

1. In this exercise we will prove the following Theorem due to Hermite:

Theorem. For every integer D there are at most finitely many number fields K/\mathbb{Q} satisfying $\text{disc}(K) = D$.

a) Show that for every $D \in \mathbb{Z}$ there exists a constant $d_0(D)$ such that

$$\text{disc}(K) = D \implies [K: \mathbb{Q}] \leq d_0(D).$$

Deduce that it suffices to show that for any $d, r_1 \in \mathbb{N}$ and for any $D \in \mathbb{Z}$ the set of number fields K/\mathbb{Q} satisfying $[K: \mathbb{Q}] = d$, $|\text{Hom}_{\mathbb{Q}}(K, \mathbb{R})| = r_1$, and $\text{disc}(K) = D$ is finite.

b) Let $d \leq d_0(D)$, $0 \leq r_1 \leq d$ such that $2|d - r_1$, and $V_{d,r_1} = \mathbb{R}^{r_1} \times \mathbb{C}^{\frac{d-r_1}{2}}$. Given $X, Y > 0$, we denote by $B_{X,Y}$ the set given, if $r_1 \geq 1$, by

$$B_{X,Y} = \{v \in V_{d,r_1} : |v_1| < X, |v_i| < Y^{-1} \text{ for } i = 2, \dots, r_1 + r_2\}$$

and, if $r_1 = 0$, by

$$B_{X,Y} = \{v \in V_{d,r_1} : |\text{Re}(v_1)| < 1, |\text{Im}(v_1)| < X, |v_i| < Y^{-1} \text{ for } i = 2, \dots, r_2\}.$$

Show that for all r_1, d as above there exist $C(r_1, d) > 0$ such that

$$\forall X, Y > 0 \quad \text{vol}(B_{X,Y}) = \begin{cases} C(r_1, d)XY^{1-d} & \text{if } r_1 \geq 1, \\ C(r_1, d)XY^{2-d} & \text{else.} \end{cases}$$

c) Let D, d, r_1 as above and let K/\mathbb{Q} be a number field of degree d satisfying $|\text{Hom}_{\mathbb{Q}}(K, \mathbb{R})| = r_1$ and $\text{disc}(K) = D$. Note that $\sigma_{\infty}(K) \subseteq V_{d,r_1}$. Suppose that $X, Y > 1$ are chosen such that $\text{vol}(B_{X,Y}) > 2^{\frac{d+r_1}{2}} \sqrt{|D|}$. Show that there exists $z \in \mathcal{O}_K \setminus \{0\}$ such that $\sigma_{\infty}(z) \in B_{X,Y}$. Show that $|\sigma_1(z)| \geq 1$.

d) Let z as above and let $L = \mathbb{Q}(z) \subseteq K$. Show that the map $\text{Hom}_{\mathbb{Q}}(K, \mathbb{C}) \rightarrow \text{Hom}_{\mathbb{Q}}(L, \mathbb{C})$ given by $\sigma \mapsto \sigma|_L$ is well-defined and $[K: L]$ -to-1.
Hint: Since L has characteristic 0, we know that $K = L(y)$ for some $y \in K$ and $\text{Hom}_{\mathbb{Q}(z)}(K, \mathbb{C})$ is in 1-to-1 correspondence with the roots of the minimal polynomial of y over L .

e) Let z as above. Show that $\mathbb{Q}(z) = K$.
Hint: Suppose first that $r_1 = d$, i.e., K is totally real, and look at the fiber above σ_1 under the restriction map above and provide a proof by contradiction. Then generalize to $r_1 \geq 1$ and, finally, if $r_1 = 0$, you want to show that $\text{Im}(\sigma_1(z)) \neq 0$.

f) Deduce that for every $D \in \mathbb{Z}$ the set of number fields of discriminant D is finite.

2. Let K/\mathbb{Q} be a number field of degree d and let $\text{Log}_{\infty} : K^{\times} \rightarrow \mathbb{R}^{r_1+r_2}$ be the group homomorphism given by

$$\text{Log}_{\infty}(z)_i = \begin{cases} \log|\sigma_i z| & \text{if } i \leq r_1, \\ 2 \log|\sigma_i z| & \text{otherwise.} \end{cases} \quad (z \in K^{\times}).$$

Show that $\text{Log}_{\infty}|_{\mathcal{O}_K^{\times}}$ has finite kernel and discrete image.

Hint: Consider a compact set $C \subseteq \mathbb{R}^{r_1+r_2}$ and note that, given $z \in K^{\times}$, the condition $\text{Log}_{\infty}(z) \in C$ restricts the size of $\sigma_i(z)$. Now use that integers are one apart.

3. In what follows, we let K be a quadratic number field of discriminant Δ and we denote $D = |\Delta|$. Given $n \in \mathbb{N}$ we denote by ζ_n a choice of a primitive n -th root of unity.

a) Given $p \in \mathbb{N}$ an odd prime, let $p^* = (-1)^{\frac{p-1}{2}} p$. Show that $\mathbb{Q}(\sqrt{p^*})$ is the unique quadratic subfield of $\mathbb{Q}(\zeta_p)$.

Hint: The multiplicative group in a finite field is cyclic.

b) Prove that K is a subfield of $\mathbb{Q}(\zeta_D)$.

Hint: Suppose first that D is square-free and use Sh. 10, Ex. 5.

Recall that $K \subseteq \mathbb{Q}(\zeta_D)$ gives rise to a surjective group homomorphism

$$\text{Gal}(\mathbb{Q}(\zeta_D)/\mathbb{Q}) \rightarrow \text{Gal}(K/\mathbb{Q}).$$

By identifying $\text{Gal}(\mathbb{Q}(\zeta_D)/\mathbb{Q}) \cong (\mathbb{Z}/D\mathbb{Z})^\times$ and $\text{Gal}(K/\mathbb{Q}) \cong \{-1, 1\}$, we obtain from this homomorphism a character

$$\chi_K: (\mathbb{Z}/D\mathbb{Z})^\times \rightarrow \{-1, 1\},$$

which we call the quadratic character associated to K .

d) Prove that

$$\chi_K(-1) = \begin{cases} 1 & \text{if } \Delta > 0, \\ -1 & \text{if } \Delta \leq 0. \end{cases}$$

e) Let p be a prime coprime to D . Show that, under the surjective group homomorphism described above, the Frobenius element $(p, K/\mathbb{Q}) \in \text{Gal}(K/\mathbb{Q})$ is the image of the Frobenius element $(p, \mathbb{Q}(\zeta_D)/\mathbb{Q}) \in \text{Gal}(\mathbb{Q}(\zeta_D)/\mathbb{Q})$.

f) Show that, for any prime p with $(p, D) = 1$, we have

$$\chi_K(p) = \begin{cases} 1 & \text{if } p \text{ splits in } K, \\ -1 & \text{otherwise.} \end{cases}$$

4. The goal of this exercise is to count fundamental units of real quadratic fields. To this end, given $d \geq 2$ a square-free integer, we identify $K = \mathbb{Q}(\sqrt{d})$ with its image in \mathbb{R} given by choosing the unique root satisfying $\sqrt{d} > 0$ and we enumerate the \mathbb{Q} -embeddings of K as

$$\text{Hom}_{\mathbb{Q}}(K, \mathbb{C}) = \{\sigma_1 = \text{id}_K, \sigma_2: \sqrt{d} \mapsto -\sqrt{d}\}.$$

a) Let $d > 1$ a square-free integer. Show that $\mathbb{Q}(\sqrt{d})$ contains a unique fundamental unit ε_d satisfying $\varepsilon_d > 1$.

b) Show that there are $m, n \in \mathbb{N}$ such that $\varepsilon_d = \frac{m+n\sqrt{d}}{2}$.

Hint: First show that such an equality holds with $m, n \in \mathbb{Z}$ and then use the norm to show that $mn > 0$.

In what follows, we let \mathbb{R} :

$$U_{\text{fun}} = \{\varepsilon_d: d > 1 \text{ squarefree}\}, \quad U_{\text{all}} = \{\varepsilon_d^k: d > 1 \text{ squarefree}, k > 1\}.$$

Thus, U_{fun} contains all fundamental units of real quadratic fields.

c) For any $X > 2$, prove that $[1, X] \cap U_{\text{fun}}$ is a finite set. We write $f(X)$ for its cardinality.

d) Let $d > 1$ be a squarefree integer and $u \in \mathcal{O}_K^\times$. We write $u = a + b\sqrt{d}$ for some half-integers $a, b \in \frac{1}{2}\mathbb{Z}$; cf. Sh. 1, Ex. 2. Prove that $1 < u < X$ if and only if $1 < a < (X^2 \pm 1)/(2X)$.

e) Given $a \in \frac{1}{2}\mathbb{Z}$ satisfying the above inequalities and a sign $\sigma \in \{\pm 1\}$, prove that there is a unique choice of $b \in \frac{1}{2}\mathbb{Z}$ and squarefree $d > 1$ such that $a + b\sqrt{d}$ is a unit of norm σ .

Hint: $a^2 + \sigma = b^2d$.

f) Counting the number of possibilities for a and σ , deduce that

$$|]1, X] \cap U_{\text{all}}| = 2X + O(1) \quad \text{as } X \rightarrow \infty.$$

We write $a(X)$ for $|]1, X] \cap U_{\text{all}}|$.

g) Prove that $a(X) = \sum_{k=1}^{\infty} f(X^{1/k})$ for X large enough, where the sum is actually finite.

h) Let $\mu: \mathbb{N} \rightarrow \{-1, 0, 1\}$ denote the Möbius function given by

$$\mu(n) = \begin{cases} (-1)^{\omega(n)} & \text{if } n \text{ is squarefree,} \\ 0 & \text{otherwise,} \end{cases}$$

where $\omega(n)$ denotes the number of pairwise distinct prime factors of n . Recall that

$$\forall n \in \mathbb{N} \quad \sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Show that

$$f(X) = \sum_{k=1}^{\infty} \mu(k) a(X^{1/k})$$

for sufficiently large X .

i) Conclude that $f(X) = 2X + o(X)$ as $X \rightarrow \infty$. In particular, we have

$$\lim_{X \rightarrow \infty} \frac{|]1, X] \cap U_{\text{fun}}|}{X} = 2.$$