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1. a) We first show (ii)⇒(i). Suppose that a submodule N ⊆M is not of finite type.
Then we can construct an infinite sequence (x1, x2, x3, . . .) in N such that, for
every n ∈ N , we have

Ax1 ⊂ Ax1 + Ax2 ⊂ · · · ⊂ Ax1 + Ax2 + · · ·+ Axn

where all the inclusions are strict. We construct the sequence by induction:
for n = 1 it suffices to pick any x1 ∈ S , then, once we have constructed the
sequence up to xn , we pick some xn+1 ∈ N ∖ (Ax1 + Ax2 + · · · + Axn) which
exists because otherwise we would have N = Ax1 + Ax2 + · · · + Axn and N
would be of finite type. Now the sequence of submodules

Ax1 ⊂ Ax1 + Ax2 ⊂ Ax1 + Ax2 + Ax3 ⊂ · · ·

never stabilizes, contradicting (ii).
Now we show (i)⇒(iii). Let C be a collection of submodules. To show that
it has a maximal element, we use Zorn’s lemma. We need to show that every
chain c (i. e. every subset of C that is totally ordered by inclusion) has an upper
bound in C . Fix a chain c and let N :=

⋃
L∈c L . By (i) N is finitely generated,

so we have N = Ay1 + · · · + Ayd for some y1, . . . , yd ∈ M . By definition of
N , for 1 ⩽ i ⩽ d there is Ni ∈ c with yi ∈ Ni . Since c is totally ordered,
there is a permutation σ of {1, . . . , d} such that Nσ(1) ⊆ · · · ⊆ Nσ(d) . Therefore

y1, . . . , yd ∈ Nσ(d) , hence N ⊆ Nσ(d) . As N was the union of all the elements of

c , we have N = Nσ(d) and N ∈ c ⊆ C is the upper bound for the chain c .

Finally we show (iii)⇒(ii). Let C = (Nn)n∈N be an increasing sequence of
submodules, i. e. Nn ⊆ Nn+1 for every n . By (iii) the collection C has a
maximal element Nn0 . This means that Nn ⊆ Nn0 for all n , and since the
sequence is increasing this is only possible if Nn = Nn0 for all n ⩾ n0 , meaning
that the sequence stabilizes.

b) By hypothesis, there exist y1, . . . , yn ∈ M such that M = Ay1 + · · · + Ayn .
Therefore there is a surjective map f : An → M , defined by (a1, . . . , an) 7→∑n

i=1 aiyi . Every submodule N ⊂ M is the image via f of the submodule

f−1(N) ⊆ An , therefore it is sufficient to show that An is Noetherian: once we

have this, for every submodule N ⊆ M the fact that f−1(N) is of finite type
will imply that N is of finite type.
To show that An is Noetherian, we proceed by induction on n . The case n = 1
is true by hypothesis. To show that An Noetherian implies An+1 Noetherian,
we prove the following lemma: for every short exact sequence

0 → L
ϕ−→M

ψ−→ N → 0

of A-modules, if L and N are of finite type then so is M . Indeed, if L = Ax1+
. . .+Axd and N = Az1+. . .+Azl , setting yi = ϕ(xi) for 1 ⩽ i ⩽ d and choosing
yd+i such that ψ(yd+i) = zi for 1 ⩽ i ⩽ l , we have M = Ay1 + . . .+Ayd+l : for

every y ∈ M there exist ad+1, . . . , ad+l ∈ A such that ψ(y) =
∑l

i=1 ad+izi , so

y −
∑l

i=1 ad+iyd+i ∈ Ker(ψ) = Im(ϕ) = Ay1 + . . .+ Ayd .
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Now, to see that An+1 is Noetherian, consider the short exact sequence

0 → A
ϕ−→ An+1 ψ−→ An → 0

where ϕ(a) = (0, . . . , 0, a) and ψ(a1, . . . , an, an+1) = (a1, . . . , an). For every

submodule M ⊆ An+1 , the sequence

0 → ϕ−1(A ∩M)
ϕ−→M

ψ−→ ψ(M) → 0

is also short exact, where A ∩M is the intersection of M with the submodule
{(0, . . . , 0, a) : a ∈ A} . Since A and An are Noetherian, the submodules ϕ−1(A∩
M) and ψ(M) are of finite type. The lemma implies that M is also of finite

type, hence An+1 is Noetherian.
2.
3.
4. Let A be a Dedekind ring and Q = Frac(A). Let B a domain and Q ↪→ B an

embedding. Let Λ ⊆ B be a non-zero A-module of finite type and x ∈ B such that
x.Λ ⊆ Λ.
Let λ ∈ Λ∖ {0} be an element. We have x.λ ∈ Λ and so

A[x].λ ⊆ Λ.

Now since A is Noetherian, A[x].λ is a finitely generated A submodule of Λ. As
multiplication by λ is an A-module automorphism of K = Frac(B), we obtain
that A[x] ⊆ K is a f.g. A-submodule of K . By the equivalent characterizations of
integrality, it follows that x ∈ OK(A) ∩B = OB(A).
The second part follows since any fractional ideal f ⊆ Q is a f.g. A-module and

A is integrally closed.


