
PROOF OF RIESZ-THORIN

1. Riesz-Thorin

We now prove the Riesz-Thorin interpolation theorem, interestingly by using complex analysis! The key
technical ingredient from complex analysis is the following

Lemma 1.1. (Hadamard three lines lemma) Let F be a complex analytic function on the strip S := {z ∈
C| 0 < Re z < 1}, which extends continuously and boundedly to the closure S̄. Assume the bounds

|F (z)| ≤ B0, Re z = 0, |F (z)| ≤ B1, Re z = 1

for positive constants B0, B1. Then we have

|F (z)| ≤ B1−θ
0 Bθ1 , Re z = θ,∀θ ∈ [0, 1]

Proof. This is an application of the maximum modulus principle. Introduce the function

f(z) := F (z)[B1−z
0 Bz1 ]−1

Observe that |[B1−z
0 Bz1 ]−1| ≤ max{B−10 , B−11 } provided Re z ∈ [0, 1], and so f(z) is also bounded on S̄.

Moreover, letting

fε(z) := f(z)eε[z
2−1]

for small ε > 0, we have for z = x+ iy

|fε(z)| = |f(z)|eε(x
2−y2−1)

which converges to zero as |y| → ∞ while x ∈ [0, 1]. Moreover, we have |fε(z)| ≤ 1 if x = 0, 1. Now pick
y0 > 0 sufficiently large such that

|fε(z)| ≤ 1, |y| ≥ y0.
Then by the maximum modulus principle and since the boundary values on the rectangular box 0 ≤ x ≤
1, |y| ≤ y0 are at most 1 by the preceding, we infer

|fε(z)| ≤ ∀z ∈ S̄.
Letting ε→ 0 we find

|f(z)| ≤ 1 ∀z ∈ S̄,
which implies the lemma. �

Next, the proof of Riesz-Thorin:

Proof. Let p0 . . . , q1 as in the theorem, and assume

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
, θ ∈ (0, 1).

Below, we shall assume that all p0 . . . , q1 are strictly between 1 and ∞, leaving that exceptional case as an
exercise.

Consider a simple function

f(x) =

M∑
k=1

ake
iαkχAk

(x)

where the measurable sets Ak ⊂ X are disjoint, and ak ∈ R>0. We have

‖Tf‖Lq = sup
‖g‖L

q′
≤1

∣∣ ∫
X

T (f)(x)g(x)dµ
∣∣,
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Here we may restrict g to simple functions, by density of these in Lq(X). We shall now pick an arbitrary
simple function

g(x) =

N∑
k=1

bke
iβkχBk

(x)

So far there has been no complex analysis involved, but now introduce(!)

fz(x) :=

M∑
k=1

a
P (z)
k eiαkχAk

(x), gz(x) =

N∑
k=1

b
Q(z)
k eiβkχBk

(x)

where we set

P (z) :=
p

p0
(1− z) +

p

p1
z, Q(z) :=

q′

q′0
(1− z) +

q′

q′1
z.

We shall restrict Re z ∈ [0, 1], i. e. the strip S. Then we easily have that the function

F (z) :=

∫
X

T (fz)(x)gz(x)dµ =
∑
k,l

a
P (z)
k b

Q(z)
l eiαkeiβl

∫
X

T (χAk
)(x)χBl

(x) dµ

is analytic on S and continuous and bounded on S̄ (of course the sum has only finitely many terms).

Our strategy shall be to apply the Hadamard lemma to F . For this we need good bounds on the boundary
Re z = 0, 1.

If Re z = 0, we have ReP (z) = p
p0

, and then∥∥fz∥∥p0Lp0
=
∑
k

apk|Ak| =
∥∥f∥∥p

Lp ,
∥∥gz∥∥q′0

Lq′0
=
∑
k

bq
′

k |Bk| =
∥∥g∥∥q′

Lq′

By the same token, if Re z = 1,∥∥fz∥∥p1Lp1
=
∑
k

apk|Ak| =
∥∥f∥∥p

Lp ,
∥∥gz∥∥q′1

Lq′1
=
∑
k

bq
′

k |Bk| =
∥∥g∥∥q′

Lq′

Thus by the assumed bounds on p0, we get for Re z = 0

|F (z)| ≤
∥∥T (fz)

∥∥
Lq0

∥∥gz∥∥Lq′0
≤ A0

∥∥f∥∥ p
p0

Lp

∥∥g∥∥ q′
q′0
Lq′ ,

while if Re z = 1, we have

|F (z)| ≤
∥∥T (fz)

∥∥
Lq1

∥∥gz∥∥Lq′1
≤ A1

∥∥f∥∥ p
p1

Lp

∥∥g∥∥ q′
q′1
Lq′ ,

Then apply the Hadamard’s three line lemma with

B0 = A0

∥∥f∥∥ p
p0

Lp

∥∥g∥∥ q′
q′0
Lq′ , B1 = A1

∥∥f∥∥ p
p1

Lp

∥∥g∥∥ q′
q′1
Lq′ .

It follows that

|F (z)| ≤
(
A0

∥∥f∥∥ p
p0

Lp

∥∥g∥∥ q′
q′0
Lq′

)1−θ(
A1

∥∥f∥∥ p
p1

Lp

∥∥g∥∥ q′
q′1
Lq′

)θ
provided Re z = θ. In particular, if z = θ, we have

P (z) =
p

p0
(1− θ) +

p

p1
θ = 1, Q(z) = 1,

so fz = f, gz = g, and

|F (z)| =
∣∣ ∫
X

T (f)g dµ
∣∣ ≤ A1−θ

0 Aθ1‖f‖Lp‖g‖Lq′

Riesz-Thorin follows. �
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