

1. Let $p \in \mathbb{Z}$ be a prime. Let us consider the principal ideal

$$(p) := p\mathbb{Z}[i] \lhd \mathbb{Z}[i].$$

Since $\mathbb{Z}[i]$ is a P.I.D. we can factorise (p) into prime ideals. Show that exactly one of the following holds,

- a) The ideal (p) is prime in $\mathbb{Z}[i]$. (In this case we say (p) is *inert*.)
- b) The ideal (p) splits into two distinct prime ideals in $\mathbb{Z}[i]$. (In this case we say (p) is *totally split*.)
- c) The ideal (p) is a square of a prime ideal in $\mathbb{Z}[i]$. (In this case we say (p) is *ramified*.)

Can you classify which primes are inert, totally split and ramified?

Hint: Consider the norm of the ideal (p) i.e. $|\mathbb{Z}[i]/(p)|$ and use Fermat's last theorem.

2. We saw in the lecture that

$$\mathbb{Z}[i]/(a+bi) \simeq \mathbb{Z}^2/\mathbb{Z}^2 \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

as \mathbb{Z} -modules. Using this we concluded that

$$|\mathbb{Z}[i]/(a+bi)| = \left| \det \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \right| = a^2 + b^2.$$

In this exercise we will prove a more general version of this statement. Recall that a *lattice* $\Lambda \subseteq \mathbb{R}^n$ is a discrete subgroup containing a basis of \mathbb{R}^n ; cf. §A.2.1 in the lecture notes.

If $\Lambda \subseteq \mathbb{R}^n$ is a lattice, then $\Lambda = \mathbb{Z}^n g$ for some $g \in \mathrm{GL}_n(\mathbb{R})$; cf. Lem. 3 in §A.2.1 of the lecture notes. Throughout this exercise, $\Lambda \subseteq \mathbb{R}^n$ is a lattice and $\Lambda' \leq \Lambda$ is a subgroup.

a) Show that if $\Lambda' < \mathbb{R}^n$ is a lattice $[\Lambda : \Lambda'] < \infty$ and

$$\mathrm{covol}(\Lambda') = \mathrm{covol}(\Lambda)[\Lambda : \Lambda'].$$

b) Show that in general

$$\Lambda' = \mathbb{Z}^n Mg \text{ for some matrix } M \in M_2(\mathbb{Z}).$$

c) Suppose that $\Lambda' < \mathbb{R}^n$ is a lattice and let $M \in M_2(\mathbb{Z})$ as in the previous subexercise. Show that $M \in M_2(\mathbb{Z}) \cap \mathrm{GL}_2(\mathbb{Q})$ and

$$[\Lambda : \Lambda'] = |\det(M)|.$$

3. Recall that in class we have proven the following statement.

Let p be an odd prime and assume that -1 is a square in \mathbb{F}_p . Then p is a sum of two squares.

This was proven by showing that there exists $r \in \mathbb{Z}[i]$ a non-unit such that $(r)|(p)$ but $(p) \nmid (r)$. However, the proof did not give us a way to determine r .

In this exercise, we will give a constructive proof of the implication and we will use this to write a computer program to identify all representations of an admissible odd prime as a sum of two squares.

a) Let p and odd prime and $m \in \mathbb{Z}$ such that $m^2 = -1 \pmod{p}$. Let

$$\pi = (m+i, p) \subset \mathbb{Z}[i]$$

be the ideal generated by p and $m+i$. Show that π is a prime ideal and that, for any generator r of π , we have $p = \text{Nr}(r)$.

b) Show the converse: Assuming that p is an odd prime such that $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$, deduce that $(a+ib) \subset \mathbb{Z}[i]$ is a prime ideal generated by p and an element of the form $m+i$ with $m \in \mathbb{Z}$ a square root of $-1 \pmod{p}$.

c) Using that $\mathbb{Z}[i]$ is Euclidean, find a generator of π .

d) Write a function that takes as input a prime $p \equiv 1 \pmod{4}$ and returns a list containing all pairs $(a, b) \in \mathbb{Z}^2$ such that $p = a^2 + b^2$.

You might want to use some of the following commands:

```

1 GF(p)                      # finite field of cardinality p
2 PolynomialRing(k, 't')      # ring of polynomials in
3                               # variable t with coefficients
4                               # in k
5 P.roots()                  # list of roots of polynomial
6                               # P with multiplicities
7 x.lift()                   # if x is in the field k = GF(p),
8                               # then x.lift() is a represen-
9                               # tative of x in ZZ

```