

TOWARDS GLOBAL WELL-POSEDNESS OF NONLINEAR DISPERSIVE PDE; IMPROVED LOCAL WELL-POSEDNESS IN $H^s(\mathbb{R}^n)$

1. CONSERVED ENERGY AND GLOBAL WELL-POSEDNESS

In the last lecture we established a local well-posedness result for the class of nonlinear Schrodinger equations

$$(1.1) \quad i\psi_t + \Delta\psi = \pm|\psi|^{p-1}\psi, \quad \psi(0, \cdot) = f$$

on \mathbb{R}^{1+n} and data $f \in H^s(\mathbb{R}^n)$, where we assumed (and shall do so below) that p is an odd integer > 1 . We had to impose $s > \frac{n}{2}$, and the proof only furnishes the existence of solutions on a time interval I centered around $t = 0$ and whose length depends on $\|f\|_{H^s(\mathbb{R}^n)}$. The proof does not preclude the norm

$$\|\psi(t, \cdot)\|_{H^s(\mathbb{R}^n)}$$

from growing, and so this argument does not furnish a way to prove the existence of a *global-in-time solution*. However, it turns out that if we take advantage of *energy conservation*, then at least in the case $n = 1$ and the *+-case*, which is also called the *defocussing case*, we can in fact infer the existence of global solutions for $s \geq 1$. To begin with, we state

Lemma 1.1. *Let $s \geq 1$ and also $s > \frac{n}{2}$. Then if*

$$\psi \in C^0(I; H^s(\mathbb{R}^n))$$

solves (1.1) in the Duhamel sense, then the quantity

$$E := \int_{\mathbb{R}^n} \left(\frac{1}{2} |\nabla_x \psi|^2 \pm \frac{1}{p+1} |\psi|^{p+1} \right) dx$$

is defined for each $t \in I$ and in fact time independent.

Remark 1.2. Observe that this quantity is non-negative if we are in the defocussing situation corresponding to the $+$ -sign on the right hand side. It is in this situation where we can benefit most from energy conservation.

Proof. To begin with, note that since $\nabla_x \psi \in H^{s-1}(\mathbb{R}^n) \subset L^2(\mathbb{R}^n)$, the integral

$$\int_{\mathbb{R}^n} \frac{1}{2} |\nabla_x \psi|^2 dx$$

converges. Since $s > \frac{n}{2}$, Sobolev's embedding implies that

$$\|\psi\|_{L^\infty(\mathbb{R}^n)} \lesssim \|\psi\|_{H^s(\mathbb{R}^n)},$$

and so

$$\begin{aligned} \int_{\mathbb{R}^n} |\psi|^{p+1} dx &\leq \|\psi\|_{L^2(\mathbb{R}^n)}^2 \cdot \|\psi\|_{L^\infty(\mathbb{R}^n)}^{p-1} \\ &\lesssim \|\psi\|_{L^2(\mathbb{R}^n)}^2 \cdot \|\psi\|_{H^s(\mathbb{R}^n)}^{p-1}. \end{aligned}$$

Thus we the integral defining E converges at each time $t \in I$. We now show that E is indeed time independent. By approximating the data f in (1.1) by functions $f_k \in \mathcal{S}(\mathbb{R}^n)$ and with $\lim_k f_k = f$ in the $H^s(\mathbb{R}^n)$ -norm, we reduce to the situation of

$$\psi \in C^\infty(I; H^\infty(\mathbb{R}^n))$$

We can henceforth differentiate with respect to t under the integral sign. To begin with, observe that

$$\partial_t \left(\frac{1}{2} |\nabla_x \psi|^2 \right) = \operatorname{Re} (\nabla_x \psi_t \cdot \overline{\nabla_x \psi})$$

$$\begin{aligned}\partial_t \left(\frac{1}{p+1} |\psi|^{p+1} \right) &= \partial_t \left(\frac{1}{p+1} (\psi \bar{\psi})^{\frac{p+1}{2}} \right) \\ &= \frac{1}{2} \cdot (\psi_t \bar{\psi} + \psi \bar{\psi}_t) \cdot (\psi \bar{\psi})^{\frac{p+1}{2}-1} \\ &= \operatorname{Re}(\psi_t \bar{\psi}) \cdot |\psi|^{p-1}\end{aligned}$$

We conclude that

$$\begin{aligned}\frac{dE}{dt} &= \operatorname{Re} \int_{\mathbb{R}^n} (\nabla_x \psi_t \cdot \nabla_x \bar{\psi} \pm (\psi_t \bar{\psi}) \cdot |\psi|^{p-1}) dx \\ &= \operatorname{Re} \int_{\mathbb{R}^n} (-\psi_t \cdot \bar{\Delta \psi} \pm (\psi_t \bar{\psi}) \cdot |\psi|^{p-1}) dx \\ &= \operatorname{Re} \int_{\mathbb{R}^n} \psi_t \cdot \overline{(-\Delta \psi \pm \psi \cdot |\psi|^{p-1})} dx \\ &= \operatorname{Re} \int_{\mathbb{R}^n} \psi_t \cdot \overline{i\psi_t} dx \\ &= 0.\end{aligned}$$

□

In a similar vein, we also have *mass conservation*:

Lemma 1.3. *For ψ as in the preceding lemma, we have that*

$$m := \int_{\mathbb{R}^n} |\psi(t, \cdot)|^2 dx$$

is a conserved quantity.

Proof. As in the preceding proof we may reduce to smooth ψ . Then we compute

$$\begin{aligned}\frac{d}{dt} m &= 2 \int_{\mathbb{R}^n} \operatorname{Re}(\psi_t \bar{\psi}) dx \\ &= 2 \int_{\mathbb{R}^n} \operatorname{Im}(i\psi_t \bar{\psi}) dx \\ &= 2 \int_{\mathbb{R}^n} \operatorname{Im}([\pm |\psi|^{p-1} \psi - \Delta \psi] \cdot \bar{\psi}) dx \\ &= 0.\end{aligned}$$

□

Using the preceding lemmas, we now show the following theorem in the case $n = 1$ and the defocussing situation:

Theorem 1.4. *Assume $n = 1$, $s \geq 1$, and $p \geq 1$. Then (1.1) with the + sign on the right hand side admits a unique global solution*

$$\psi \in C^0(\mathbb{R}; H^s(\mathbb{R}^n))$$

which depends continuously on the initial data f , in the sense that for any finite interval $I \subset \mathbb{R}$, the solution depends continuously on the data in the sense of

$$C^0(I; H^s(\mathbb{R}^n)).$$

Thus the problem is globally well-posed for these data.

Proof. By Theorem 2.1 there exists an open interval I centered at $t = 0$ and a unique solution in $C^0(I; H^s(\mathbb{R}^n))$, whose length only depends on

$$\|f\|_{H^1(\mathbb{R})}.$$

TOWARDS GLOBAL WELL-POSEDNESS OF NONLINEAR DISPERSIVE PDE; IMPROVED LOCAL WELL-POSEDNESS IN $H^s(\mathbb{R}^n)$
 Pick any $t_1 \in I$ with $\text{dist}(t_1, I^c) < \frac{|I|}{4}$. By the preceding lemmas we know that (check the first inequality carefully)

$$\begin{aligned}\|\psi(t_1, \cdot)\|_{\dot{H}^1(\mathbb{R})} &\leq C(1 + \|f\|_{H^1(\mathbb{R})})^p, \\ \|\psi(t_1, \cdot)\|_{L_x^2} &= \|f\|_{L_x^2},\end{aligned}$$

whence

$$\|\psi(t_1, \cdot)\|_{H^1(\mathbb{R})} \leq D(1 + \|f\|_{H^1(\mathbb{R})})^p$$

where D is a constant only depending on p .

Reiterating application of Theorem 2.1 allows us to extend the solution to the shifted interval $I_1 := t_1 + I$, and so we now have a solution on

$$I \cup I_1.$$

This argument can be continued to construct a solution globally in time. We leave verification of continuous dependence on the data as an exercise. \square

Remark 1.5. We observe that this argument does not say anything about the behavior of the solution when $t \rightarrow \pm\infty$, for example whether the solution scatters or not (meaning it approaches a solution of the free Schrödinger equation).

2. SCALING AND REGULARITY

The preceding argument gives no information for the case $n \geq 2$, since Theorem 2.1 from last lecture requires $s > \frac{n}{2} \geq 1$ Sobolev regularity of the data f , and we do not have a priori control over

$$\|\psi(t, \cdot)\|_{H^s(\mathbb{R}^n)}$$

for $s > 1$, at least as far as the analogue of the simple lemma from the preceding section is concerned. It is then natural to ask whether we can *sharpen Theorem 2.1*, i. e. obtain local well-posedness for less regular data, and ideally of regularity $s \leq 1$, since then we could reiterate the preceding argument.

To understand this better, it pays to recall the sharp Sobolev embedding,

$$\|f\|_{L^p(\mathbb{R}^n)} \leq C \cdot \|f\|_{\dot{H}^s(\mathbb{R}^n)}, \quad s = \frac{p-2}{p} \cdot \frac{n}{2}, \quad \infty > p \geq 2.$$

To begin with, we note that the relation on the right between p and s is sharp, and cannot be replaced by another such relation. Indeed, this is easily seen by replacing f by its *re-scaled version*

$$f_\lambda(x) := f(\lambda x), \quad \lambda > 0.$$

Then

$$\begin{aligned}\|f_\lambda\|_{L^p(\mathbb{R}^n)} &= \lambda^{-\frac{n}{p}} \cdot \|f\|_{L^p(\mathbb{R}^n)}, \\ \|f_\lambda\|_{\dot{H}^s(\mathbb{R}^n)} &= \lambda^{s-\frac{n}{2}} \cdot \|f\|_{\dot{H}^s(\mathbb{R}^n)},\end{aligned}$$

and so the inequality above can only hold for all $\lambda > 0$, $f \in \mathcal{S}(\mathbb{R}^n)$, provided

$$\lambda^{-\frac{n}{p}} = \lambda^{s-\frac{n}{2}},$$

which gives the previous relation between s, p, n .

We also note that s grows with p ; this means *controlling lower Lebesgue norms $\|f\|_{L^p}$ requires less regularity*.

Now the strategy we used for proving Theorem 2.1 consisted in controlling the Duhamel integral

$$\int_0^t S(t-s)(|\psi|^{p-1}\psi)(s, \cdot) ds$$

$$\begin{aligned} \left\| \int_0^t S(t-s) (|\psi|^{p-1} \psi)(s, \cdot) ds \right\|_{H^s} &\leq |I| \cdot \||\psi|^{p-1} \psi\|_{L_t^\infty H^s(I \times \mathbb{R}^n)} \\ &\leq |I| \cdot \|\psi\|_{L^\infty(I \times \mathbb{R}^n)}^{p-1} \cdot \|\psi\|_{H^s(I \times \mathbb{R}^n)}, \end{aligned}$$

provided $t \in I$. We need a lot of regularity to control the term

$$\|\psi\|_{L^\infty(I \times \mathbb{R}^n)}^{p-1},$$

namely $s > \frac{n}{2}$. We know from the previous considerations that we could lower the regularity requirement if we replaced ∞ by some $q < \infty$ here, but it's not so clear how to deduce the required bound then.

A crucial insight, however, is that there is a slack in the previous inequality as regards the time integral. For example, we could try to bound

$$\||\psi|^{p-1} \psi\|_{L_t^1 H^s(I \times \mathbb{R}^n)}$$

instead of using

$$\||\psi|^{p-1} \psi\|_{L_t^\infty H^s(I \times \mathbb{R}^n)}.$$

This would mean that we would need a bound on

$$\|\psi\|_{L_t^{p-1} L_x^\infty},$$

and we may guess by using a similar scaling type argument that this ought to require less regularity of the initial data. The fact that a version of this reasoning can indeed be implemented has to do with the celebrated *Strichartz estimates* which we prove next.