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1. a)

We recall that the expression ¢ (in @ = Frac(A)) denotes the equivalence class

of (a,q) € A x (A~ p) for the relation given by
a / / / /
g~ Hahd) e Ax(ANp)ad =aq)

The addition and multiplication of equivalence classes are given by the formulae
/

a a aq +ada
a,d_ad+dg
q qq

!

q
a aa
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One checks that % and % are the additive and multiplicative units in @) re-
spectively and that both elements are contained in A,. Moreover, the formulae
show that additive inverses, sums, and products of elements in A, (taken in Q)
admit representatives in A, since ¢g¢' € p = g€ pV ¢ €p and thus 4, is a
subring of Q.

For completeness, we recall that A identifies with a subring of A, via the map
i: a+— 7. We skip the verification that this is a ring homomorphism and only

point out that ¢ is injective since § = % ifandonlyifa=a---1=0-1=0.

Since both a, and A are A-modules, so is a = a,N A and hence a is an ideal in
A. It is clear that a.A, C a,. So suppose that 7 €S with a € A and g € A\p.

Then A>¢=9.2¢cq, ie., € a.Since * € A,, we find that
1 1 gq P 1 q p

a a 1

- =--—-cal

g 1 q
and, since % was arbitrary, we therefore find that a, C a.A, as desired.
Remark: The argument above shows that

ap:{gzaea,qe/l\{p}}.

This is true more generally for extensions of ideals, i.e., let b <t A be an ideal
and let b, = b.A,. We claim that

bpz{gzbeb,qu\p}.

To this end let # € b, arbitrary. By definition, there exist bi,...,b, € b,
ai,...,a, € A, and ¢,...,q. € A~ p such that

L I
=1 =1

4; q
aiby + -+ +a,b,
qi---qr

Since p is prime, we have that ¢;---¢. € A~ p. Since b is an ideal, we have

that a1b; + - -+ + a,b, € b. Therefore, the claim follows.
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c) Since q is coprime to p, we know that q N (A \ p) is non-empty. Let ¢ be

contained in the latter intersection, then

1 q 1

I = I . 5 - q .Ap
and, hence, the claim.

d) Note that m, = p.A, is a proper ideal in A,. Indeed, if % € p.A,, by the
description of the extension proven earlier, there exist p € p and ¢ € A~ p
such that % = g, i.e., ¢ € p, which is absurd.

Let a, be a proper non-zero ideal and let a = a, N A. Then a is a proper ideal
in A since 1 € a and, moreover, a # {0} since clearing the denominator of any
non-zero element in a, yields a non-zero element in a.

Since A is Dedekind, we can write a = p*q, where q is coprime to p. We claim
that for any two ideals by, by <t A we have

Let z € (by-by).A,, i.e., using the description of extensions proven before, there
are bgj), .. .,bgj) € b, and ¢ € A~ p such that
b§1)bgz) o pp® r b2(1) p(2)

T = => L e (by.4,) - (by.A,).

q i=1 1 q

On the other hand, let b) € b; and q;,q2 € A\ p, then

pA  p@  p(Mp(2)

—_— = € (by - ba). Ay.

a1 42 a192
In particular, using the description of extension of ideals discussed above, ele-
ments in (b;.A,) - (b2.A,) are finite sums of elements in (b - by).A, and, hence,
Using the claim, we know that

ap = (p".A4p) - (a.4p) = (p-4y)" = my

since q was coprime to p.
e) Let x as in the hint and let z.A, be the ideal generated by x. Since z € p,

we know that .4, C m,. We claim that z.A, is not contained in mg. To
this end, it suffices to show that x ¢ mﬁ = p?.A,. Assume otherwise, then the
explicit description of extensions implies that there exist a € p? and g € A~ p
such that @ = ¢z and, in particular, gz € p?. In particular, we have that
(qz).A = (q.A) - (z.A) C p?. By assumption, we know that z.A = pq for g
coprime to p and, hence,

p=p - pDp - (¢A) (v.A) = (¢.A) q
implies that q.A C p and, in particular, ¢ € p, which is absurd.

f) Let m: A, - A,/m, denote the canonical projection and let i, = 7 o ¢, where
i: A — A, is the embedding described earlier. Let a € keri,. Since ker 7 = m,,
this means that i(a) = ¢ € m, and, by the explicit description of extensions of
ideals, there are p € p and ¢ € A ~ p such that p = qa. Since p is prime, it
follows that a € p and, therefore, ker¢, C p. On the other hand, for any a € p,
we have that i(a) € p.A, and, thus, ker i, = p. By the firs isomorphism theorem,
it only remains to prove that i, is surjective. To this end, let € A,/m, and let



a € A and g € A~ p such that x = %—l—mp. Since A is Dedekind, p is maximal
and, hence, there exists ¢'in A~ p such that r = ¢¢' —1 € p. Let o’ = aq’, then

. / r
ip(a') — o = —l—mp:&—l—mp:mp

and, thus, i,(a’) = x. This proves surjectivity.
2. Let d = [K: Q] and let n = d!. Let S,, denote the group of permutations of a set
of cardinality n and let A, < .S, denote the subgroup of even permutations. We
will denote by sgn(7) € {£1} the signature of the permutation 7 € S,,. Then

d d d
det(ojw;) = Z sgn(T) H Or(j)Wi = Z H Or(j) Wi — Z H Tr()Wi -
i=1

TESK TEA, i=1 TESHENAy 1=1

J/ J/

~~ —~~

=:P =N

Let 1 < 4,5 < d arbitrary. Since w; is an algebraic integer, there exists a monic
polynomial R € Z[X] such that

R(iji) = ajR(wi) =0

and, hence, o, is an algebraic integer. Since products and sums of algebraic integers
are algebraic integers, it follows that P and N are algebraic integers. Next we
show that P + N, PN € Q. Since Z is integrally closed, this will imply that
P+ N,PN € Z and, therefore

Ag = (P+ N)> —4PN = (P + N)*> mod 4

and, since squares have residue 0 or 1 mod 4, the claim follows.

In order to see that P + N and PN are rational, let L C C be the Galois
closure of K, which is the field generated by all the roots of the minimal poly-
nomial of a generator of K over Q. We fix an embedding o;: K — C and iden-
tify K with its image in L under oy. In particular, from now on we will assume
that Homg(K,C) = {o1,...,04} with 0y = idgx. We claim the map Gal(L/Q) —
Homg (K, C) is surjective and, in particular, every element in Gal(L/Q) is the ex-
tension of an embedding of K in C. To this end, let ¢ € Homg(K, C) arbitrary. Let
a € K such that K = Q[a]. We claim that o(«) € L. Then o(a) € L, since o(«)
is a root of the minimal polynomial of & over Q and since [x ]y /q is diagonalizable
over L with eigenvalues equal to the roots of the minimal polynomial of a over Q
(this requires a proof which was sketched in class). It follows that o(K) C L for all
o € Homg(K, C). Given ¢ € Homg(K,C), let 8 € L such that L = o(K)[3]. The
elements of Gal(L/K) permute [ among the roots of the minimal polynomial of
B over o(K) and, hence, o admits exactly [L: o(K)] = [L: K| extensions to L.

As a corollary, we obtain that for all & € Gal(L/Q) we have that

{Go0: 0 € Homg(K/C)} = Homg(K, C).

Indeed, suppose ¢ and ¢’ are in Homg(K,C) and 6 o0 = 6 o¢’, then invertibility
of & yields o = ¢’. Hence the map ¢ — & o ¢ is a permutation of Homg (K, C).



In order to see that P+ N € Q, note that for all & € Gal(L/Q)

GP+N)=> [[Gooa)w)+ > J][@ 00w (w)

TEA, i=1 TESKENAy, i=1
N )| (CETAINE o5 ) e
TES, i=1 TESy i=1
d d
= Z HUT(i)(wi> + Z HUT(Z')(LUZ-) =P+ N.
TEA, i=1 TESLNAy, i=1

Since & € Gal(L/Q) was arbitrary, it follows that P4+ N € L%(/Q) = Q.
In order to see that PN € Q, we use a slightly different argument (which also
works for P 4+ N). The claim is that for every & € Gal(L/Q) we have

(6(P)=PAG(N)=N)V (6(P)=NAG(N)=P).
To this end, we note that, since Gal(L/Q) acts by permutations on Homg(K,C),
for every ¢ € Gal(L/Q) there exists 7 € S,, such that
VIKi<[K:Q] Goo0;=0zp).
In particular,
VI<i<[K:QVT €S, G004 =03 )

If 7 is an even permutation, since the sign sgn: S,, — {£1} mapping a permutation
to its parity is a homomorphism, we find that 7 o7 € A,, if and only if 7 € A,,,
i.e., composition with 7 corresponds to a permutation on A, and on S, \ A4,,. In
particular

G(PN) =5 (ZHUOUH )( > Haoam )

TEA, 1=1 TESENA, =1

= (Z HU(%OT)(i)(wi)> ( Z HU(%OT)(i)(wi)>

TEA, 1=1 TESLNA, i=1

(o) (5 o) -

TEA, 1=1 TESHNAp 1=1

If 7 is an odd permutation, we find that 7 o7 € A, if and only if 7 € S, \ A,
i.e., 7 bijectively maps A, to S, \ A, and vice versa. In particular

G(PN) =a(P)a(N) = (Z H(ﬁom(i))(wi)) ( >, H(?fom(i))(wi))

TEA, i=1 TESHNAp i=1

= (Z HU(%OT)(z)(w¢)> ( > HU(%OT)(i)(Wi)>

TEA, i=1 TESHNAy i=1
d d
= ( Z Har(i)<wi)> (Z HUT(i)(Wi>> = NP =PN.
TESHENA, i=1 TEA, i=1

Since & was arbitrary, we again find that PN € LG(/Q = Q. This completes the
proof.



