Exercise sheet 12

Exercise 7.6. By Definition 7.4, a locally mild solution (x,7) of (7.1) is given as follows:

xo—l—/St—s ds+/St—s)QdW() (1)

which should hold almost surely for ¢ < 7.

Suppose L = L — cI, where I is the identity operator, and F(x) F(z) 4 cz for any x € D(F), for some ¢ € R.
Then D(L) = D(L) and L generates a semi-group S acting as S(t)z = e~“*S(t)x. The corresponding mild solution
is therefore given by

Z(t) a:o—l-/St—s ds+/St—s)QdW()
¢ (2)
= e S(t)xo + / =9 8(t — s)(F(x(s)) + ca(s)) ds + / e =98t — 5)Q dW (s)
0 0
almost surely for ¢ < 7. Let us elaborate each term separately:
t t s
/ e =St — s)F(2(s)) ds = / ect=9)q < / S(t —u)F(z(u)) du>

0 0 (3)

/ S(t — u)F(a(u)) du — c/tedts) /0 S(t — u)F(x(u)) duds:

/Ote—c(t—s) /os S(t—u)F(x(u))duds:/ote / S(s — u)F(z(w)) duds

= /Ot e =) 8(t — ) (x(s) — S(s)xo — /OS S(s —u)@Q dW(“)) (4)
= /Ot e c(t—s) (S(t —s)x(s) — S(t)xo — /Os S(t—u)Q dW(u)) ;

/O t et 8(t — 5)Q dW (s) = /O t e~ct=3)q ( /O ) St —u)Q dW(u)>
_ /Ot S(t— u)QdW (u) —c/OteC“S) /O S(t — u)QdW (u) ds

Tt is then easy to see that summing up, we will get x(¢).

Exercise 7.9. We are going to show that the heat semigroup is analytic. We propose the following analytic
extension:
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where f € C(T",R?).
We start with bounding the norm of its action:
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By Cauchy-Schwarz,
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which gives the bound ||S(te?)|| < 1 for any ¢t > 0 and 6 € [0, 27].
Take f € CX(T",R?) and let us check that t — S(te?)f is continuous at zero. Let L; < oo be the Lipschitz
contsant of f. We have:
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where £(A) is Lebesgue measure of a measurable set A. Since C!(T", R?) is dense in C(T", R%), Exercise 5.2 implies
that t — S(te'?) is strongly continuous for any 6 and therefore analytic.

Exercise 7.12. Take V(u) = u? and f to be an odd degree polynomial with negative leading coefficient. Let z > 0
and |y| < R for some R. Then

V(@) f(z +y) < 22(f(z) + R max [ +1). (13)

Since f is a polynomial, for large enough x, max,c[_p r) f'(z + t) is dominated by a leading term, and therefore
negative. Hence for these large positive x,

V'(2)f(z+y) < 22f(z) <0< V(). (14)
Similarly, for these large negative x,
V(@) f(x+y) < 2xf(x) <0< V(). (15)
Since "not too large" x lie on a compact, we can always find C' (which depends on R) such that
V(@) f(z+y) < CV(z) (16)

uniformly for these x.

Exercise 7.13.



