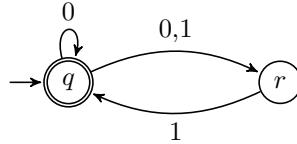


Exercise Sheet n°1

Exercise 1:

1. For each of the following languages draw the graph of a nondeterministic finite automaton (NFA) which recognises it.
 - (a) $\{w \in \{0,1\}^{<\omega} \mid \text{the length of } w \text{ is a multiple of 3}\}$;
 - (b) $\{w \in \{0,1\}^{<\omega} \mid w \text{ contains exactly one 1}\}$;
 - (c) $\{w \in \{0,1\}^{<\omega} \mid w \text{ has length at least two and its second last letter is a 1}\}$.
 2. For each of the previous languages draw the graph of a deterministic finite automaton (DFA) which recognises it.
 3. Prove that any language recognised by a NFA is recognised by a DFA.
- Hint: Starting with an arbitrary NFA N , define a DFA D which recognises the same language as N and whose set of states is the power set of the set of states of N .*
4. Convert the following NFA into a DFA recognising the same language.



Exercise 2:

Prove that on any non empty finite alphabet Σ the set $\mathcal{L}(\Sigma)$ of languages recognised by a NFA satisfies the following:

1. $\mathcal{L}(\Sigma)$ contains all finite languages,
2. $\mathcal{L}(\Sigma)$ is closed under the following operation:
 - (a) complementation;
 - (b) union;
 - (c) concatenation of languages:

$$LK = \{uv \in \Sigma^{<\omega} \mid u \in L \text{ and } v \in K\}, \quad \text{for } L, K \subseteq \Sigma^{<\omega};$$

- (d) the star operation,

$$L^* = \{w_1 w_2 \cdots w_k \mid k \in \omega \text{ and each } w_i \in L\} \quad \text{for } L \subseteq \Sigma^{<\omega}.$$

3. $\mathcal{L}(\Sigma)$ is infinite countable.

Remarks. 1) In fact the Kleene Theorem states that the set of languages on a finite alphabet Σ recognised by a DFA is exactly the closure of the languages

$$\emptyset, \{\epsilon\}, \text{ and } \{a\} \text{ for each } a \in \Sigma,$$

under union, product and the star operation¹.

2) The languages recognised by a DFA also admit an algebraic characterisation. A monoid is a set equipped with a binary associative operation and a distinguished neutral element. The set of all finite words on a finite alphabet Σ equipped with the concatenation and the empty word is denoted Σ^* and is in fact the free monoid on Σ . A language $L \subseteq \Sigma^*$ is recognisable by a DFA if and only if there exists a monoid morphism $\varphi : \Sigma^* \rightarrow M$ onto a finite monoid M such that for some $P \subseteq M$ we have

$$w \in L \quad \text{if and only if} \quad \varphi(w) \in P.$$

Exercise 3:

1. Prove the following lemma.

Lemma (Pumping lemma). *Let L be a language on a finite alphabet Σ recognised by some DFA. There exists a natural number p such that any word $w \in L$ with $|w| \geq p$ can be split into three pieces, $w = xyz$, satisfying the following properties:*

- (a) for all natural number n , $xy^n z \in L$;
- (b) $|y| > 0$;
- (c) $|xy| \leq p$.

Hint: Consider p as the number of states of a DFA recognising L .

2. Using the Pumping lemma, show that the following languages are not recognisable by a DFA:

- (a) $\{0^n 1^n \mid n \in \omega\}$;
- (b) $\{ww \mid w \in \{0,1\}^{<\omega}\}$;
- (c) $\{0^n \mid n \text{ is prime}\}$.

3. A well-bracketed word is a word w on the alphabet $\{(,)\}$ such that

- (a) w contains the same number of left brackets and right brackets;
- (b) for every prefix u of w , the number of left brackets in u is greater or equal to the number of right brackets in u .

For instance, $((())())()$ is a well-bracketed word while $()))(())$ is not. Show that that the language of well-bracketed words is not recognisable by a DFA.

4. Describe informally an additional feature for a DFA in order to recognise the language of well-bracketed words.

¹Here “ ϵ ” denotes the empty word.