PROOF OF RIESZ-THORIN

1. RIESZ-THORIN

We now prove the Riesz-Thorin interpolation theorem, interestingly by using complex analysis! The key
technical ingredient from complex analysis is the following

Lemma 1.1. (Hadamard three lines lemma) Let F' be a complex analytic function on the strip S := {z €
C|0 < Rez < 1}, which extends continuously and boundedly to the closure S. Assume the bounds
|F(2)] < Bp, Rez =0, |F(2)] < By, Rez=1
for positive constants By, B1. Then we have
|F(2)| < B§7’BY, Rez=0,v0 € [0,1]
Proof. This is an application of the maximum modulus principle. Introduce the function
f(2) = F()[By " B;] ™!

Observe that |[By~*Bf|™!| < max{By ', B;'} provided Rez € [0,1], and so f(z) is also bounded on S.
Moreover, letting

fe(2) == f(z)ef[f*l]
for small € > 0, we have for z = z 4 iy
@) = 1f(=)]e7 V0

which converges to zero as |y| — oo while z € [0,1]. Moreover, we have |f.(z)| < 1if z = 0,1. Now pick
yo > 0 sufficiently large such that

[f(2) < 1 lyl = wo.

Then by the maximum modulus principle and since the boundary values on the rectangular box 0 < z <
1, ly| < yo are at most 1 by the preceding, we infer

f.(2)] < Vz € 8.

Letting € — 0 we find
|f(2)| <1Vz €S,

which implies the lemma. O

Next, the proof of Riesz-Thorin:

Proof. Let pg...,q1 as in the theorem, and assume

1 1-6 6 1 1-6 0

- = +—=, == +—,0¢€(0,1).

p Po P11 g q0 a1
Below, we shall assume that all pg ..., q; are strictly between 1 and oo, leaving that exceptional case as an
exercise.

Consider a simple function

M
z) = Z are™ ™ xa, ()
k=1

where the measurable sets Ay C X are disjoint, and a; € Rso. We have

ITf|lLa = sup_ |/ )|,

”g L /_




We shall now pick an arbitrary

Here we may restrict g to simple functions, by density of these in L?(X)

simple function
N
g(x) = brePrxp, (x)

So far there has been no complex analysis involved, but now introduce(!)
N

P(z) za Z) i
Za ety (@), go(2) = 3 7P ePrxp, (x)

P(z) :=
We shall restrict Rez € [0, 1], i. e. the strip S. Then we easily have that the function
P(z Z) dau
P = [ T @@= Y af e e [ 1)@ @) du
k.l

is analytic on S and continuous and bounded on S (of course the sum has only finitely many terms)

k=1
where we set , ,
P p q q
—(1—-2)+—2,Q(2)==(1—-2)+ ==
0( ) e (2) qé( ) 7

Our strategy shall be to apply the Hadamard lemma to F. For this we need good bounds on the boundary
Rez=0,1.
= ﬂ, and then

ZaklAk\ = 17115, Nlg=11 = -8 1Bul = o]
k

If Rez =0, we have Re P(z)
||fz Lro

By the same token, if Rez =1,

KA ZakiAk\ =1£1I2.> g

Thus by the assumed bounds on pg, we get for Rez =0
P < T o 2l < Aol7 1

A%

= S0 1B] = 9]l
k

q

2 oll

while if Rez = 1, we have
< A7l1E HQHLW

) < ([T o 9= o

Then apply the Hadamard’s three line lemma with
B = A 73 o] i

Bo = Ao 7|35 %
It follows that
o1 L
P < (Aol 713 loll )" (Al 7115 ol )
provided Rez = 6. In particular, if z = 0, we have
p
Pz)=—(1-0)+—0=1 =1
(2) po( )+ o , Q2) =1,
so f.=f,9. =g, and
=1 | (] < A0 AN Iuslal

Riesz-Thorin follows.



