

Exercise sheet 2

Exercise 3.6. We are going to construct an open (hence measurable) set in $L^\infty(\mathbb{R})$ such that its pre-image under Θ is not measurable in \mathbb{R} .

First note that sup-distance between two non-identical Heaviside functions is 1. Therefore an open ball $B_{1/2}(H_t)$ in $L^\infty(\mathbb{R})$ of radius $\frac{1}{2}$ centered at H_t contains no other Heaviside functions. Therefore its pre-image under Θ contains only t : $\Theta^{-1}(B_{1/2}(H_t)) = \{t\}$.

Let A be a non-measurable subset of \mathbb{R} . Then $\Theta(A) = \bigcup_{t \in A} B_{1/2}(H(t))$ is open in $L^\infty(\mathbb{R})$, hence also measurable.

Exercise 3.8. Recall μ and ν have densities \mathcal{D}_μ and \mathcal{D}_ν with respect to a common measure ζ . Recall the definition of total variation distance:

$$\|\mu - \nu\|_{TV} = \sup_{\|\phi\|_\infty \leq 1} \left| \int \phi(x) \mu(dx) - \int \phi(x) \nu(dx) \right| = \sup_{\|\phi\|_\infty \leq 1} \left| \int \phi(x) (\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)) \zeta(dx) \right|. \quad (1)$$

Take $\phi(x) = 2 \times 1_{D_\mu(x) > D_\nu(x)} - 1$. Then

$$\|\mu - \nu\|_{TV} \geq \left| \int |\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)| \zeta(dx) \right| = \int |\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)| \zeta(dx). \quad (2)$$

On the other hand,

$$\begin{aligned} \|\mu - \nu\|_{TV} &= \sup_{\|\phi\|_\infty \leq 1} \left| \int \phi(x) (\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)) \zeta(dx) \right| \\ &\leq \sup_{\|\phi\|_\infty \leq 1} \left(\sup_x |\phi(x)| \int |\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)| \zeta(dx) \right) \\ &= \int |\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)| \zeta(dx). \end{aligned} \quad (3)$$

Therefore we have $\|\mu - \nu\|_{TV} = \int |\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)| \zeta(dx)$. Since the original definition does not depend on ζ , the equivalent one does neither.

Exercise 3.10. For any coupling π between μ and ν ,

$$\begin{aligned} \|\mu - \nu\|_{TV} &= \sup_{\|\phi\|_\infty \leq 1} \left| \int \phi(x) \mu(dx) - \int \phi(x) \nu(dx) \right| \\ &= \sup_{\|\phi\|_\infty \leq 1} \left| \int (\phi(x) - \phi(y)) \pi(dx, dy) \right| \\ &\leq \sup_{\|\phi\|_\infty \leq 1} \left(\sup_{x \neq y} |\phi(x) - \phi(y)| \right) \pi(\{x \neq y\}) \\ &= 2\pi(\{x \neq y\}). \end{aligned} \quad (4)$$

Therefore $\|\mu - \nu\|_{TV} \leq 2 \inf_{\pi \in C(\mu, \nu)} \pi(\{x \neq y\})$.

Take π to be $\pi(dx, dx) = (\mathcal{D}_\mu(x) \wedge \mathcal{D}_\nu(x)) \zeta(dx)$ and $\pi(dx, dy) = (\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x))_+ (\mathcal{D}_\nu(y) - \mathcal{D}_\mu(y))_+ \zeta(dx) \zeta(dy)$. Then

$$\begin{aligned}
\pi(\{x \neq y\}) &= 1 - \pi(\{x = y\}) \\
&= 1 - \int (\mathcal{D}_\mu(x) \wedge \mathcal{D}_\nu(x)) \zeta(dx) \\
&= 1 - \frac{1}{2} \int (\mathcal{D}_\mu(x) + \mathcal{D}_\nu(x) - |\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)|) \zeta(dx) \\
&= \frac{1}{2} \int |\mathcal{D}_\mu(x) - \mathcal{D}_\nu(x)| \zeta(dx) \\
&= \frac{1}{2} \|\mu - \nu\|_{TV}.
\end{aligned} \tag{5}$$

Therefore $2 \inf_{\pi \in C(\mu, \nu)} \pi(\{x \neq y\}) \leq 2\pi(\{x \neq y\}) = \|\mu - \nu\|_{TV}$.

Exercise 3.19. Recall the definition of Wasserstein distance:

$$d(\mu, \nu) = \inf_{\pi \in C(\mu, \nu)} \int d(x, y) \pi(dx, dy). \tag{6}$$

Let us first prove that a set of couplings, e.g. $C(\mu, \nu)$, is tight. Fix $\epsilon > 0$. Since singletons are tight, there is a compact $K \subset \mathcal{X}$ such that $\mu(K) > 1 - \epsilon$ and $\nu(K) > 1 - \epsilon$. Then for any coupling π ,

$$\begin{aligned}
\pi(K \times K) &= 1 - \pi(\mathcal{X} \times \mathcal{X} \setminus K \times K) \\
&= 1 - \pi((\mathcal{X} \setminus K) \times \mathcal{X} \cup \mathcal{X} \times (\mathcal{X} \setminus K)) \\
&\geq 1 - \pi((\mathcal{X} \setminus K) \times \mathcal{X}) - \pi(\mathcal{X} \times (\mathcal{X} \setminus K)) \\
&= 1 - \mu(\mathcal{X} \setminus K) - \nu(\mathcal{X} \setminus K) \\
&\geq 1 - 2\epsilon.
\end{aligned} \tag{7}$$

By Prokhorov's theorem, $C(\mu, \nu)$ is precompact. Let us show that it is also closed. Indeed, suppose $\{\pi_n\}_{n=1}^\infty$ is a sequence of couplings converging weakly to some measure π on $\mathcal{X} \times \mathcal{X}$, i.e. $\lim_{n \rightarrow \infty} \int \phi(x, y) \pi_n(dx, dy) = \int \phi(x, y) \pi(dx, dy)$ for any $\phi \in C_b(\mathcal{X} \times \mathcal{X})$. Take $\phi(x, y) = \bar{\phi}(y)$ for some $\bar{\phi} \in C_b(\mathcal{X})$. Then

$$\int \bar{\phi}(y) \pi(dx, dy) = \lim_{n \rightarrow \infty} \int \bar{\phi}(y) \pi_n(dx, dy) = \int \bar{\phi}(y) \nu(dy). \tag{8}$$

By the same argument for the x -dimension, we get that π has to be a coupling. Therefore $C(\mu, \nu)$ is closed and hence compact.

Take now a sequence of couplings $\{\pi_n\}_{n=1}^\infty$ approximating the infimum in the definition of Wasserstein distance:

$$d(\mu, \nu) = \lim_{n \rightarrow \infty} \int d(x, y) \pi_n(dx, dy). \tag{9}$$

Since $C(\mu, \nu)$ is compact in weak topology, this sequence has a weakly converging subsequence $\{\pi_{n_k}\}_{k=1}^\infty$ and the limit π is also a coupling. Since the metric d is lower-semicontinuous then by Portmanteau theorem,

$$\int d(x, y) \pi(dx, dy) \leq \liminf_{k \rightarrow \infty} \int d(x, y) \pi_{n_k}(dx, dy) = \lim_{n \rightarrow \infty} \int d(x, y) \pi_n(dx, dy) = d(\mu, \nu). \tag{10}$$

However, $d(\mu, \nu) \leq \int d(x, y) \pi(dx, dy)$ since it is the infimum over all couplings. Therefore we have an equality:

$$\int d(x, y) \pi(dx, dy) = d(\mu, \nu). \tag{11}$$