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1. a) We recall that the expression a
q
(in Q = Frac(A)) denotes the equivalence class

of (a, q) ∈ A× (A∖ p) for the relation given by

a

q
= {(a′, q′) ∈ A× (A∖ p) : aq′ = a′q}.

The addition and multiplication of equivalence classes are given by the formulae

a

q
+

a′

q′
=

aq′ + a′q

qq′
,

a

q
· a

′

q′
=

aa′

qq′
.

One checks that 0
1
and 1

1
are the additive and multiplicative units in Q re-

spectively and that both elements are contained in Ap . Moreover, the formulae

show that additive inverses, sums, and products of elements in Ap (taken in Q)
admit representatives in Ap since qq′ ∈ p =⇒ q ∈ p ∨ q′ ∈ p and thus Ap is a
subring of Q .
For completeness, we recall that A identifies with a subring of Ap via the map
i : a 7→ a

1
. We skip the verification that this is a ring homomorphism and only

point out that i is injective since a
1
= 0

1
if and only if a = a · · · 1 = 0 · 1 = 0.

b) Since both ap and A are A-modules, so is a = ap∩A and hence a is an ideal in
A . It is clear that a.Ap ⊆ ap . So suppose that

a
q
∈ ap with a ∈ A and q ∈ A∖p .

Then A ∋ a
1
= q

1
· a
q
∈ ap , i.e.,

a
1
∈ a . Since 1

q
∈ Ap , we find that

a

q
=

a

1
· 1
q
∈ a.Ap

and, since a
q
was arbitrary, we therefore find that ap ⊆ a.Ap as desired.

Remark: The argument above shows that

ap =
{a
q
: a ∈ a, q ∈ A∖ {p}

}
.

This is true more generally for extensions of ideals, i.e., let b ◁ A be an ideal
and let bp = b.Ap . We claim that

bp =
{ b
q
: b ∈ b, q ∈ A∖ p

}
.

To this end let x ∈ bp arbitrary. By definition, there exist b1, . . . , br ∈ b ,
a1, . . . , ar ∈ A , and q1, . . . , qr ∈ A∖ p such that

x =
r∑

i=1

bi
1
· ai
qi

=
r∑

i=1

aibi
qi

=
a1b1 + · · ·+ arbr

q1 · · · qr
.

Since p is prime, we have that q1 · · · qr ∈ A ∖ p . Since b is an ideal, we have
that a1b1 + · · ·+ arbr ∈ b . Therefore, the claim follows.
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c) Since q is coprime to p , we know that q ∩ (A ∖ p) is non-empty. Let q be
contained in the latter intersection, then

1

1
=

q

1
· 1
q
∈ q.Ap

and, hence, the claim.

d) Note that mp = p.Ap is a proper ideal in Ap . Indeed, if
1
1
∈ p.Ap , by the

description of the extension proven earlier, there exist p ∈ p and q ∈ A ∖ p

such that 1
1
= p

q
, i.e., q ∈ p , which is absurd.

Let ap be a proper non-zero ideal and let a = ap ∩A . Then a is a proper ideal

in A since 1 ̸∈ a and, moreover, a ̸= {0} since clearing the denominator of any
non-zero element in ap yields a non-zero element in a .
Since A is Dedekind, we can write a = pvq , where q is coprime to p . We claim
that for any two ideals b1, b2 ◁ A we have

(b1 · b2).Ap = (b1.Ap) · (b1.Ap).

Let x ∈ (b1 ·b2).Ap , i.e., using the description of extensions proven before, there

are b
(j)
1 , . . . , b

(j)
r ∈ bj and q ∈ A∖ p such that

x =
b
(1)
1 b

(2)
1 + · · ·+ b

(1)
r b

(2)
r

q
=

r∑
i=1

b
(1)
i

1
· b

(2)
i

q
∈ (b1.Ap) · (b2.Ap).

On the other hand, let b(j) ∈ bj and q1, q2 ∈ A∖ p , then

b(1)

q1
· b

(2)

q2
=

b(1)b(2)

q1q2
∈ (b1 · b2).Ap.

In particular, using the description of extension of ideals discussed above, ele-
ments in (b1.Ap) · (b2.Ap) are finite sums of elements in (b1 · b2).Ap and, hence,

(b1.Ap) · (b2.Ap) ⊆ (b1 · b2).Ap .
Using the claim, we know that

ap = (pv.Ap) · (q.Ap) = (p.Ap)
v = mv

p

since q was coprime to p .
e) Let x as in the hint and let x.Ap be the ideal generated by x . Since x ∈ p ,

we know that x.Ap ⊆ mp . We claim that x.Ap is not contained in m2
p . To

this end, it suffices to show that x ̸∈ m2
p = p2.Ap . Assume otherwise, then the

explicit description of extensions implies that there exist a ∈ p2 and q ∈ A∖ p
such that a = qx and, in particular, qx ∈ p2 . In particular, we have that
(qx).A = (q.A) · (x.A) ⊆ p2 . By assumption, we know that x.A = pq for q
coprime to p and, hence,

p = p−1 · p2 ⊃ p−1 · (q.A) · (x.A) = (q.A) · q

implies that q.A ⊆ p and, in particular, q ∈ p , which is absurd.
f) Let π : Ap ↠ Ap/mp denote the canonical projection and let ip = π ◦ i , where

i : A → Ap is the embedding described earlier. Let a ∈ ker ip . Since kerπ = mp ,

this means that i(a) = a
1
∈ mp and, by the explicit description of extensions of

ideals, there are p ∈ p and q ∈ A ∖ p such that p = qa . Since p is prime, it
follows that a ∈ p and, therefore, ker ip ⊆ p . On the other hand, for any a ∈ p ,

we have that i(a) ∈ p.Ap and, thus, ker ip = p . By the firs isomorphism theorem,

it only remains to prove that ip is surjective. To this end, let x ∈ Ap/mp and let



a ∈ A and q ∈ A∖p such that x = a
q
+mp . Since A is Dedekind, p is maximal

and, hence, there exists q′inA∖ p such that r = qq′ − 1 ∈ p . Let a′ = aq′ , then

ip(a
′)− x =

qa′ − a

q
+mp =

r

q
+mp = mp

and, thus, ip(a
′) = x . This proves surjectivity.

2. Let d = [K : Q] and let n = d! . Let Sn denote the group of permutations of a set
of cardinality n and let An ◁ Sn denote the subgroup of even permutations. We
will denote by sgn(τ) ∈ {±1} the signature of the permutation τ ∈ Sn . Then

det(σjωi) =
∑
τ∈Sn

sgn(τ)
d∏

i=1

στ(j)ωi =
∑
τ∈An

d∏
i=1

στ(j)ωi︸ ︷︷ ︸
=:P

−
∑

τ∈Sn∖An

d∏
i=1

στ(j)ωi︸ ︷︷ ︸
=:N

.

Let 1 ⩽ i, j ⩽ d arbitrary. Since ωi is an algebraic integer, there exists a monic
polynomial R ∈ Z[X] such that

R(σjωi) = σjR(ωi) = 0

and, hence, σj is an algebraic integer. Since products and sums of algebraic integers
are algebraic integers, it follows that P and N are algebraic integers. Next we
show that P + N,PN ∈ Q . Since Z is integrally closed, this will imply that
P +N,PN ∈ Z and, therefore

∆K = (P +N)2 − 4PN ≡ (P +N)2 mod 4

and, since squares have residue 0 or 1 mod 4, the claim follows.
In order to see that P + N and PN are rational, let L ⊆ C be the Galois

closure of K , which is the field generated by all the roots of the minimal poly-
nomial of a generator of K over Q . We fix an embedding σ1 : K → C and iden-
tify K with its image in L under σ1 . In particular, from now on we will assume
that HomQ(K,C) = {σ1, . . . , σd} with σ1 = idK . We claim the map Gal(L/Q) →
HomQ(K,C) is surjective and, in particular, every element in Gal(L/Q) is the ex-
tension of an embedding of K in C . To this end, let σ ∈ HomQ(K,C) arbitrary. Let
α ∈ K such that K = Q[α] . We claim that σ(α) ∈ L . Then σ(α) ∈ L , since σ(α)
is a root of the minimal polynomial of α over Q and since [×α]L/Q is diagonalizable

over L with eigenvalues equal to the roots of the minimal polynomial of α over Q
(this requires a proof which was sketched in class). It follows that σ(K) ⊆ L for all
σ ∈ HomQ(K,C). Given σ ∈ HomQ(K,C), let β ∈ L such that L = σ(K)[β] . The
elements of Gal(L/K) permute β among the roots of the minimal polynomial of
β over σ(K) and, hence, σ admits exactly [L : σ(K)] = [L : K] extensions to L .
As a corollary, we obtain that for all σ̃ ∈ Gal(L/Q) we have that

{σ̃ ◦ σ : σ ∈ HomQ(K/C)} = HomQ(K,C).

Indeed, suppose σ and σ′ are in HomQ(K,C) and σ̃ ◦ σ = σ̃ ◦ σ′ , then invertibility
of σ̃ yields σ = σ′ . Hence the map σ 7→ σ̃ ◦ σ is a permutation of HomQ(K,C).



In order to see that P +N ∈ Q , note that for all σ̃ ∈ Gal(L/Q)

σ̃(P +N) =
∑
τ∈An

d∏
i=1

(σ̃ ◦ στ(i))(ωi) +
∑

τ∈Sn∖An

n∏
i=1

(σ̃ ◦ στ(i))(ωi)

=
∑
τ∈Sn

d∏
i=1

(σ̃ ◦ στ(i))(ωi) =
∑
τ∈Sn

d∏
i=1

στ(i)(ωi)

=
∑
τ∈An

d∏
i=1

στ(i)(ωi) +
∑

τ∈Sn∖An

d∏
i=1

στ(i)(ωi) = P +N.

Since σ̃ ∈ Gal(L/Q) was arbitrary, it follows that P +N ∈ LGal(L/Q) = Q .
In order to see that PN ∈ Q , we use a slightly different argument (which also

works for P +N ). The claim is that for every σ̃ ∈ Gal(L/Q) we have(
σ̃(P ) = P ∧ σ̃(N) = N

)
∨
(
σ̃(P ) = N ∧ σ̃(N) = P

)
.

To this end, we note that, since Gal(L/Q) acts by permutations on HomQ(K,C),
for every σ̃ ∈ Gal(L/Q) there exists τ̃ ∈ Sn such that

∀1 ⩽ i ⩽ [K : Q] σ̃ ◦ σi = στ̃(i).

In particular,

∀1 ⩽ i ⩽ [K : Q]∀τ ∈ Sn σ̃ ◦ στ(i) = σ(τ̃◦τ)(i).

If τ̃ is an even permutation, since the sign sgn: Sn → {±1} mapping a permutation
to its parity is a homomorphism, we find that τ̃ ◦ τ ∈ An if and only if τ ∈ An ,
i.e., composition with τ̃ corresponds to a permutation on An and on Sn ∖ An . In
particular

σ̃(PN) = σ̃(P )σ̃(N) =

(∑
τ∈An

d∏
i=1

(σ̃ ◦ στ(i))(ωi)

)( ∑
τ∈Sn∖An

d∏
i=1

(σ̃ ◦ στ(i))(ωi)

)

=

(∑
τ∈An

d∏
i=1

σ(τ̃◦τ)(i)(ωi)

)( ∑
τ∈Sn∖An

d∏
i=1

σ(τ̃◦τ)(i)(ωi)

)

=

(∑
τ∈An

d∏
i=1

στ(i)(ωi)

)( ∑
τ∈Sn∖An

d∏
i=1

στ(i)(ωi)

)
= PN.

If τ̃ is an odd permutation, we find that τ̃ ◦ τ ∈ An if and only if τ ∈ Sn ∖ An ,
i.e., τ̃ bijectively maps An to Sn ∖ An and vice versa. In particular

σ̃(PN) = σ̃(P )σ̃(N) =

(∑
τ∈An

d∏
i=1

(σ̃ ◦ στ(i))(ωi)

)( ∑
τ∈Sn∖An

d∏
i=1

(σ̃ ◦ στ(i))(ωi)

)

=

(∑
τ∈An

d∏
i=1

σ(τ̃◦τ)(i)(ωi)

)( ∑
τ∈Sn∖An

d∏
i=1

σ(τ̃◦τ)(i)(ωi)

)

=

( ∑
τ∈Sn∖An

d∏
i=1

στ(i)(ωi)

)(∑
τ∈An

d∏
i=1

στ(i)(ωi)

)
= NP = PN.

Since σ̃ was arbitrary, we again find that PN ∈ LGal(L/Q) = Q . This completes the
proof.

3.


