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Manuel Luethi Spring 2024
Federico Viola

1. For what follows, let f € Q[X] be an irreducible polynomial. Our goal is to produce
a realization of the field K = Q[X]/(f) suitable for computations. We assume that

f=X"taa X7+t ag

for (ag,...,aq-1) € Q.
a) Recall that K is a finite-dimensional vector space over Q. Given a € K, we
denote by xa: K — K the map given by

Vbe K xa(b) = ba.

Show that ¢: a — xa defines a monomorphism ¢: K — Endg(K) of Q-
algebras.

b) Give an explicit embedding of K in Mat,(Q).
Hint: Show that for any root ¢ of f, the companion matrix of f is a matrix
representation of x(.

c) Let t: K — Maty(Q) be a field embedding and let { be a root of f. Show

that for all non-zero v € Q7 the tuple

(v,00(C), ..., 0e(Q)*)

is a basis of Q.
d) Show that any two embeddings ¢1,t2: K — Maty(Q) are conjugate, i.e., there
exists g € GL4(Q) such that

Va € K 13(a) = gui(a)g™.

Hint: Use the preceding subexercise.

e) Using SageMATH, write a function which takes as input irreducible polyno-
mial f € Q[X] and returns K as a subfield of Maty(Q) by specifying a Q-basis.
Remark: This implementation is very precise but not very efficient, as the com-
plexity of multiplication in K is the complexity of multiplication in the much
larger ambient Q-algebra Maty(Q). SageMATH offers several implementations
of number fields.

2. Let d > 2 be a squarefree integer. Let K = Q(v/d) and A = Z[v/d]. Given an
element z = a + bvd € A, we let Z=a — bv/d and N(z) = 27.
We also define the Pell equation

2?2 —dy? =1.

a) Prove that N(z122) = N(z1) N(22)
b) Prove that
A ={z +yVd e Az — dy* = £1}
and that the set of solutions of the Pell equation

A ={z+yVde Alz? — dy* =1}

forms a subgroup of A* of index at most 2.

¢) Show that ¢ : A — (R, +), a+bvd — log |a+bV/d| is a group homomorphism
with kernel +1.
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d) Show that ¢(A}) is a cyclic subgroup of (R,+).

Hint: Prove that for every compact subset B C R, ¢~'(B) is finite. Deduce
that ¢(A]") is discrete and thus cyclic.

e) Conclude that if the Pell equation admits a non-trivial solution (# +1), then
all solutions are of the form 4z for some 2y € Ay, where zy # £1 and n runs
over Z.

f) Let « € RN Q and n > 1. Prove that there exists a € Z and b € {1,....,n}

such that .

a
— | < ——.
‘0‘ b’ (n+ 1)b
Hint: Use the pigeonhole principle with 0, {a}, {2a}, ..., {na},1 where {a} de-
notes the fractional part of «.

g) Deduce from the previous part that there exist infinitely many pairs (a,b) with
ged(a,b) = 1 and

h) Using the pigeonhole principle once again, show that there exists n € Z sat-
isfying 1 < |n| < 2v/d + 1 and such that 2? — dy> = n has infinitely many
solutions (z,y) with z,y positive. Conclude that there exist two distinct solu-
tions (x1,v1), (z2,y2) with 7 = 25 (mod n) and y; = y» (mod n).

i) Set z; = 1y +y1\/3, 29 = T9 + yQ\/E and zp = 21/zy. Prove that z, is a
non-trivial solution of the Pell equation.

3. Let f = X?+ BX + C € Z[X] irreducible and assume that B> —4C < 0. Let ¢

be a root of f and consider the ring Z[¢] C C.

a) Show that

Z[¢) =7+ ZC.
Deduce that Z[(] is a lattice in C, i.e., Z[¢] C C is a discrete subgroup con-
taining an R-basis of C.

b) Let ¥ : Z[¢{] — Z* denote the Z-module isomorphism ¥(a + b¢) = (a,b) and

define ¢ : Z[¢] — Maty(Z) by

Vs, x € Z[¢] I(xs) = I(x)u(s).
Show that ¢ is well-defined and an injective homomorphism of rings.

¢) Given s € Z[(], let (s) <t Z[¢] be the ideal generated by s. Let M, = Z?.(s).
Show that as Z-modules

ZIC)/(s) = Z° /M.



