Exercise sheet 4

Exercise 4.22. Define E = limsup,_,,He(X)/|logel; we know that E < oo. Let {e,} be a sequence of
positive numbers converging to zero such that lim,, e He,, (X)/|logen| < E. W.lo.g. suppose €, < 27" and
He, (X) < (E + 1)|log €, ¥m, or equivalently, etem (X) < 2m(E+1)

Define N,, = e¢Mem (X) and let N, = (asgm), . 935\72) be the corresponding €,,-net. Note that D = US_ N, is a
countable dense subset of X. Let 3 € (0,a); defining Q4 the same way as for X = [0, 1], we get that the theorem
statement follows if E Mg(X) < oo, where Mg(X) = sup, 4., yep %

Let A,, be a set of point pairs (z,y), where x € N, and y € N, 11, such that d(z,y) € (e, 26, ); note that
|An] < Ny Npp1 < N2 . Define K, (X) = SUP(y yyea,, [ X (¥) — X(y)|. Similarly to the X = [0, 1]¢ case, we have
for any fixed 8’ € (8, a),

EKL(X)<Cp Y (Cla,a)+C(yy) — 20(x,y)P/? < CpNj yen? < C2Um D mmar, (1)
(z,y)EAm

Take p = ib:gf Then E K2 (X) < CA’I,Q_mﬁ/P and Jensen’s inequality gives E K,,(X) < K2-™% uniformly in m
for some constant K.

Given z,y € X, let mo be the maximal m such that d(z,y) < 27™. Let x,,—1 be a point from N, 1
such that d(z,Tm,—1) < 27™*! and let y,,, be a point from N,,, such that d(z,z,,,) < 27™°. In this case,
A(Tmg—15Ymg) < 2702 = 2¢,, _1; therefore (Tymg—1, Ymg) € Dmg—1-

For any n > my, let =, be a point from N, such that d(z,z,) < 27", and for any n > my, let ¥, be a point
from N, such that d(y,y,) < 2~ ". Then

X (2) = X ()] < [X(@mg—1) = XWmo) [+ D X (@np1) = X(@a)[+ Y [X(Yns1) — X (va)]
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Taking expectation,
EMs(X)<2) 27 2fntn), (4)
n=0
which converges since 5’ > §.
Exercise 4.23. For any finite set of points (z1,...,2x) C [0, 1]¢, construct a linear operator K, , : H®N — HON
as follows:
N
<(h1, ey hN), le:N (kl, ey k‘N)> = Z <h1, C(a:“xj)kﬁ (5)
i,j=1



Since C(z,y) is symmetric and positive definite for any z,y € [0,1]¢, K, , posesses the same properties. It is also
trace class:
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where p, is a Gaussian measure on H defined by C(x,,z,), {e,} is an orthornormal basis in #, and eP) =
(0,...,0,e,,0,...,0) € H®N for e, staying at position p.
Proposition 4.17 tells us that there is a Gaussian measure i, , on H®Y with Cu,, = Kz,.y- By Kolmogorov’s

. d
extension theorem, we can construct a measure pg on X = ’H[O’l]

finite-dimensional marginals are Gaussian and satisfy

endowed with a product o-algebra such that all

/X (h, £(@)) (ks £)) mo(dF) = (b, Cla, )k (7)

for any z,y € [0,1]¢ and any h,k € H.
Take 3 € (0, ) and proceed similarly to the case H = R. A natural way to define K, (X) is sup(, y)en,, [X(z) —

X(y)||- Then noting E (|| X (z) — X (y)|?) = tr C(z,x) + tr C(y,y) — 2tr C(x,y) since C(x,y) is trace class for any
x,y € [0,1]%, the rest of the proof goes through.

Exercise 4.29. If h € B lies in 7—01# then there should exist h* € B* such that for any ¢ € B*,

/ h(x) di(z) = Co(h", 0). (8)

In particular, for £ = &,

) = Cun.6) = [0 (s auts = [ (/ £ (@) dhe (a )f(t)du(f)= [anvaw . 9)

It is easy to see that this h satisfies the above condition for any ¢ € B*.

We see that h(0) = 0, &k has a derivative at t equal to h(t) = h*([t,1]) whenever h*({t}) = 0. Since h* is a
measure of bounded variation, h has to be differentiable almost everywhere and h should be of bounded variation. It
is easy to see that h has to be of bounded variation as well; indeed, its variation is given by

|P|-1

) (h) = sup > [A(tisr) — h(ts)]
i=1
PI=1, o,
= sup / (x —t;) dh*(x)
Poio W
|P|-1 (10)
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= Vg (h"),

which is finite since h* is a measure of bounded variation. Therefore 7le C BVy([0,1]), a set of bounded variation
functions with h(0) = 0.



Since BV([0,1]) is dense in H%2([0,1]), BVy([0,1]) is dense in Hy([0,1]). Since Hy*([0,1]) is complete,
1,2
Hy © Hy™([0, 1))
In fact, for any h € C*°([0, 1]) such as h(0) = 0 (we denote this space by C5°([0,1]) below), there is h* € B*

satisfying the above condition: it is a measure with density —h (such a measure always has bounded variation).
Therefore C§°([0,1]) C H,,.

Suppose h € C°([0,1]). Then h* has density (wrt the Lebesgue measure) given by —h(t). It allows us to compute
the norm of h:

Ill, = Cu(h*,h*) = h*(h) = /O1 h(t) dh* () = — /01 h(®)i(t) dt = /01 h2(2) dt, (11)

where we applied integration by parts. Since h is smooth, this integrale is finite, therefore C5°([0,1]) € Hy*([0,1]).
Since C§°([0,1]) is dense in Hy?([0,1]) wrt || - ||, and Hy?([0,1]) is complete, its closure is exactly Hy*([0,1]) and
therefore Hy([0,1]) C H,.

Exercise 4.30. h € R" lies in 7-2# iff there exists h* € R™ such that for any £ € R™,

hTe = / (h*Tx) (0 ) dp(x) = h*T ( / zx’ d,u(:c)) (=n"Ter, (12)

where C = [ 22T du(z) is the covariance matrix. The above assertion holds iff h lies in the range of C. Since the
range of a linear opeartor in a finite-dimensional space is always complete, H,, = H,. The corresponding h* is given
by h* = C"h, where C* is a Moore-Penrose pseudo-inverse, and the corresponding norm is ||hl|% = Krerccth =
RTC+h.

Exercise 4.37. h € H lies in 7-olu iff there exists h* € ‘H such that for any £ € H,

(hy ) = / (@) (6, ) duz) = (b, K. (13)

Taking ¢ to be e, for some n, we get (h,e,) = (h*, Anen) = (Ayh*, e,). Since this should hold for any n and {e,}
is a basis, we get h =Y 7 (h,en)e, = Y oo (A\h* en)e, = Kh*. Hence h lies in H,, iff it lies in the range of
K. Similarly, we get h* = > 7 [ (h*,en)en = > or (A h,en)e, = K 1h since A, > 0 for all n > 1. Therefore

|R]|2 = (h*, Kh*) = (h, K~'h) = || K~'/2h].
By Proposition 4.32, H,, C H. Suppose {h,, € 7‘2;1}%:1 converges in || - ||, to some h € H. Then for any m > 1,

S N hen)? <23 A = i yen)® +23 A (i €0)?
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n=1

Take any m such that ||h — h,,||2 < 1. Since Ay, € H and Y 7 | A, < 00, the whole bound is finite.

Conversely, if h € H such that > oo, A1 (h, e,)? < co then h* = K~'h € R,,. Since R, is a closure of H* ~H
in L?(H, ) and L?(H, p) is complete, there is a sequence {h}, € H*}25_; converging to h* in || - ||12(3,,). Then the
sequence {h,, = Kh},}>°_, converges to hin || - || ,:

Vo = hlly = (B — By K~ (B — ) = (K (b, — B), By, — h*) = / (hs, — W) du(e) 0. (15)



Since all h;, lie in the range of K, h,, € ’;ELM for all m > 1. Therefore h € H,,. Finally, the scalar product in H, can
be expressed in terms of norms:

(B )

DN = N =

(117 + Bl = 1R = 11%15)

(522 2 = 20012 = (125 (16)
= (K~Y2h, K~1/2).
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Exercise 4.38. Since ¢ is an isomorphism between H,, and R, a closure of B* in L?(B, ), for any h € H,,

18]l = (W)=,

= Sup{<l,7,(h)>L2(B,H) : HZHLQ(B,M) S 1}
IER,

= sup {C,,(I,2(h)) : Cu(l,1) < 1} (17)
leB*

= sup{l(h): Cu(l,1) < 1}.
leB*

Since the norm has to be finite, the last quantity is also finite. On the other hand, if the last quantity is finite
for some h € B then h determines a bounded linear functional on R,. Since R, is a Hilbert space, by Riesz
representation theorem, there is h* € R, such that [(h) = (I, h*)r, for any [ € R,. Therefore

sup{l(h): Cu(l,1) <1} = sup {{I,h")r, : ||l||73# <1}
leB* IER,

= |h*||=, (18)
e

Since the first quantity is finite, the norm is finite as well. Therefore h € H,,.



