18 RECURSION THEORY

f and f’ in Fpyq by the conditions

f(xlvx25 ...,.XP,O) :g(xlax2a-":xp);

Flxr, x2,000,xp,0) = g (x1,x2, ... , Xp);
fle,xa, oo xp, y+ 1) =h(x1, x2, .., xp, ¥, fx1, %2, ..., Xp, ¥),
i, x2, 000 Xp, 9));
Fl o, X2, xp, Y+ D =R &1, x2, 000 xp, Y, L X2, X, D),

f/(xl)xZ: L ’xpi )’))-

We will show that if all four of g, g’, h, b’ are primitive recursive, then so are f
and f’. To do this, let us introduce the function k = a2 (f, f’). This function is
definable by recursion as follows:

k(x1, %2, .., Xp, 0) = (g (x1, X2, ..., Xp), 8 (X1, X2, o, Xp));
k(xi,x2,...,xp, y + 1)
= ag(h(x1, X2, .., Xp, ¥, By (k(x1, X2, .., Xp, YD), BIK(xX1, X2, 5 X, YD),

h(x1, x2, .. S Xp, Y, ﬂzl(k(xl,xz, e Xp, YD), ﬂ%(k(xl,xz, S 992)))

Thus the function k is primitive recursive; hence f = /321 okand f' = ﬁ% ok are
as well,

5.2 Recursive functions

5.2.1 Ackerman’s function

Our aim in this subsection is to give an example of a function that is effectively
computable, in the intuitive sense of the word, but that is not primitive recursive.
This will justify all the extra work that we will demand of the reader in the future.
We define a function (which we call Ackerman’s function even though it is in

fact a slight variant of the one Ackerman defined originally) of two variables that

we will denote by & as follows:
(i) for every integer x, §(0, x) = 2%,
(i1) for every integer y, £(y,0) = 1;
(iii) for all integers x and y, E(y + 1, x + 1) = &(y, E(y + 1, x)).

For each integer n, let &, denote the function Ax.£ (n, x). Then §p(x) = 2* and,
by invoking clause (i), it is easy to show that for all positive n, §, is defined by
recursion from &,..1 by

£0)=1 and &G+ 1)= En—1(60(x)).

This shows, first of all, that there is a unique function & satisfying the given con-
ditions. Moreover, all the functions &, are primitive recursive (this is proved by
induction on n). On the contrary, nothing permits us to affirm that the function &
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itself is primitive recursive; this is fortunate since we are about to show that it is
~ not. However, we can effectively compute & (x, y) for any values of x and y, as the
reader should easily be convinced. We must next prove a few easy but annoying
lemmas concerning the function &.

Lemma 5.6 For every n and for every x, §,(x) > x.

Proof Our proof will involve two interleaved inductions. By induction on n, we
will show that for all x, &,(x) > x. This is clear for n = 0. Now fix an n > 0 and
assume that the assertion

for every integer x, &,_;(x) > x
is true. We must then prove the assertion-
for every integer x, &,(x) > x.

To do this, we will now argue by induction on x. For x = 0, this is clear since
&,(0) = 1. Next, assuming that §,(x) > x, we will prove that &, (x +1) > x + 1.
We know that &, (x + 1) = &,_1(&,(x)) and so, by the first induction hypothesis,
we see that

Ei(x + 1) > &,(x), or, equivalently, §,(x + 1) > &,(x) + 1.

Now, according to the second induction hypothesis, &,(x) > x; so the lemma is
proved.

Lemma 5.7 For every integer n, the function &, is strictly increasing.

Proof This is clear for n = 0. For positive n, it follows immediately from the
previous lemma and from the formula &, (x + 1) = §,-1(§,(x)).

Lemma 5.8 Foralln > | and for all x, &,(x) > &, (x).

‘Proof This is clear for x = 0. For x 4 1, since &,(x) > x + 1 and since &, is
increasing, &,—1(&,(x)) > &,—1(x + 1); it now suffices to apply the formula

En(x + 1) = &8 ().

If k is an integer, let £¥ denote the function &, iterated k times (i.e. £ = Ax.x,
£l = &, and g8 = &, 0 £5). The following lemma is now a collection of
trivialities.

Lemma 5.9 The functions Ef are all strictly increasing. Moreover, for all m, n,
k, and x,

ki kg iy = v ko gh _ gkt
Ey() < &), £, (x) = x, £y 08 =&,

and, if m < n, then cf,/,‘; x) < éllf(x).
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Next, let us give a definition.

Definition 5.10 Suppose that f € Fyand g € F). We say that f dominates g if
there exists an integer A such that, for all (x1, X2, ..., Xp),

glx1,x2, ..., xp) < fsup(xy, x2, ..., Xp, A)).

In particular, when f is strictly increasing, f dominates g if and only if
glxt, x2,...,xp) < f(sup(x1, x2, ..., xp)) holds forall but finitely many p-tuples
(x1,x2,...,.x1)). .

Let C,, denote the set of functions that are dominated by at least one iterate of £,

C, = {g : there exists a k such that £* dominates g}.

It is obvious that the following functions belong to Cy: the projection functions

P,’;, the constant functions, the successor function S, the function

AX1X2 ... Xp.sup(Xy, X2, ..., Xp),

the function Axy.x 4+ y, and the functions Ax.kx where k is an arbitrary inte-
ger. Also, the function &, belongs to C,,. Finally, if f and g both belong to F),,
if g € Cy, and if for all xi, x2,...,xp, f(x1, %2, ..., xp) < g(x1,x2,...,%p),
then f € C,.

We will now establish

Lemma 5.11 For every integer n, the set Cy, is closed under composition.

Proof Let f1, f2,..., fin be functions of p variables and let g be a function
of m variables and suppose all these functions are in C,. We need to prove
that g(f1, f2, ..., fm) 1s also in C,,. We know that there exist integers A, A1,
Ay, ..., An, k, ki, ko, ..., ky such that, for all yi, y2, ..., Y,

gy, y2, ..o, Ym) < é,/f(sup()q, Y2y oo os Ymy A)),
and for all x, xo, ..., x, and for all i between 1 and m inclusive,
fiGer, 0, .. xp) < (sup(xr, X2, ..., Xp, A)).

Set B = sup(A, Ay, Az, ..., Ay) and h = sup(ky, k2, ..., ky). By invoking
Lemma 5.9, we can now see that, for all xy, x2,..., xp,

gl x2, s xp), Sl xas s Xp)s e S (X1, X2, X))
S glll\ (gllll (Sup(xla X2, .00 xp, B))),
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and hence that

g(fl(«\'l,xb C )x‘p)a f2(«\'1,x2, .. ',xp), ey fm(XI,xz, e ,X)).
I .
< &8 (sup(xy, x2, ..., xp, B)). E
Lemma 5.12 For all integers n, k, and x,

£ < B (v 4.

Proof The proofis by induction on k. For k equal to O or 1, it is obvious. Assume
it is true for k; then it is also true for k + 1 because

EVT ) = &5 ()
< &,(Ep1(x + k)  (by the induction hypothesis)
= &pa1(x +k+1) (by the definition of §). B

Lemma 5.13 Suppose that g € F, that h € Fpo and that g and h both belong
to C, (n > 0). Then the function f defined by recursion from g and h belongs
to C,l_H.

Proof We begin by translating the hypotheses. First, the definition of f:

flri,xo, 000, xp,0) = g(xy, x2, ..o, Xp)s
flx,x2, oo xp, y+ D) =hx,x2, .00, xp, Y, (X1, X2, 00, Xp, 1))

next, the domination conditions;

there exist Ay, Az, ki, k2 such that, for all xi, x2, ..., xp, y,
g(x1, X2, ..., Xp) < EM(sup(x1, x2, ..., xp, AD) and

R(X1, X2, oo Xy ¥, 2) < ER(SUP(x1, X2, ..., Xp, ¥, 2, A2)).
We will now prove by induction on y that, for all xj, x2, ..., xp, ¥,
Fr,xo, o0 xp,y) < é,lfl+yk2(311p(x1, X2, .0, Xp, ¥, AL, A2)). ()
For y = 0, this is clear. If it is true for y, then it is also true for y + 1 becausé

Sy xo, .o xp, y+ D) =h(xp, x2, .00, xp, Y, f(xl,xz,...,xp,y));

f(xl’x2> '~-7-xp,y+ ]-) S S,lfz(sup(xl,x% --"xp:y’ f(x15x2’ ---,xp,}’),AZ))-

So, using the induction hypothesis (x) and Lemma 5.9,

- k )k
f(xlw‘CZ, ceey -xpa y + ]) _<.. 5111\2(&11]+> 2(Sup(xl,x25 e >~x[)’ )’, Al’ A2)))1
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which proves the assertion. Now, we invoke Lemma 5.12 to get

f(xl,XQa vy xpa )’) S §)1+1(Sup(xlyx2s L 5/\"})5 y: Ala AZ) + kl + yk?,)

Note that the function
Axixp .. -xp)’-~§n+1(sup(x1, X2, .., Xp, ¥y AL, A2) + k1 + yka)

is obtained by composition from functions belonging to C,,11; so it too belongs to
C,+1 and so does f.

We are now in a position to assert:

Corollary 5.14 The set \U, ey Cn contains all primitive recursive functions.

ne

Proof Indeed, this set contains the constant functions,-the projections, and the
successor function; also, it is closed under composition, and under definitions by
recursion. B

This brings us to the main theorem of this subsection.
Theorem 5.15 Ackerman’s function is not primitive recursive,

Proof Suppose, to the contrary, that Ackerman’s function is primitive recursive;
then so is the function Ax.£(x, 2x). So, there exist integers n, k, and A such that
forallx > A, &(x,2x) < é,f'(x). Thus, for all x > A, we have

E(x, 2x) S EF(X) < B (v 4 k)
(by Lemma 5.12), and, if x > sup(A, k,n + 1),

Enp1(x + k) < &1(2x) < §c(2x) = E(x, 2x)
(by Lemma 5.9), which is absurd.

In fact, we can see that the function Ax.£(x, x) dominates all the primitive
recursive functions.

5.2.2 The p-operator and the partial recursive functions

We must therefore define a larger class which we will call the class of recursive
functions. We will accomplish this by allowing a new definition scheme, the un-
bounded p-operator. The idea is as follows: given a subset A of N” +1 this scheme
permits us to define the function f € F, which, with the p-tuple (x3, x2, ..., X)),
associates the least integer z such that (xy, x2, ..., xp, z) € A. The problem with
this is immediately apparent: what happens if there does not exist an integer z such
that (x1, x2, ..., xp) € A?Observe thatitis not possible in this situation to do what
we did for the bounded pi-operator and simply set f(xy, x2, ..., xp) = 0. Indeed,
assuming, as we must, that we have an algorithm at our disposal which computes
the characteristic function x4 of A, the only way we can imagine for comput-
ing f(x1,x2,...,xp) is to calculate x(x1,x2,...,xp,0). If the result is 1, we
may stop; if not, then calculate x4 (x1, x2, ..., xp, 1), then xa(x1, x2, ..., xp, 2),




