
Exercise sheet 4

Exercise 4.22. Define E = lim supϵ→0 Hϵ(X )/| log ϵ|; we know that E < ∞. Let {ϵm} be a sequence of
positive numbers converging to zero such that limm→∞ Hϵm(X )/| log ϵm| ≤ E. W.l.o.g. suppose ϵm ≤ 2−m and
Hϵm(X ) ≤ (E + 1)| log ϵm| ∀m, or equivalently, eHϵm (X ) ≤ 2m(E+1) ∀m.

Define Nm = eHϵm (X ) and let Nm = (x
(m)
1 , . . . x

(m)
Nm

) be the corresponding ϵm-net. Note that D = ∪∞
m=1Nm is a

countable dense subset of X . Let β ∈ (0, α); defining Ωβ the same way as for X = [0, 1]d, we get that the theorem
statement follows if EMβ(X) < ∞, where Mβ(X) = supx̸=y:x,y∈D

|X(x)−X(y)|
dβ(x,y)

.
Let ∆m be a set of point pairs (x, y), where x ∈ Nm and y ∈ Nm+1, such that d(x, y) ∈ (ϵm, 2ϵm); note that

|∆m| ≤ NmNm+1 ≤ N2
m+1. Define Km(X) = sup(x,y)∈∆m

|X(x)−X(y)|. Similarly to the X = [0, 1]d case, we have
for any fixed β′ ∈ (β, α),

EKp
m(X) ≤ Cp

∑
(x,y)∈∆m

(C(x, x) + C(y, y)− 2C(x, y))p/2 ≤ ĈpN
2
m+1ϵ

αp
m ≤ Ĉp2

(m+1)(E+1)2−mαp. (1)

Take p = 2E+2
α−β′ . Then EKp

m(X) ≤ Ĉp2
−mβ′p and Jensen’s inequality gives EKm(X) ≤ K2−mβ′

uniformly in m
for some constant K.

Given x, y ∈ X , let m0 be the maximal m such that d(x, y) < 2−m. Let xm0−1 be a point from Nm0−1

such that d(x, xm0−1) < 2−m0+1 and let ym0
be a point from Nm0

such that d(x, xm0
) < 2−m0 . In this case,

d(xm0−1, ym0
) < 2−m0+2 = 2ϵm0−1; therefore (xm0−1, ym0

) ∈ ∆m0−1.
For any n ≥ m0, let xn be a point from Nn such that d(x, xn) < 2−n, and for any n > m0, let yn be a point

from Nn such that d(y, yn) < 2−n. Then

|X(x)−X(y)| ≤ |X(xm0−1)−X(ym0
)|+

∞∑
n=m0−1

|X(xn+1)−X(xn)|+
∞∑

n=m0

|X(yn+1)−X(yn)|

≤ Km0−1 +

∞∑
n=m0−1

Kn +

∞∑
n=m0

Kn = 2

∞∑
n=m0−1

Kn.

(2)

By definition of Mβ(X),

Mβ(X) = sup
(x,y)∈D

|X(x)−X(y)|
dβ(x, y)

= sup
m0≥1

sup
(x,y)∈Nm0

|X(x)−X(y)|
dβ(x, y)

≤ 2 sup
m0≥1

∞∑
n=m0−1

Kn2
βm0 ≤ 2 sup

m0≥1

∞∑
n=m0−1

Kn2
β(n+1) = 2

∞∑
n=0

Kn2
β(n+1).

(3)

Taking expectation,

EMβ(X) ≤ 2

∞∑
n=0

2−nβ′
2β(n+1), (4)

which converges since β′ > β.

Exercise 4.23. For any finite set of points (x1, . . . , xN ) ⊂ [0, 1]d, construct a linear operator Kx1:N
: H⊕N → H⊕N

as follows:

⟨(h1, . . . , hN ),Kx1:N
(k1, . . . , kN )⟩ =

N∑
i,j=1

⟨hi, C(xi, xj)kj⟩. (5)
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Since C(x, y) is symmetric and positive definite for any x, y ∈ [0, 1]d, Kx1:N
posesses the same properties. It is also

trace class:

trKx1:N
=

∞∑
n=1

N∑
p=1

⟨e(p)n ,Ke(p)n ⟩ =
∞∑

n=1

N∑
p=1

N∑
i,j=1

⟨en, C(xi, xj)en⟩1i=p1j=p

=

∞∑
n=1

N∑
p=1

⟨en, C(xp, xp)en⟩ =
N∑

p=1

∞∑
n=1

⟨en, C(xp, xp)en⟩

=

N∑
p=1

trC(xp, xp) =

N∑
p=1

∫
H
∥x∥2 µp(dx) =

∫
H⊕N

∥(x1, . . . , xN )∥2 µ1(dx1), . . . , µN (dxN ),

(6)

where µp is a Gaussian measure on H defined by C(xp, xp), {en} is an orthornormal basis in H, and e
(p)
n =

(0, . . . , 0, en, 0, . . . , 0) ∈ H⊕N for en staying at position p.
Proposition 4.17 tells us that there is a Gaussian measure µx1:N

on H⊕N with Ĉµx1:N
= Kx1:N

. By Kolmogorov’s
extension theorem, we can construct a measure µ0 on X = H[0,1]d endowed with a product σ-algebra such that all
finite-dimensional marginals are Gaussian and satisfy∫

X
⟨h, f(x)⟩⟨k, f(y)⟩µ0(df) = ⟨h,C(x, y)k⟩ (7)

for any x, y ∈ [0, 1]d and any h, k ∈ H.
Take β ∈ (0, α) and proceed similarly to the case H = R. A natural way to define Km(X) is sup(x,y)∈∆m

∥X(x)−
X(y)∥. Then noting E (∥X(x)−X(y)∥2) = trC(x, x) + trC(y, y)− 2 trC(x, y) since C(x, y) is trace class for any
x, y ∈ [0, 1]d, the rest of the proof goes through.

Exercise 4.29. If h ∈ B lies in H̊µ then there should exist h∗ ∈ B∗ such that for any ℓ ∈ B∗,∫
h(x) dℓ(x) = Cµ(h

∗, ℓ). (8)

In particular, for ℓ = δt,

h(t) = Cµ(h
∗, δt) =

∫
h∗(f)δt(f) dµ(f) =

∫ (∫
f(x) dh∗(x)

)
f(t) dµ(f) =

∫
x ∧ t dh∗(x). (9)

It is easy to see that this h satisfies the above condition for any ℓ ∈ B∗.
We see that h(0) = 0, h has a derivative at t equal to ḣ(t) = h∗([t, 1]) whenever h∗({t}) = 0. Since h∗ is a

measure of bounded variation, h has to be differentiable almost everywhere and ḣ should be of bounded variation. It
is easy to see that h has to be of bounded variation as well; indeed, its variation is given by

V 1
0 (h) = sup

P

|P |−1∑
i=1

|h(ti+1)− h(ti)|

= sup
P

|P |−1∑
i=1

∣∣∣∣∫ ti+1

ti

(x− ti) dh
∗(x)

∣∣∣∣
≤ sup

P

|P |−1∑
i=1

(ti+1 − ti)V
ti+1

ti (h∗)

≤ sup
P

|P |−1∑
i=1

V
ti+1

ti (h∗)

= V 1
0 (h

∗),

(10)

which is finite since h∗ is a measure of bounded variation. Therefore H̊µ ⊂ BV0([0, 1]), a set of bounded variation
functions with h(0) = 0.
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Since BV ([0, 1]) is dense in H1,2([0, 1]), BV0([0, 1]) is dense in H1,2
0 ([0, 1]). Since H1,2

0 ([0, 1]) is complete,
Hµ ⊂ H1,2

0 ([0, 1]).
In fact, for any h ∈ C∞([0, 1]) such as h(0) = 0 (we denote this space by C∞

0 ([0, 1]) below), there is h∗ ∈ B∗

satisfying the above condition: it is a measure with density −ḧ (such a measure always has bounded variation).
Therefore C∞

0 ([0, 1]) ⊂ H̊µ.
Suppose h ∈ C∞

0 ([0, 1]). Then h∗ has density (wrt the Lebesgue measure) given by −ḧ(t). It allows us to compute
the norm of h:

∥h∥µ = Cµ(h
∗, h∗) = h∗(h) =

∫ 1

0

h(t) dh∗(t) = −
∫ 1

0

h(t)ḧ(t) dt =

∫ 1

0

ḣ2(t) dt, (11)

where we applied integration by parts. Since h is smooth, this integrale is finite, therefore C∞
0 ([0, 1]) ⊂ H1,2

0 ([0, 1]).
Since C∞

0 ([0, 1]) is dense in H1,2
0 ([0, 1]) wrt ∥ · ∥µ and H1,2

0 ([0, 1]) is complete, its closure is exactly H1,2
0 ([0, 1]) and

therefore H1,2
0 ([0, 1]) ⊂ Hµ.

Exercise 4.30. h ∈ Rn lies in H̊µ iff there exists h∗ ∈ Rn such that for any ℓ ∈ Rn,

hT ℓ =

∫
(h∗,Tx)(ℓTx) dµ(x) = h∗,T

(∫
xxT dµ(x)

)
ℓ = h∗,TCℓ, (12)

where C =
∫
xxT dµ(x) is the covariance matrix. The above assertion holds iff h lies in the range of C. Since the

range of a linear opeartor in a finite-dimensional space is always complete, H̊µ = Hµ. The corresponding h∗ is given
by h∗ = C+h, where C+ is a Moore-Penrose pseudo-inverse, and the corresponding norm is ∥h∥2µ = hTC+CC+h =

hTC+h.

Exercise 4.37. h ∈ H lies in H̊µ iff there exists h∗ ∈ H such that for any ℓ ∈ H,

⟨h, ℓ⟩ =
∫

⟨h∗, x⟩⟨ℓ, x⟩ dµ(x) = ⟨h∗,Kℓ⟩. (13)

Taking ℓ to be en for some n, we get ⟨h, en⟩ = ⟨h∗, λnen⟩ = ⟨λnh
∗, en⟩. Since this should hold for any n and {en}

is a basis, we get h =
∑∞

n=1⟨h, en⟩en =
∑∞

n=1⟨λnh
∗, en⟩en = Kh∗. Hence h lies in H̊µ iff it lies in the range of

K. Similarly, we get h∗ =
∑∞

n=1⟨h∗, en⟩en =
∑∞

n=1⟨λ−1
n h, en⟩en = K−1h since λn > 0 for all n ≥ 1. Therefore

∥h∥2µ = ⟨h∗,Kh∗⟩ = ⟨h,K−1h⟩ = ∥K−1/2h∥.
By Proposition 4.32, Hµ ⊂ H. Suppose {hm ∈ H̊µ}∞m=1 converges in ∥ · ∥µ to some h ∈ H. Then for any m ≥ 1,

∞∑
n=1

λ−1
n ⟨h, en⟩2 ≤ 2

∞∑
n=1

λ−1
n ⟨h− hm, en⟩2 + 2

∞∑
n=1

λ−1
n ⟨hm, en⟩2

≤ 2∥h− hm∥2µ + 2∥hm∥2µ

= 2∥h− hm∥2µ + 2

∞∑
n=1

λn⟨h∗
m, en⟩2

≤ 2∥h− hm∥2µ + 2 sup
n≥1

⟨h∗
m, en⟩2

∞∑
n=1

λn

≤ 2∥h− hm∥2µ + 2∥h∗
m∥22

∞∑
n=1

λn.

(14)

Take any m such that ∥h− hm∥2µ ≤ 1. Since h∗
m ∈ H and

∑∞
n=1 λn < ∞, the whole bound is finite.

Conversely, if h ∈ H such that
∑∞

n=1 λ
−1
n ⟨h, en⟩2 < ∞ then h∗ = K−1h ∈ Rµ. Since Rµ is a closure of H∗ ≃ H

in L2(H, µ) and L2(H, µ) is complete, there is a sequence {h∗
m ∈ H∗}∞m=1 converging to h∗ in ∥ · ∥L2(H,µ). Then the

sequence {hm = Kh∗
m}∞m=1 converges to h in ∥ · ∥µ:

∥hm − h∥µ = ⟨hm − h,K−1(hm − h)⟩ = ⟨K(h∗
m − h∗), h∗

m − h∗⟩ =
∫

⟨h∗
m − h∗, x⟩2 dµ(x) → 0. (15)
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Since all hm lie in the range of K, hm ∈ H̊µ for all m ≥ 1. Therefore h ∈ Hµ. Finally, the scalar product in Hµ can
be expressed in terms of norms:

⟨h, k⟩µ =
1

2

(
∥h+ k∥2µ − ∥h∥2µ − ∥k∥2µ

)
=

1

2

(
∥K−1/2(h+ k)∥2 − ∥K−1/2h∥2 − ∥K−1/2k∥2

)
= ⟨K−1/2h,K−1/2k⟩.

(16)

Exercise 4.38. Since ı is an isomorphism between Hµ and Rµ, a closure of B∗ in L2(B, µ), for any h ∈ Hµ,

∥h∥µ = ∥ı(h)∥Rµ

= sup
l∈Rµ

{⟨l, ı(h)⟩L2(B,µ) : ∥l∥L2(B,µ) ≤ 1}

= sup
l∈B∗

{Cµ(l, ı(h)) : Cµ(l, l) ≤ 1}

= sup
l∈B∗

{l(h) : Cµ(l, l) ≤ 1}.

(17)

Since the norm has to be finite, the last quantity is also finite. On the other hand, if the last quantity is finite
for some h ∈ B then h determines a bounded linear functional on Rµ. Since Rµ is a Hilbert space, by Riesz
representation theorem, there is h∗ ∈ Rµ such that l(h) = ⟨l, h∗⟩Rµ for any l ∈ Rµ. Therefore

sup
l∈B∗

{l(h) : Cµ(l, l) ≤ 1} = sup
l∈Rµ

{⟨l, h∗⟩Rµ
: ∥l∥Rµ

≤ 1}

= ∥h∗∥Rµ

= ∥h∥µ.

(18)

Since the first quantity is finite, the norm is finite as well. Therefore h ∈ Hµ.
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