

Exercise sheet 5

Exercise 4.46.

Exercise 4.50. Suppose $h \in \text{range } A$, i.e. $h = Au$ for some $u \in \mathcal{H}_\mu$. Then

$$\begin{aligned}
 \|h\|_\nu &= \sup_{\ell \in \mathcal{B}_2^*} \{\ell(h) : C_\nu(\ell, \ell) \leq 1\} \\
 &= \sup_{\ell \in \mathcal{B}_2^*} \{\ell(Au) : C_\mu(A^* \ell, A^* \ell) \leq 1\} \\
 &= \sup_{\ell \in \mathcal{B}_2^*} \{(A^* \ell)u : C_\mu(A^* \ell, A^* \ell) \leq 1\} \\
 &\leq \sup_{k \in \mathcal{H}_\mu^*} \{ku : C_\mu(k, k) \leq 1\} \\
 &= \sup_{v \in \mathcal{H}_\mu} \{\langle v, u \rangle_\mu : \|v\|_\mu \leq 1\} = \|u\|_\mu.
 \end{aligned} \tag{1}$$

Therefore $\|h\|_\nu \leq \inf_{u \in \mathcal{H}_\mu} \{\|u\|_\mu : Au = h\} < \infty$ and $h \in \mathcal{H}_\nu$.

Exercise 4.57.

Exercise 4.64. Since A is a bounded linear operator and μ is a Gaussian measure on L^2 , $A^* \mu$ is a Gaussian measure on $H_0^{1,2}$. Since \mathcal{H} is \mathbb{R} in our case, \mathcal{H}' is also \mathbb{R} . Then by definition, $A\xi(t)$ is a Wiener process if $\mathbb{E} A\xi(t)A\xi(s) = s \wedge t$ for any $t, s \in \mathbb{R}$:

$$\mathbb{E} A\xi(t)A\xi(s) = \mathbb{E} \langle \xi, I_{[0,t]} \rangle \langle \xi, I_{[0,s]} \rangle = \langle I_{[0,t]}, I_{[0,s]} \rangle = s \wedge t. \tag{2}$$

Therefore $A^* \mu$ is a Wiener measure on $H_0^{1,2}$.

Exercise 4.65. By definition, ξ can be realized as a measure in H^{-s} iff $\mathcal{F}^{-1}[(1 + |t|^2)^{-s/2} \mathcal{F}\xi] \in L^2$. We have

$$(1 + |\omega|^2)^{-s/2} [\mathcal{F}\xi](\omega) = (1 + |\omega|^2)^{-s/2} \mathbb{E} e^{-i\omega^T \xi} = (1 + |\omega|^2)^{-s/2}; \tag{3}$$

$$\mathcal{F}^{-1} \left[(1 + |\omega|^2)^{-s/2} \mathcal{F}\xi \right] (x) = \frac{1}{2\pi} \int_{\mathbb{R}^d} e^{i\omega^T x} (1 + |\omega|^2)^{-s/2} d\omega; \tag{4}$$

$$\begin{aligned}
 \int_{\mathbb{R}^d} \left(\mathcal{F}^{-1} \left[(1 + |\omega|^2)^{-s/2} \mathcal{F}\xi \right] (x) \right)^2 dx &= \frac{1}{4\pi^2} \int_{\mathbb{R}^d} \iint_{\mathbb{R}^d \times \mathbb{R}^d} e^{i(\omega - \omega')^T x} (1 + |\omega|^2)^{-s/2} (1 + |\omega'|^2)^{-s/2} d\omega d\omega' dx \\
 &= \frac{1}{4\pi^2} \int_{\mathbb{R}^d} (1 + |\omega|^2)^{-s} d\omega,
 \end{aligned} \tag{5}$$

which is finite iff $s > d/2$.