t− sn))x∥ ≤ Meat∥(S(|tn − t|)− S(0))x∥ → 0 (2)

for any x. Hence (t, x) → S(t)x is continuous.
Suppose now t → S(t)x is continuous at zero for any x only in some dense subset of B, while still ∥S(t)∥ ≤ Meat

for any t ≥ 0. Then for any ϵ > 0 and x ∈ B, take y from the dense subset such that ∥y − x∥ < ϵ. In this case,

∥(S(tn)− S(t))x∥ ≤ ∥(S(tn)− S(t))y∥+ (∥S(tn)∥+ ∥S(t)∥)∥y − x∥ < ∥(S(tn)− S(t))y∥+M(eatn + eat)ϵ. (3)

Therefore lim supn→∞ ∥(S(tn) − S(t))x∥ < 2Meatϵ for any ϵ > 0, hence ∥(S(tn) − S(t))x∥ → 0. As a result,
∥S(tn)xn − S(t)x∥ → 0 as before.

Exercise 5.4. Suppose L is closed. Then by definition, its graph is a closed subset in B × B. Therefore if
{xn} ⊂ D(L) and {Lxn} are both Cauchy sequences in B then {(xn, Lxn)} is a Cauchy sequence in B × B. Since it
lies in the graph and the graph is closed, it converges to a point (x, Lx) in the graph. This implies limxn = x ∈ D(L)
and limLxn = Lx.

Suppose now for any sequence {xn} ⊂ D(L) such that {xn} and {Lxn} are both Cauchy, limxn ∈ D(L) and
limLxn = L limxn. Note that for any sequence {xn} ⊂ D(L) such that {(xn, Lxn)} is Cauchy, {xn} and {Lxn} are
both Cauchy as well. Therefore any Cauchy sequence in the graph has a limit in the graph, meaning that the graph
is closed.

Exercise 5.5. For ℓ ∈ D(L∗), let ℓ′ ∈ B∗ be such that ℓ′(x) = ℓ(Lx) for any x ∈ D(L). Suppose {ℓn} ⊂ D(L∗) is
a Cauchy sequence in B∗ such that {ℓ′n} is also a Cauchy sequence in B∗. Let ℓ = lim ℓn ∈ B∗ and ℓ′ = lim ℓ′n ∈ B∗.
Then for any x ∈ D(L), ℓ(Lx) = lim ℓn(Lx) = lim ℓ′n(x) = ℓ′(x). Since D(L) is dense in B and ℓ′ has to be continuous,
ℓ(Lx) = ℓ′(x) for any x ∈ B. Therefore ℓ ∈ D(L∗).
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Exercise 5.9. Consider a semigroup S(t) on L2(R) given by (S(t)f)(ξ) = f(ξ + t). Clearly, ∥S(t)∥ = 1. Let us
show that Gf (t) := S(t)f is continuous for any f ∈ Cc(R). Since Cc(R) is dense in L2(R), it will imply that S(t) is
strongly continuous by Exercise 5.2.

Indeed, for any t ≥ 0,

∥Gf (t)− f∥2L2 =

∫
R
(f(ξ + t)− f(ξ))2 dξ. (4)

Since f is continuous and compactly supported, we can put limt→0+ into the integral by dominated convergence,
thus getting limt→0+ ∥Gf (t)− f∥L2 = 0.

Let us compute its generator:
(Lf)(ξ) = lim

t→0+
t−1(f(ξ + t)− f(ξ)). (5)

The pointwise limit, when exists, is clearly f ′, which lies in L2 iff f ∈ H1. In other words, D(L) = H1 and L = ∂ξ.
Consider now the heat semigroup. Let us bound its norm:

∥S(t)f∥2L2 =
1

4πt

∫∫∫
e−

|ξ−η|2
4t e−

|ξ−η′|2
4t f(η)f(η′) dη dη′ dξ; (6)∫

e−
|ξ−η|2

4t e−
|ξ−η′|2

4t dξ =

∫
e−

2|ξ−(η+η′)/2|2+(η−η′)2/2
4t dξ =

√
2πte−

(η−η′)2
8t ; (7)

∥S(t)f∥2L2 =
1√
8πt

∫∫
e−

(η−η′)2
8t f(η)f(η′) dη dη′ =

1√
8πt

∫∫
e−

r2

8t f(η)f(η + r) dη dr. (8)

By Cauchy-Schwarz, ∫
f(η)f(η + r) dη ≤ ∥f∥2L2 . (9)

Therefore

∥S(t)f∥2L2 ≤
∥f∥2L2√
8πt

∫∫
e−

r2

8t dr = ∥f∥2L2 , (10)

which gives the bound ∥S(t)∥ ≤ 1.
Take f ∈ C1

c (R) and let us check that t → S(t)f is continuous at zero. Let Lf < ∞ be the Lipschitz contsant of
f . We have:

∥S(t)f − f∥2L2 =
1

4πt

∫∫∫
e−

|ξ−η|2
4t e−

|ξ−η′|2
4t (f(η)− f(ξ))(f(η′)− f(ξ)) dη dη′ dξ

≤
L2
f

4πt
L(supp f) sup

ξ∈supp f

∫∫
e−

|ξ−η|2
4t e−

|ξ−η′|2
4t |ξ − η||ξ − η′| dη dη′

=
4t

π
L2
fL(supp f) → 0,

(11)

where L(A) is Lebesgue measure of a measurable set A. Since C1
c (R) is dense in L2(R), Exercise 5.2 implies that S

is strongly continuous.
Let us now compute its generator:

(Lf)(ξ) = lim
t→0+

1√
4πt3

∫
R
e−

|ξ−η|2
4t (f(η)− f(ξ)) dη = lim

t→0+

1√
4πt3

∫ δ

−δ

e−
r2

4t (f(ξ + r)− f(ξ)) dr (12)

for any δ > 0. If f is twice-differentiable at ξ then we can use the Taylor’s theorem:

(Lf)(ξ) = lim
t→0+

1√
4πt3

∫ δ

−δ

e−
r2

4t

(
f ′(ξ)r +

1

2
(f ′′(ξ) + or→0(1))r

2

)
dr. (13)

The first term integrates to zero by symmetry. Take an arbitrary ϵ > 0 and choose δ > 0 in such a way that the
o-term is bounded by ϵ. Then it integrates to Oϵ→0(ϵ):

(Lf)(ξ) = Oϵ→0(ϵ) + lim
t→0+

1√
4πt3

∫ δ(ϵ)

−δ(ϵ)

e−
r2

4t
r2

2
f ′′(ξ) dr = lim

t→0+

1√
4πt3

∫
R
e−

r2

4t
r2

2
f ′′(ξ) dr = f ′′(ξ). (14)

Therefore whenever the pointwise limit exists, Lf should be equal to f ′′. In order for the limit to exist in L2(R),
one needs f ∈ H2.
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