
STRICHARTZ ESTIMATES

Our goal now is to deduce certain estimates for the linear Schrodinger and wave equation which will allow
us to significantly improve the local well-posedness established in lecture 5, and in fact even derive global
well-posedness results in a more general setting. These estimates, named after R. Strichartz who established
a special case, will be deduced separately for the Schrodinger case, where we dispose over better dispersive
estimates at this point, and then for the wave case. As we had already hinted at earlier in the course, the
essence behind these estimates is to use a kind of interpolation between the dispersive amplitude decay and
the energy conservation.

1. The Schrodinger case

Recall that the homogeneous Schrodinger propagator is given in the form

Tf(t, x) = (2π)−n ·
∫
Rn
e−it|ξ|

2+ix·ξ · f̂(ξ) dξ.

Taking advantage of Lemma 2.1 from lecture1.pdf, we easily infer

Lemma 1.1. We have the estimate∥∥Tf(t, ·)
∥∥
L∞x (Rn) ≤ (4π|t|)−n2 ·

∥∥f∥∥
L1(Rn).

Proof. By density of S(Rn) in L1(Rn), we may assume f ∈ S(Rn). Then we can easily write

(2π)−n ·
∫
Rn
e−it|ξ|

2+ix·ξ · f̂(ξ) dξ

= lim
ε↓0

(2π)−n ·
∫
Rn
e−it|ξ|

2+ix·ξ−ε|ξ|2 · f̂(ξ) dξ

= lim
ε↓0

∫
Rn
F−1Rn

(
e−it|ξ|

2−ε|ξ|2)(y) · f(x− y) dy,

where FRn denotes the Fourier transform on Rn. Since we have

e−it|ξ|
2−ε|ξ|2 =

n∏
j=1

e−itξ
2
j−εξ

2
j ,

we have

F−1Rn
(
e−it|ξ|

2−ε|ξ|2)(y) =

n∏
j=1

F−1R
(
e−itξ

2
j−εξ

2
j
)
(yj),

and lemma 2.1 from lecture1.pdf implies that

lim
ε↓0
F−1Rn

(
e−it|ξ|

2−ε|ξ|2)(y) =
(
4πit

)−n2 · ei |y|24t ,

which implies the lemma.
�

We next recall the L2-conservation, in the form∥∥Tf(t, ·)
∥∥
L2
x(Rn)

=
∥∥f∥∥

L2(Rn), t ∈ R.

We now use a well-known interpolation result, namely the Riesz-Thorin theorem, which we state here without
proof:

1
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Theorem 1.2. (Riesz-Thorin) Let 1 ≤ p0, p1, q0, q1 ≤ ∞, and assume (X,µ) is a measure space. Assume
that T is a linear operator defined on all simple functions on X and taking values in the measurable functions
on X, which satisfies

‖T (f)‖Lq0 (X) ≤ A0‖f‖Lp0 (X), ‖T (f)‖Lq1 (X) ≤ A1‖f‖Lp1 (X).

for all simple functions f . Then for any p ∈ [p0, p1], with 1
p = θ

p0
+ 1−θ

p1
, θ ∈ [0, 1], we have

‖T (f)‖Lq ≤ Aθ0A1−θ
1 ‖f‖Lp ,

where q is defined via 1
q = θ

q0
+ 1−θ

q1
.

We use this with p0 = 1, p1 = 2, as well as q0 = ∞, q1 = 2, and note that then p, q as determined by the
preceding theorem (with variable θ ∈ [0, 1]) will be Holder dual:

1

p
+

1

q
= 1.

Using furthermore A0 = C · |t|−n2 , A1 = 1, we find

Proposition 1.3. For any p ∈ [2,∞], letting p′ ∈ [1, 2] denote the Holder dual Lebesgue exponent, we have∥∥Tf(t, ·)
∥∥
Lpx(Rn)

≤ C · |t|−n·(
1
2−

1
p ) ·
∥∥f∥∥

Lp′ (Rn).

Given that there is some temporal decay in the preceding estimate for p ∈ (2,∞], it is natural to integrate
this bound over time in a suitably weighted fashion. This is essentially the intuition behind the following
important

Theorem 1.4. Let q ≥ 2,∞ ≥ p > 2 and furthermore assume the sharp Strichartz admissibility condition

(1.1)
2

p
+
n

q
=
n

2
.

Then we have the bound

(1.2)
∥∥Tf∥∥

LptL
q
x(R1+n)

≤ Cn,p,q ·
∥∥f∥∥

L2
x(Rn)

.

Remark 1.5. The condition (1.1) is in fact dictated by simple scaling considerations, replacing

Tf(t, x) =: u(t, x)

by

uλ(t, x) := u(λ2t, λx), λ > 0

and f(x) by fλ(x) := f(λx). Then we still have

(i∂t +4)uλ = 0, uλ(0, ·) = fλ(·),
and the left and right hand sides of (1.2) scale the same way precisely when (1.1) is satisfied.

The proof of Theorem 1.4 relies on a reformulation, taking advantage of the dual operator T ∗ which is
defined as follows: for any g ∈ S(R1+n) and f ∈ S(Rn) we require

〈Tf, g〉L2(R1+n) = 〈f, T ∗g〉L2(Rn),

which implies that

T ∗g(x) = (2π)−n
∫
R1+n

eit|ξ|
2+ix·ξ · ĝ(t, ξ) dξdt,

In the sequel we shall assume 2 ≤ p < ∞, q > 2, since the case p = ∞, q = 2 is already known to us. Then
we have

Lemma 1.6. The operator T extends to a bounded operator between L2
x(Rn) and LptL

q
x(Rn) iff T ∗ extends to

a bounded operator between Lp
′

t L
q′

x (R1+n) and L2
x(Rn). Moreover, this is the case iff the composition T ◦ T ∗

extends as a bounded operator between Lp
′

t L
q′

x (R1+n) and LptL
q
x(R1+n).
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Proof. Note that for f, g ∈ S(R1+n), we have

〈f, T ◦ T ∗g〉L2(R1+n) = 〈T ∗f, T ∗g〉L2(Rn)

and so ∥∥T ◦ T ∗g∥∥
LptL

q
x

= sup
‖f‖

L
p′
t L

q′
x

=1

〈f, T ◦ T ∗g〉L2(R1+n) ≤ sup
‖f‖

L
p′
t L

q′
x

=1

∥∥T ∗f∥∥
L2
x(Rn)

·
∥∥T ∗g∥∥

L2
x(Rn)

.

which implies the boundedness of T ◦ T ∗ as operator between Lp
′

t L
q′

x (R1+n) and LptL
q
x(R1+n) provided that

of T ∗ is known.
Conversely, if we assume T ◦ T ∗ is bounded, we have∥∥T ∗f∥∥2

L2
x(Rn)

=
∣∣〈f, T ◦ T ∗f〉L2(R1+n)

∣∣ ≤ ∥∥f∥∥
Lp
′
t L

q′
x
·
∥∥T ◦ T ∗f∥∥

LptL
q
x

which implies the boundedness of T ∗.
Observe that the preceding argument furnishes the norm equality∥∥T∗∥∥2 =

∥∥T ◦ T ∗∥∥.
The first part of the lemma is standard. �

Thanks to the preceding lemma, the proof of the Theorem will follow once we can prove an a priori bound
for the operator

(1.3) T ◦ T ∗g(t, ·) = (2π)−n
∫
R1+n

ei(s−t)|ξ|
2+ix·ξ · ĝ(s, ξ) dξds.

when acting between the spaces Lp
′

t L
q′

x (R1+n) and LptL
q
x(R1+n) with p, q satisfying the conditions of the

theorem.
This shall be a direct consequence of Proposition 1.3 in conjunction with the following version of the Sobolev
inequality in disguise, which is called Hardy-Littlewood-Sobolev inequality:

Proposition 1.7. Let 0 < α < 1 and define for f ∈ S(R)

Uf(t) =

∫
R
|t− s|−αf(s) ds

Then we have ∥∥Uf∥∥
Lpt (R)

≤ Cα,p ·
∥∥f∥∥

Lqs(R)

provided we have q > 1 and
1

q
− 1

p
= 1− α.

We provide a quick proof for the case 1 < q ≤ 2, ∞ > p ≥ 2, which will be the one relevant to us, based
on the fundamental theorem of Littlewood-Paley theory. First we observe

Lemma 1.8. Setting for 0 < α < 1(
|̂t|−α

)
(ξ) = lim

M→+∞

∫
R
χ|t|≤M ·

e−itξ

|t|α
dt,

we have (
|̂t|−α

)
(ξ) = cα · |ξ|−1+α.

for a suitable constant cα ∈ R.

Proof. We have for ξ 6= 0

|̂t|−α(ξ) = lim
M→+∞

∫
R
χ|t|≤M ·

e−itξ

|t|α
dt

= |ξ|−1+α · lim
M→+∞

∫
R
χ|y|≤|ξ|M ·

e−iy

|y|α
dy

= cα · |ξ|−1+α
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where we set

cα :=

∫
R

e−iy

|y|α
dy

�

Proof. (Prop. 1.7, q ≤ 2, ∞ > p ≥ 2) To begin with, recall from Cor. 3.3 from lecture3.pdf that∥∥∥Uf∥∥∥
Lp(R)

≤ C ·
(∑

‖Pl(Uf)‖2Lp(R)
) 1

2 .

According to the preceding lemma, we have

P̂l(Uf) = cα
ψl(ξ)

|ξ|1−α
· f̂(ξ),

where ψl is as in the definition of the multiplier Pl in lecture3.pdf. Then we state

Lemma 1.9. If q, p satisfy 1
q −

1
p = 1− α, α ∈ (0, 1), as well as q ≥ 1, then we have for any l ∈ Z∥∥∥F−1( ψl(ξ)|ξ|1−α

· f̂(ξ)
)∥∥∥
Lp(R)

≤ C ·
∥∥Plf∥∥Lq(R),

where C = C(α, p), and where F−1 is the inverse Fourier transform.

Proof. The starting point is Young’s inequality, which we state as follows: letting

f ∗ g(x) =

∫
Rn
f(x− y) · g(y) dy,

then we have ∥∥f ∗ g∥∥
Lr(Rn) ≤

∥∥f∥∥
Lp(Rn) ·

∥∥g∥∥
Lq(Rn)

provided 1 + 1
r = 1

p + 1
q . The proofs follows from the cases r = ∞ and r = p (Minkowski’s inequality) by

means of interpolation (Riesz-Thorin). Returning to the proof of the lemma, observe that

F−1
( ψl(ξ)
|ξ|1−α

)
(y) = 2αl · ζl,α(y),

where we have the bound ∣∣ζl,α(y)
∣∣ ≤ CN,α,n · (1 + 2ly)−N

for any N > 0. Hence ∥∥2αl · ζl,α
∥∥
Lα−1 (Rn) ≤ Dα,n,

and the lemma follows from Young’s inequality. �

Continuing with the proof of the proposition, we now infer

(1.4)
∥∥∥Uf∥∥∥

Lp(R)
≤ C ·

(∑
‖Plf‖2Lq(R)

) 1
2

To conclude we need one more

Lemma 1.10. Assume that 1 < q ≤ 2. Then there is a universal constant Cq,n such that for each g ∈ S(Rn)
we have (∑

l∈Z

∥∥Plg∥∥2Lq(Rn)) 1
2 ≤ Cq,n ·

∥∥g∥∥
Lq(Rn).
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Proof. This assertion is ’dual’ to the one of Cor. 3.3 in lecture3.pdf. Assume as we may that g is real valued.
Observe that (with 1

p + 1
q = 1)(∑
l∈Z

∥∥Plg∥∥2Lq(Rn)) 1
2 = sup∑

l ‖fl‖2Lp(Rn)
≤1

∑
l∈Z

∫
Rn
fl · Plg dx

= sup∑
l ‖fl‖2Lp(Rn)

≤1

∫
Rn

∑
l∈Z

Plfl · g dx

≤ sup∑
l ‖fl‖2Lp(Rn)

≤1

∥∥∑
l∈Z

Plfl
∥∥
Lp(Rn) ·

∥∥g∥∥
Lq(Rn),

where we have used Holder’s inequality in the last step. Setting f :=
∑
l∈Z Plfl, we have∥∥f∥∥

Lp(Rn) ≤ C ·
(∑

l

∥∥Plf∥∥2Lp(Rn)) 1
2

≤ C̃ ·
(∑

l

∥∥fl∥∥2Lp(Rn)) 1
2 ,

where for the first inequality we have taken advantage of Cor. 3. 3. in lecture3.p df and the fact that p ≥ 2.
The lemma follows.

�

The proof of the proposition (for q ≤ 2, p ≥ 2) now follows from (1.4) and the preceding lemma. �

We have all the tools to now complete the proof of Theorem 1.4:

Proof. (Theorem 1.4) Consider the composition

T ◦ T ∗(g)

given in (1.3). From Prop. 1.3 we know that∥∥T ◦ T ∗(g)(t, ·)
∥∥
Lqx(Rn)

≤ C ·
∫
R
|t− s|−α ·

∥∥g(s·)
∥∥
Lq
′
x (Rn) ds,

provided we set

α = n · (1

2
− 1

q
).

According to the admissibility conditions in the theorem, we have

0 < α =
2

p
< 1,

and so we can apply Prop. 1.7. Observing that

1

p′
− 1

p
= 1− 2

p
= 1− α,

we find ∥∥∥T ◦ T ∗(g)
∥∥∥
LptL

q
x(R1+n)

≤ Cp,q,n ·
∥∥g∥∥

Lp
′
t L

q′
x (R1+n) .

The theorem is then a consequence of Lemma 1.6. �

Remark 1.11. The inequality is also true for p = 2, q = 2n
n−2 , n ≥ 3. This so-called endpoint case is due to

Keel-Tao.

We also mention the following result, based on a technical lemma called the ’Christ-Kiselev lemma’, and
which allows one to infer boundedness of the Duhamel propagator:
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Theorem 1.12. Assume that (p, q) and (p̃, q̃) are Strichartz admissible in the sense of the preceding theorem.
Then we have the bound ∥∥∥∫ t

0

S(t− s)F (s, ·) ds
∥∥∥
LptL

q
x(R1+n)

≤ C ·
∥∥F∥∥

Lp̃
′
t L

q̃′
x (R1+n)

2. The wave case

Here the situation is a bit more complicated as we cannot reduce the derivation of the required general
dispersive amplitude decay bound to the one dimensional case as was the case for the Schrodinger equation.
Instead, we shall have to derive the necessary bound from first principles, and more specifically from basic
harmonic analysis techniques. From now on we shall assume n ≥ 2 throughout since else there is no dispersive
decay. Recall that the solution of the linear wave equation

2u = (−∂tt +4Rn)u = 0, u[0] = (f, g)

is given by means of the Fourier formula

u(t, x) = (2π)−n ·
∫
Rn
ei(t|ξ|+x·ξ) · 1

2
[f̂(ξ) +

1

i|ξ|
ĝ(ξ)] dξ

+ (2π)−n ·
∫
Rn
ei(−t|ξ|+x·ξ) · 1

2
[f̂(ξ)− 1

i|ξ|
ĝ(ξ)] dξ

(2.1)

We shall for now consider the frequency localized waves

u0(t, x) = (2π)−n ·
∫
Rn
ψ(ξ)ei(t|ξ|+x·ξ) · 1

2
[f̂(ξ) +

1

i|ξ|
ĝ(ξ)] dξ

+ (2π)−n ·
∫
Rn
ψ(ξ)ei(−t|ξ|+x·ξ) · 1

2
[f̂(ξ)− 1

i|ξ|
ĝ(ξ)] dξ

where ψ ∈ C∞0 (Rn) is as in the definition of the Littlewood-Paley cutoffs and hence supported at |ξ| ∼ 1. The
desired dispersive decay for this special case will follow from

Proposition 2.1. We have the estimate∥∥∥∫
Rn
ψ(ξ)ei(t|ξ|+x·ξ) · f̂(ξ) dξ

∥∥∥
L∞x (Rn)

. (1 + |t|)−
n−1
2 ·

∥∥f∥∥
L1(Rn).

The proof of this result shall be based on a stationary phase argument, and more specifically Van der
Corput’s lemma. To begin with, shall shall require the following basic fact due to M. Morse:

Lemma 2.2. Let f ∈ C∞(Rn) and assume that x∗ ∈ Rn is a critical point, i. e. ∇f(x∗) = 0. Moreover,
assume that this critical point is non-degenerate, in the sense that the Hessian( ∂2

∂xi∂xj
f(x∗)

)
1,≤i,j≤n

is invertible. Then there exist neighborhoods U of x∗ and V of 0 as well as a diffeomorphism

ψ : V → U

with ψ(0) = x∗ and such that (with c = f(x∗))

f ◦ ψ(y) = c+

n∑
j=1

κjy
2
j ,

where κj = ±1.

We accept this fundamental result without proof. A next ingredient is the following equally important
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Lemma 2.3. Let ψ ∈ C∞0 (Rn) and consider the integral

F (λ) :=

∫
Rn
ψ(x) · eiλ

∑n
j=1 κjx

2
j dx, κj ∈ {±1}.

Then we have the bound ∣∣F (λ)
∣∣ ≤ C · λ−n2

for λ� 1 and some constant C depending on n, ψ.

Proof. Let χ(x) ∈ C∞0 a smooth non-negative function which equals 1 for |x| ≤ 1, and write

F (λ) = F1(λ) + F2(λ)

where

F1(λ) :=

∫
Rn
χ
(
|x| ·
√
λ
)
ψ(x) · eiλ

∑n
j=1 κjx

2
j dx.

Then we easily verify that

F1(λ) ≤ C1 ·
∫
|x|<
√
λ
−1

dx ≤ C2 · λ−
n
2 .

For F2, we perform integration by parts, using that

eiλ
∑n
j=1 κjx

2
j =

( 1

(2iλ|x|2)

∑
l

xlκl∂xl
)a
eiλ

∑n
j=1 κjx

2
j

where we set a = bn2 c+ 2. It follows that

F2(λ) = λ−a
∫
Rn
eiλ

∑n
j=1 κjx

2
j ·
(
−
∑
l

∂xlκlxl
1

(2i|x|2)

)a[(
1− χ

(
|x| ·
√
λ
))
ψ(x)

]
dx.

It is directly verified(exercise!) that ∣∣F2(λ)
∣∣ ≤ C3 · λ−

n
2 .

�

Combining the two preceding lemmas, we can infer the following

Lemma 2.4. Let φ ∈ C∞(Rn), real valued, and assume x∗ ∈ Rn is a non-degenerate critical point. Let
ψ ∈ C∞0 (Rn) and assume that x∗ is the only critical point of φ on supp(ψ). Then we have the bound∣∣ ∫

Rn
ψ(x) · eiλφ(x) dx

∣∣ ≤ Cλ−n2
provided λ� 1.

Proof. Pick neighbourhoods U of x∗ and V of 0 ∈ Rn such that the conclusion of Lemma 2.2 applies. Let
ψ1 ∈ C∞0 (Rn) have support in U and write∫

Rn
ψ(x) · eiλφ(x) dx =

∫
Rn
ψ1(x)ψ(x) · eiλφ(x) dx

+

∫
Rn

(1− ψ1(x))ψ(x) · eiλφ(x) dx.

Then changing variables for the first integral and interpreting x = x(y) as a function of y ∈ V , we have∫
Rn
ψ1(x)ψ(x) · eiλφ(x) dx = eicλ

∫
V

ζ(y) · eiλ
∑n
j=1 κjy

2
j dy,

where we have denoted

ζ(y) := ψ1(x(y))ψ(x(y)) · ∂x
∂y
.



8 STRICHARTZ ESTIMATES

Here ∂x
∂y is the Jacobian, and so ζ ∈ C∞0 (V ) ⊂ C∞0 (Rn). We can then apply Lemma 2.3 to infer the desired

bound for the first integral on the right above. We conclude by observing the bound∣∣ ∫
Rn

(1− ψ1(x))ψ(x) · eiλφ(x) dx
∣∣ ≤ CNλ−N

for arbitrary N ≥ 1, which follows by repeated integration by parts (exercise!). �

A consequence of the preceding development is the following key

Proposition 2.5. Let dσω the surface measure on the sphere Sn−1 ⊂ Rn. Then we have∣∣ ∫
Sn−1

eiω·ξdσω
∣∣ ≤ C · (1 + |ξ|)−

n−1
2 .

Proof. Write

ω = (ω′, ωn), ω′ ∈ Rn−1,
where |ω′|2 + ω2

n = 1, also write

ω · ξ = ω′ · ξ′ + ωn · ξn.
Working in a local coordinate chart (apply partition of unity), we may assume ωn ≥ 1√

n
, and we reduce to

bounding ∫
Rn−1

ψ(ω′) · ei(ω
′·ξ′+ωn·ξn) dω′

for a suitable function1 ψ ∈ C∞0 (B1(0)). Compared to the previous lemma, the role of λ is played here by |ξ|.
Note that if

|ξn| <
|ξ|

10
√
n
,

then

ξ′ − ω′

ωn
· ξn 6= 0,

and integration by parts leads to decay to any power in |ξ|−1, better than what we need. On the other hand,

if |ξn| ≥ |ξ|
10
√
n

, setting

φ(ω′) := ω′ · ξ
′

|ξ|
+ ωn ·

ξn
|ξ|
,

we have

∇ω′φ = |ξ|−1(ξ′ − ω′

ωn
ξn),

and so there is at most one critical point on the support of the integrand characterized by

ω′∗
ω∗,n

:=
ξ′

ξn
.

Furthermore, one easily checks that the Hessian

∇2
ω′φ(ω′∗)

is non-degenerate(exercise!). The proposition is now a consequence of Lemma 2.4. �

Finally we can give the

Proof. (Prop. 2.1) It suffices to show that∣∣∣ ∫
Rn
ψ(ξ)ei(t|ξ|+x·ξ) dξ

∣∣∣ ≤ C · (1 + |t|)−
n−1
2 .

For this one distinguishes between two regions:

1Here B1(0) is the ball of radius 1 supported at the origin
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(1): |x| ≥ |t|2 . Using spherical coordinates write∫
Rn
ψ(ξ)ei(t|ξ|+x·ξ) dξ =

∫
R

∫
Sn−1

ψ(|ξ|, ω)ei(t|ξ|+|ξ|x·ω) |ξ|n−1dωd|ξ|

and use the preceding proposition to conclude that∣∣∣ ∫
Sn−1

ψ(|ξ|, ω)ei(t|ξ|+|ξ|x·ω) dω
∣∣∣ ≤ C(1 + |x|)−

n−1
2 ≤ D(1 + |t|)−

n−1
2 .

(2): |x| < |t|
2 . Here one uses integration by parts(exercise!) with respect to |ξ| to conclude the stronger bound

(for any N ≥ 1) ∣∣∣ ∫
Rn
ψ(ξ)ei(t|ξ|+x·ξ) dξ

∣∣∣ ≤ CN · (1 + |t|)−N .

�

We now have all the preparations to implement the TT ∗-argument for the frequency localized wave propa-
gator. Proceeding in identical fashion as for the Schrodinger case, we infer the following

Theorem 2.6. Let n ≥ 2 and ∞ ≥ q ≥ 2, ∞ ≥ p > 2, and assume the sharp wave admissibility condition

2

p
+
n− 1

q
=
n− 1

2
.

Then denoting

T±f :=

∫
Rn
ψ(ξ)ei(±t|ξ|+x·ξ) · f̂(ξ) dξ,

we have the bound ∥∥∥T±f∥∥∥
LptL

q
x

≤ Cp,q,n ·
∥∥f∥∥

L2(Rn).

Remark 2.7. The result is also true in the endpoint case p = 2 expect when n = 3 (Keel-Tao). Furthermore,
the Christ-Kiselev lemma gives a variant for the inhomogeneous Duhamel propagator corresponding to T .

The preceding result only applying to frequency ∼ 1 functions, we still need to generalize things to the
general setting, which is straightforward with our preparations. To begin with, observe that if u(t, x) is a free
wave supported at frequency ξ ∼ λ ∈ 2Z, then

uλ(t, x) := u(
t

λ
,
x

λ
)

is a free wave supported at frequency ∼ 1. Thus we have the estimate (with fλ(x) = f(xλ ) the data in the
sense of T±) ∥∥∥uλ∥∥∥

LptL
q
x

≤ C ·
∥∥fλ∥∥L2(Rn).

But simple scaling reasons yield∥∥∥uλ∥∥∥
LptL

q
x

= λ
1
p+

n
q ·
∥∥∥u∥∥∥

LptL
q
x

,
∥∥fλ∥∥L2(Rn) = λ

n
2 ·
∥∥f∥∥

L2(Rn).

We conclude that for a frequency λ free wave, we have the bound∥∥∥u∥∥∥
LptL

q
x

≤ C · λ
n
2−

1
p−

n
q ·
∥∥f∥∥

L2(Rn) ∼
∥∥f∥∥

Ḣs(Rn)

where we set s = n
2 −

1
p −

n
q .

For a general free wave, which is not supported at any particular dyadic frequency, introduce the space∥∥u∥∥
Lpt Ḃ

q,2(Rn) :=
∥∥∥(∑

k∈Z

∥∥Pku∥∥2Lqx(Rn)) 1
2

∥∥∥
Lpt

Then we can state
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Corollary 2.8. Let (p, q, n) be sharp wave Strichartz admissible. Then we have the estimate∥∥u∥∥
Lpt Ḃ

q,2(Rn) ≤ Cp,q,n ·
∥∥f∥∥

Ḣs
, s =

n

2
− 1

p
− n

q
.

Proof. According to Minkowski’s inequality (using p > 2) and the preceding theorem we have∥∥∥(∑
k∈Z

∥∥Pku∥∥2Lqx(Rn)) 1
2

∥∥∥
Lpt

≤
(∑
k∈Z

∥∥Pku∥∥2LptLqx(R1+n)

) 1
2

≤ C ·
(∑
k∈Z

∥∥Pkf∥∥2Ḣs(Rn)) 1
2

≤ D ·
∥∥f∥∥

Ḣs(Rn).

�

We note that the norm ‖ · ‖Ḃq,2(Rn) is a Besov-type norm. However, we note that for 2 ≤ q <∞, thanks to

the fundamental theorem of Littlewood-Paley theory we have the following inequality∥∥g∥∥
Lq(Rn) ≤ C ·

∥∥g∥∥
Ḃq,2(Rn),

and so a further consequence of the preceding corollary is the more standard type estimate∥∥∥u∥∥∥
LptL

q
x(R1+n)

≤ C ·
∥∥f∥∥

Ḣs(Rn)

for sharp Strichartz admissible (p, q, n) and with q <∞.

Finally, we make one more comment, namely that the sharp Srichartz admissibility condition may be
relaxed to the more general admissibility condition:

Corollary 2.9. Assume that 2 < p ≤ ∞, 2 ≤ q ≤ ∞ and the condition

2

p
+
n− 1

q
≤ n− 1

2
.

Then the same conclusion as in the preceding corollary holds.

Proof. Given admissible (p, q) with
2

p
+
n− 1

q
<
n− 1

2
,

pick q̃ ∈ [2,∞) such that (p, q̃) is sharp Strichartz wave admissible. Then use the fact that∥∥u∥∥
LptL

q
x
≤ Cλn·(

1
q̃−

1
q ) ·
∥∥u∥∥

LptL
q̃
x

for a free wave supported at frequency λ (remaining details left as exercise).
�


