

DISPERSIVE PDE 23, PROBLEM SET 6

- (1) Provide the details that if $f \in \mathcal{S}(\mathbb{R}^n)$ then we have

$$\lim_{N_{1,2} \rightarrow +\infty} \|P_{[-N_1, N_2]} f\|_{L^p(\mathbb{R}^n)} = \|f\|_{L^p(\mathbb{R}^n)}, \quad 1 < p \leq \infty.$$

- (2) Assuming the fundamental theorem of Littlewood-Paley theory (Theorem 3. 2 in Lecture3.pdf), deduce the following weaker version of Mikhlin's theorem (Theorem 3.4 in Lecture3.pdf): if m is a Mikhlin Fourier multiplier, then assuming the fundamental theorem of LP-theory, we have

$$\|Tf\|_{L^p(\mathbb{R}^n)} \leq C \cdot \left(\sum_l \|P_l f\|_{L^p(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}}, \quad 2 \leq p < \infty.$$

This would remain correct for $p = +\infty$ if we assumed the LP-theorem was valid in that case.

- (3) Use the preceding exercise to show that if $n = 1$ the Littlewood-Paley theorem does not hold for $p = \infty$. For this you may also assume that the classical Hilbert transform

$$Hf := \frac{i}{\pi} \cdot \int_{P.V} \frac{f(y)}{x - y} dy := \lim_{\epsilon \rightarrow 0} \frac{i}{\pi} \cdot \int_{|x-y| \geq \epsilon} \frac{f(y)}{x - y} dy$$

corresponds to the Fourier multiplier $m(\xi) = \frac{\xi}{|\xi|}$. For this, let f be the characteristic function of $[0, 1]$, and let

$$g_\epsilon(x) = \phi_\epsilon * f$$

where $\phi_\epsilon = \epsilon^{-1} \phi(\frac{x}{\epsilon})$ and ϕ is a smooth non-negative function supported in $[-1, 1]$ and with $\int \phi dx = 1$. Then show that

$$\|Hg_\epsilon\|_{L^\infty(\mathbb{R})} \geq C |\log \epsilon|,$$

while on the other hand we have

$$\left(\sum_l \|P_l g_\epsilon\|_{L^\infty(\mathbb{R})}^2 \right)^{\frac{1}{2}} \leq D |\log \epsilon|^{\frac{1}{2}}.$$

To show this last inequality, use that

$$P_l g_\epsilon(x) = (2\pi)^{-1} \int_{\mathbb{R}} \phi_\epsilon(x - y) \cdot \int \psi_l(\xi) e^{iy\xi} \cdot \frac{e^{-i\xi} - 1}{\xi} d\xi dy$$

and for fixed $x \in \mathbb{R}$ distinguish between $2^l \epsilon \leq 1, 2^l \epsilon > 1$.