Exercise sheet 6

Exercise 5.2. Suppose (z,t) — S(t)x is continuous. Note that if lim, . ||S(¢s)] < oo for any ¢, — 0+ such
that the limit exists then ||S(t)| < Me® for some M,a > 0 for any ¢ > 0. Indeed, in this case, there exist C,d > 0
such that sup,c(o s [|S(t)[| < C. Then any ¢t > 0 can be expressed as t = dp + ¢, where p is a non-negative integer
and ¢ € [0,5). Then by the semigroup property, ||S(¢)|| < [|S(6)|[?||S(q)|] < CPT, which does not exceed Me® for
properly chosen M, a > 0.

Therefore for the bound ||S(t)|| < Me to fail, we need a sequence ¢, — 0+ such that lim, . |[|S(t,)|| = co. If
such sequence exists then there exists a sequence {x,} contained in a unit ball such that lim,_, ||S(tn )2 || = co.
Take yp = xn//||S(tn)xnll; clearly, y, — 0, while lim,_,o0 [|S(tn)yn|| = 00, which is impossible if (z,t) — S(t)x is
continuous at zero.

In fact, [|S(t)]] < Me* for any ¢ > 0 whenever S is a semigroup on B and ¢ — S(¢)x is continuous at zero
for any x € B. Indeed, if the operator norm bound fails then, as we demonstrated above, there exists a sequence
t, — 0+ such that lim,, o ||S(tn)|| = co. Since S(t,)x converges to x in B for any =z, ||S(t,)z| — ||z||, and therefore
sup,, ||S(tn)z|| < oo for any z. But then sup,, ||S(¢,)|| < co by Banach-Steinhaus theorem, which is a contradiction.

Suppose now t — S(t)z is continuous at zero for any z and ||S(t)|| < Me® for any t > 0. Take some (t,z) and
any {(tn,xn)} converging to (¢, x):

1S(tn)2n — SOl < 1SE) @ — D)l + [(S(ta) - SE)al| < Mets

(@n =) +[[(S(tn) = SE)2]. (1)

The first term converges to zero. We claim that ¢ — S(t)x is continuous for any x at any ¢ as well, implying that the
second term also vanishes.
Let t,, — t and s,, = min(¢,,t). Then

1(S(tn) = SE)z[l < NS (s (S (tn — sn) = S(t = su))all < Me™[[(S(Jtn — t]) — S(0)z[| = 0 (2)

for any x. Hence (t,2) — S(t)z is continuous.
Suppose now ¢ — S(t)z is continuous at zero for any x only in some dense subset of B, while still ||S(¢)|| < Me
for any ¢ > 0. Then for any € > 0 and x € B, take y from the dense subset such that ||y — z|| < e. In this case,

1(S(tn) = SE)[l < N(S(tn) = SEyll + (ISE)I + ISO DNy — 2l < 1(S(En) = SOyl + M(e + e (3)

Therefore limsup,,_,. |[(S(t.) — S(t))z| < 2Me®e for any € > 0, hence ||(S(t,) — S(¢))z| — 0. As a result,
IS (tn)xn — S(t)x| — 0 as before.

Exercise 5.4. Suppose L is closed. Then by definition, its graph is a closed subset in B x B. Therefore if
{zn,} € D(L) and {Lz,} are both Cauchy sequences in B then {(z,, Lz,)} is a Cauchy sequence in B x B. Since it
lies in the graph and the graph is closed, it converges to a point (x, Lz) in the graph. This implies lim x,, = « € D(L)
and lim Lz,, = Lx.

Suppose now for any sequence {z,} C D(L) such that {z,} and {Lz,} are both Cauchy, limz, € D(L) and
lim Lx,, = Llim z,,. Note that for any sequence {x,,} C D(L) such that {(x,, Lz,)} is Cauchy, {x, } and {Lx,} are
both Cauchy as well. Therefore any Cauchy sequence in the graph has a limit in the graph, meaning that the graph
is closed.

Exercise 5.5. For ¢ € D(L*), let ¢’ € B* be such that ¢'(z) = ¢(Lx) for any « € D(L). Suppose {£,,} C D(L*) is
a Cauchy sequence in B* such that {€],} is also a Cauchy sequence in B*. Let £ = lim/,, € B* and ¢/ = lim ¢}, € B*.
Then for any « € D(L), ¢(Lz) = lim ¢, (Lx) = lim £/, (z) = ¢'(x). Since D(L) is dense in B and ¢’ has to be continuous,
{(Lx) = ¥'(zx) for any x € B. Therefore ¢ € D(L*).



Exercise 5.9. Consider a semigroup S(t) on L?(R) given by (S(t)f)(&) = f(£ +1t). Clearly, ||S(¢)|| = 1. Let us
show that G(t) := S(t)f is continuous for any f € C.(R). Since C.(R) is dense in L?(R), it will imply that S(¢) is
strongly continuous by Exercise 5.2.

Indeed, for any ¢ > 0,

1G5 (1) — I3 = / (F(6+ 1) — £(€))? de. (4)

Since f is continuous and compactly supported, we can put lim;_,o4 into the integral by dominated convergence,
thus getting lim_,o4 ||Gf(t) — f|lz2 = 0.
Let us compute its generator:

(L)) = lim ¢~ (f(€+1) = f(£)). ()

t—0+

The pointwise limit, when exists, is clearly f’, which lies in L? iff f € H'. In other words, D(L) = H' and L = 0.
Consider now the heat semigroup. Let us bound its norm:

1 _le—nl? le=n"1% - \2
IS = 7 [[[ e S5 S s sy dnay a ()
/e—'gil" e_\s—ﬁﬂ dfz/e_zwa—«wn')/i\t +(n=n")2/2 dg:\/QTrte_(";w ; (7)
_ (n= n)
It >f||L2:F// W £() dndrf —F// 5 f()f(n + ) dndr. (8)
By Cauchy-Schwarz,
/f F+r)dn < )2 (9)
Therefore ||f||
1S 7112 < / / 5 dr = | |2, (10)

which gives the bound ||S(t)] < 1.
Take f € C}(R) and let us check that t — S(t)f is continuous at zero. Let Ly < oo be the Lipschitz contsant of
f. We have:

IS0 = 71 = 57 [[[ e HE G - 1)) - f1€) dnaf e
L2 n 71
N s O ()

= ?L?E(supp f)—0,

where £(A) is Lebesgue measure of a measurable set A. Since C}(R) is dense in L?(R), Exercise 5.2 implies that S
is strongly continuous.
Let us now compute its generator:

LH© = Jim = [ F G = f©yan = tim —— [ FpEern-r@a )

for any 6 > 0. If f is twice-differentiable at £ then we can use the Taylor’s theorem:

L) = tim —— [

The first term integrates to zero by symmetry. Take an arbitrary € > 0 and choose § > 0 in such a way that the
o-term is bounded by e. Then it integrates to OE_>0(€)I

( )r+ 2(f”(,s)+oHo<1))r2> dr. (13)

2 o1 _2r? _
eo(e) + lHm \/m / o "(&)dr = lim Tis /R e (&) dr = f"(£). (14)

Therefore whenever the pointwise limit exists, Lf should be equal to f”. In order for the limit to exist in L?(R),
one needs f € H?.
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