
FUNCTIONS OF SOBOLEV REGULARITY; THE SPACES Hs(Rn)

1. Definition and basic properties of the spaces Hs(Rn)

So far we have restricted solutions to our linear dispersive models to highly regular function spaces, such
as S(Rn). It is however both very natural and important to consider a much larger class of solutions, namely
those in a particular class of Sobolev spaces, Hs. Here we define these function spaces and give some basic
properties:

Definition 1.1. We say a function f ∈ L2(Rn) belongs to the Sobolev space Hs(Rn), s ≥ 0, provided the
function

f̂(ξ) · (1 + |ξ|2)
s
2 ∈ L2(Rn).

If so, we introduce the norm ∥∥f∥∥
Hs(Rn)

:=
∥∥f̂(ξ) · (1 + |ξ|2)

s
2

∥∥
L2(Rn)

.

We also define the homogeneous Sobolev norm∥∥f∥∥
Ḣs(Rn)

:=
∥∥f̂(ξ) · |ξ|s

∥∥
L2(Rn)

.

Remark 1.2. We stress that s ≥ 0 can take any non-negative real number (one can also introduce the Sobolev
spaces for negative indices, but we will mostly avoid these in this course). In the special case that s = k ∈ N≥0,
we have an alternative definition of the space Hk, namely

Hk = {f ∈ L2(Rn) |Πn
j=1

∂αj

∂x
αj
j

f ∈ L2(Rn)∀α ∈ Nn with |α| ≤ k}

In the preceding definition we use the notation

α = (α1, α2, . . . , αn) ∈ N
as well as

|α| :=
n∑
j=1

|αj |,

so this norm differs from the usual Euclidean one for multi indices.

We mention the following basic proposition without proof:

Proposition 1.3. The sets Hs form vector spaces (over C). Furthermore, letting

〈f, g〉Hs :=

∫
Rn
f̂(ξ)ĝ(ξ) · (1 + |ξ|2)s dξ,

whence
∥∥f∥∥

Hs
=
√
〈f, f〉Hs , the space Hs becomes a Hilbert space. The space S(Rn) ⊂ Hs(Rn) is a dense

subspace.

We shall soon see that if s is sufficiently large, then Hs embeds into other function spaces, in particular
those of continuous or continuously differentiable functions. Assertions of this type are referred to as Sobolev
embedding type results. The simplest form this takes is the following:

Proposition 1.4. Let s > n
2 . Then if f ∈ S(Rn) we have the inequality∥∥f∥∥

L∞(Rn)
≤ Cs,n ·

∥∥f∥∥
Hs

In particular, by density of S(Rn) inside Hs(Rn), every function f ∈ Hs(Rn) has a representative in L∞(Rn)
satisfying ∥∥f∥∥

L∞(Rn)
≤ Cs,n ·

∥∥f∥∥
Hs
.

1
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Proof. Use the Fourier inversion theorem to write for f ∈ S(Rn)

f(x) = (2π)−n ·
∫
Rn
f̂(ξ) · eix·ξ dξ

= (2π)−n ·
∫
Rn

(1 + |ξ|2)−
s
2 · (1 + |ξ|2)

s
2 f̂(ξ) · eix·ξ dξ

Then use the Cauchy-Schwarz inequality to infer that∣∣∣(2π)−n ·
∫
Rn

(1 + |ξ|2)−
s
2 · (1 + |ξ|2)

s
2 f̂(ξ) · eix·ξ dξ

∣∣∣
≤ (2π)−n ·

∥∥(1 + |ξ|2)−
s
2

∥∥
L2(Rn)

·
∥∥(1 + |ξ|2)

s
2 f̂
∥∥
L2(Rn)

= Cn,s ·
∥∥(1 + |ξ|2)

s
2 f̂
∥∥
L2(Rn)

,

where we set
Cn,s := (2π)−n ·

∥∥(1 + |ξ|2)−
s
2

∥∥
L2(Rn)

<∞
since s > n

2 . �

We now intend to both generalize and sharpen the preceding proposition. A key technical method for this
consists in frequency localization.

2. Frequency localization and the basics of Littlewood-Paley theory

Let χ ∈ C∞0 (Rn) a non-negative function which is supported on the annulus 1
2 ≤ |x| ≤ 4 (where the norm

is the usual Euclidean one), and we furthermore have that

χ(x) = 1, 1 ≤ |x| ≤ 2.

Then observe that the function
η(x) :=

∑
l∈Z

χ(
x

2l
)

is in fact C∞(Rn\{0}), and we have the bounds

C1 ≥ η(x) ≥ 1, x ∈ Rn\{0},
for some constant C1 > 1, as well as ∣∣∇η(x)

∣∣ ≤ C2

|x|
, x ∈ Rn\{0},

for another constant C2. If we now introduce the cutoffs

ψl(x) :=
χ( x

2l
)

η(x)
,

then for each l ∈ Z we clearly have ψl(x) ∈ C∞0 (Rn) and ψl(x) 6= 0 only if |x| ∈ [ 2l

2 , 4 · 2
l]. Furthermore, we

have that ψl(x) is non-negative and bounded from above by a constant independent of l, and finally, we have∑
l

ψl(x) = 1∀x ∈ Rn\{0}.

We also observe the bounds ∣∣∇kxψl(x)
∣∣ ≤ Ck · |x|−k, x ∈ Rn,

where Ck is independent of l.

We can now introduce a Littlewood-Paley decomposition of a function f ∈ S(Rn) as follows:

Definition 2.1. Define the frequency localized pieces Plf(x), l ∈ Z, as follows:

Plf(x) := (2π)−n
∫
Rn
ψl(ξ) · eix·ξ f̂(ξ) dξ.
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We then observe the following basic

Lemma 2.2. We have the decomposition

f =
∑
l∈Z

Plf.

In fact, the sum converges absolutely and uniformly in x.

Proof. Observe that if f̂ ∈ C∞0 (Rn\{0}) then we have

f̂ =
∑
l∈Z

ψl(ξ)f̂

and in fact the sum on the right is only a finite sum. In particular, we can write

f =
∑
l∈Z

Plf,

since integration and summation in the Fourier inversion formula can be interchanged. For general f ∈ S(Rn),
set for ε > 0,

ĝε := χ̃ε<·<ε−1(ξ) · f̂(ξ)

where χ̃ε<·<ε−1 ∈ C∞0 (Rn\{0}) takes values in [0, 1] and equals 1 on the set {|ξ| ∈ [ε, ε−1]}. Then write∑
l

Plf =
∑
l

Plgε +
∑
l

Pl(f − gε)

= gε +
∑
l

Pl(f − gε),

and observe that

lim
ε→0
‖f − gε‖L∞(Rn) ≤ lim

ε→0
‖f̂ − ĝε‖L1(Rn) = 0,

and similarly

lim
ε→0

∥∥∑
l

Pl(f − gε)
∥∥
L∞(Rn)

≤ lim
ε→0

∑
l

‖ψl(f̂ − ĝε)‖L1(Rn)

≤ C lim
ε→0
‖f̂ − ĝε‖L1(Rn)

= 0.

�

Let us now use the localization operators Pl to sharpen and generalize the preceding proposition. To begin
with, note that due to the fact that

f̂g = f̂ ∗ ĝ,
we infer

P0f(x) = (ψ̌0 ∗ f)(x) =

∫
Rn
ψ̌0(x− y) · f(y) dy.

where the function ψ̌0 ∈ S(Rn). We can then immediately deduce that

(2.1)
∣∣P0f(x)

∣∣ ≤ ∥∥ψ̌0

∥∥
L2(Rn)

·
∥∥f∥∥

L2(Rn)
= C1 ·

∥∥f∥∥
L2(Rn)

, ∀x ∈ Rn

by applying the Cauchy-Schwarz inequality, and this can be interpreted as a frequency localized version of
Proposition 1.3.
By writing ∫

Rn
ψ̌0(x− y) · f(y) dy =

∫
Rn
ψ̌0(y) · f(x− y) dy

and applying Minkowski’s integral inequality instead, we also infer the estimate

(2.2)
∥∥P0f

∥∥
L2(Rn)

≤
∥∥ψ̌0

∥∥
L1(Rn)

·
∥∥f∥∥

L2(Rn)
= C2 ·

∥∥f∥∥
L2(Rn)

.
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Using a simple interpolation argument, we can also deduce bounds for the norms

‖P0f‖Lp(Rn), 2 < p <∞,

using

Lemma 2.3. For a function g ∈ L2(Rn) ∩ L∞(Rn), we have the bound1

∥∥g∥∥
Lp(Rn)

≤
∥∥g∥∥ p−2

p

L∞(Rn) ·
∥∥g∥∥ 2

p

L2(Rn), 2 ≤ p ≤ ∞.

Proof. Write ∥∥g∥∥p
Lp(Rn)

=

∫
Rn
|g|p dx =

∫
Rn
|g|2 · |g|p−2 dx ≤

∥∥g∥∥p−2

L∞(Rn)
·
∫
Rn
|g|2 dx

=
∥∥g∥∥p−2

L∞(Rn)
·
∥∥g∥∥2

L2(Rn)
,

from which the desired estimate follows by taking the p-th root of both sides.
�

Using the preceding estimates for ‖P0f‖L2(Rn), ‖P0f‖L∞(Rn), we can now infer

(2.3)
∥∥P0f

∥∥
Lp(Rn)

≤ C3

∥∥f∥∥
L2(Rn)

, p ∈ [2,∞],

for some universal constant C3.

We now replicate this reasoning for more general (logarithmic) frequency l ∈ Z. Thus write

Plf(x) = (ψ̌l ∗ f)(x) =

∫
Rn
ψ̌l(x− y) · f(y) dy.

The fact that η(x) = η(2ax) for any a ∈ Z implies that

ψl(x) =
(χ(·)
η(·)

)
(
x

2l
) = ψ0(

x

2l
).

This implies

ψ̌l(x) = 2nl · ψ̌0(2lx).

Then we verify directly that∥∥ψ̌l∥∥L1(Rn)
=
∥∥ψ̌0

∥∥
L1(Rn)

,
∥∥ψ̌l∥∥L2(Rn)

= 2
nl
2 ·
∥∥ψ̌0

∥∥
L2(Rn)

.

Using Lemma 2.3 as before, we then infer that

(2.4)
∥∥Plf∥∥Lp(Rn)

≤ C3 · 2
nl
2 ·

p−2
p ·

∥∥Plf∥∥L2(Rn)
, 2 ≤ p ≤ ∞.

We can reformulate this inequality in terms of Sobolev norms as follows:

Proposition 2.4. There is a universal constant Cn such that letting f ∈ S(Rn), l ∈ Z, we have for 2 ≤ p ≤ ∞∥∥Plf∥∥Lp(Rn)
≤ Cn ·

∥∥f∥∥
Ḣs
,

where

s =
n

2
· p− 2

p
.

1This lemma holds for any measure space, not just Rn
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Proof. This is a consequence of the fact that

2
nl
2 ·

p−2
p ·

∥∥Plf∥∥L2(Rn)
= 2

nl
2 ·

p−2
p ·

∥∥ψl(ξ) · f̂∥∥L2(Rn)

≤ C5

∥∥∣∣ξ|n2 · p−2
p ψl(ξ) · f̂

∥∥
L2(Rn)

≤ C
∥∥∣∣ξ∣∣n2 · p−2

p · f̂
∥∥
L2(Rn)

= C
∥∥f∥∥

Ḣs
,

where in the first equality we have used Plancherel’s theorem. �

3. The fundamental theorem of Littlewood-Paley theory and Sobolev embedding

We now would like to derive an analogue of Prop. 2.4 without the Fourier operator Pl localizing to frequency
ξ ∼ 2l. Using Lemma 2.2, we have for f ∈ S(Rn) the simple inequality∥∥f∥∥

Lp(Rn)
≤
∑
l∈Z

∥∥Plf∥∥Lp(Rn)
,

and for each l ∈ Z we can invoke Prop. 2.4. However, the sum∑
l∈Z

∥∥Plf∥∥Ḣs
is not majorized by

∥∥f∥∥
Ḣs

, for this we would have to replace the l1-sum by a square-sum. The fact that this
can be accomplished is non-trivial and related to the fundamental theorem of Littlewood-Paley theory. Here
we derive the latter assuming some background from Harmonic Analysis (Calderon-Zygmund operators, Mih-
lin theorem) which are covered in my course on Harmonic Analysis, and further the remarkable Khinchine’s
inequality.

To begin with, we introduce the Rademacher functions on Ω := [0, 1] ⊂ R, where the notation indicates that
we interpret the unit interval as a probability space, and the Rademacher functions as independent identically
distributed Random variables. Set

b1(ω) = +1, ω ∈ [0,
1

2
], b1(ω) = −1, ω ∈ (

1

2
, 1],

and more generally let

bl(ω) = b1(2l−1ω), ω ∈ [0, 1],

where 2l−1ω is interpreted mod 1. Then it it straightforward to verify that∫
Ω

bl(ω)bl′(ω) dω = δl,l′ ,

and the {bl} form indeed independent random variables on Ω. We can now state

Theorem 3.1. (Khintchine’s inequality) For 1 < p < ∞, there exist positive constants Ap, Bp such that for
any n-tuple of complex numbers {cl}nl=1, we have

Ap ·
(∑

l

|cl|2
) p

2 ≤
∫

Ω

∣∣∑
l

bl(ω)cl
∣∣p dω ≤ Bp · (∑

l

|cl|2
) p

2 .

Proof. By considering the real and imaginary parts of the cl separately, we can reduce to real valued cl. We
first prove the right hand inequality, and the left hand one will follow by duality. The main step consists in
leveraging the independence of the {bl} in order to derive a powerful bound on the measure of the set Aλ of
ω ∈ Ω for which ∣∣∑

l

bl(ω)cl
∣∣ ≥ λ > 0.
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The trick is to observe that for any positive real constant µ we have∫
Ω

e±µ
∑
l bl(ω)cl dω =

∏
l

∫
Ω

e±µbl(ω)cl dω =
∏
l

eµcl + e−µcl

2
.

Furthermore, we can bound

eµcl + e−µcl

2
≤ e

µ2c2l
2 .

We conclude that ∣∣Aλ∣∣ ≤ 2e−µλ ·
∫

Ω

eµ
∑
l bl(ω)cl dω ≤ 2e−µλ ·

∏
l

e
µ2c2l

2 .

Since this is true for any µ, we can choose µ = λ∑
l |cl|2

, which results in∣∣Aλ∣∣ ≤ 2e
− λ2

2
∑
l |cl|2 .

The upper bound in Khintchine’s inequality is now straightforward to obtain: use that∫
Ω

∣∣∑
l

bl(ω)cl
∣∣p dω =

∫ ∞
0

pλp−1
∣∣Aλ∣∣ dλ

≤ 2

∫ ∞
0

pλp−1 · e−
λ2

2
∑
l |cl|2 dλ

= Bp ·
(∑

l

|cl|2
) p

2 .

To derive the lower bound of Khintchine’s inequality, we use that∑
l

|cl|2 =

∫
Ω

∣∣∑
l

bl(ω)cl
∣∣2 dω

≤
( ∫

Ω

∣∣∑
l

bl(ω)cl
∣∣p dω) 1

p ·
( ∫

Ω

∣∣∑
l

bl(ω)cl
∣∣q dω) 1

q ,

where p, q ∈ (1,∞) are chosen to be Holder dual, i. e.

1

p
+

1

q
= 1,

and we have used Holder’s inequality in the last step. Using the upper bound already proven, we infer that∑
l

|cl|2 ≤ B
1
p
p ·
(∑

l

|cl|2
) 1

2 ·
( ∫

Ω

∣∣∑
l

bl(ω)cl
∣∣q dω) 1

q .

The lower bound follows (for p replaced by q) with

Aq = B
− qp
p .

�

The preceding theorem is the main ingredient in the proof of the following fundamental

Theorem 3.2. Let 1 < p <∞. Then there exist positive constants Dp, Ep such that the we have

Dp

∥∥f∥∥
Lp(Rn)

≤
∥∥(
∑
l

|Plf |2)
1
2

∥∥
Lp(Rn)

≤ Ep
∥∥f∥∥

Lp(Rn)
.

In words, the Lp-norm of f is comparable to the Lp-norm of the Littlewood-Paley square function

(
∑
l

|Plf |2)
1
2 .
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Corollary 3.3. Assume ∞ > p ≥ 2. Then we have the inequality∥∥f∥∥
Lp(Rn)

≤ Fp ·
(∑

l

∥∥Plf∥∥2

Lp(Rn)

) 1
2 .

Proof. (Cor.) From the first inequality of the preceding theorem, we infer that∥∥f∥∥
Lp(Rn)

≤ D−1
p

∥∥(
∑
l

|Plf |2)
1
2

∥∥
Lp(Rn)

= D−1
p

∥∥∑
l

|Plf |2
∥∥ 1

2

L
p
2 (Rn)

≤ D−1
p

(∑
l

∥∥Plf∥∥2

Lp(Rn)

) 1
2 ,

where we have taken advantage of Minkowski’s inequality for the last step. �

The proof of Theorem 3.2 uses Mihlin’s theorem as a key ingredient, and we shall use this as a black box:

Theorem 3.4. Let m(·) ∈ C∞(Rn\{0}) satisfying the bounds∣∣∇kξm(ξ)
∣∣ ≤ Ck · |ξ|−k, k ≥ 0.

Then defining Tf by means of the Fourier transform

T̂ f(ξ) := m(ξ) · f̂(ξ)

for f ∈ S(Rn), we have that ∥∥Tf∥∥
Lp(Rn)

≤Mp ·
∥∥f∥∥

Lp(Rn)

for a suitable finite constant Mp, provided 1 < p <∞.

Proof. (Theorem 3.2 ) We first prove the upper bound. Letting {bl} be the Rademacher functions from before,
we have2 for 1 < p <∞

(3.1) Ap ·
(∑

l

∣∣Plf ∣∣2) p2 ≤ ∫
Ω

∣∣∑
l

Plf · bl(ω)
∣∣p dω ≤ Bp · (∑

l

∣∣Plf ∣∣2) p2 .
where the inequality holds uniformly in x ∈ Rn (i. e. we fix the argument x of Plf). But then using that Ω
is a probability space we have from Holder’s inequality that∫

Ω

∥∥∑
l

Plf · bl(ω)
∥∥
Lp(Rn)

dω ≤
( ∫

Ω

∥∥∑
l

Plf · bl(ω)
∥∥p
Lp(Rn)

dω
) 1
p

=
∥∥∥( ∫

Ω

∣∣∑
l

Plf · bl(ω)
∣∣p dω) 1

p

∥∥∥
Lp(Rn)

≤ B
1
p
p ·
∥∥(∑

l

∣∣Plf ∣∣2) 1
2
∥∥
Lp(Rn)

.

We need to recover the upper bound for ‖f‖Lp(Rn) from this. Now the trick is to write (recall Lemma 2.2)

(3.2) f =

∫
Ω

(∑
l

P̃lgω · bl(ω)
)
dω,

where we define

gω :=
∑
l′

Pl′f · bl′(ω),
̂̃
Plg =

ψl(ξ)∑
l ψ

2
l (ξ)

· ĝ(ξ).

2See the addendum at the end for a justification of the passage to infinite sums
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To check (3.2), use that ∫
Ω

(∑
l

P̃lgω · bl(ω)
)
dω =

∫
Ω

∑
l,l′

Pl′ P̃lf · bl(ω)bl′(ω) dω

=
∑
l

PlP̃lf = f.

Using Mihlin’s theorem and a direct verification, one checks that the operator
∑
l bl(ω)P̃l acts boundedly on

Lp(Rn) uniformly in ω ∈ Ω. It follows that∥∥f∥∥
Lp(Rn)

≤ Hp ·
∫

Ω

∥∥gω∥∥Lp(Rn)
dω ≤ Hp ·B

1
p
p ·
∥∥(∑

l

∣∣Plf ∣∣2) 1
2
∥∥
Lp(Rn)

,

giving the desired upper bound.

To get the lower bound, use (3.1) to deduce(∑
l

∣∣Plf ∣∣2) p2 ≤ A−1
p ·

∫
Ω

∣∣∑
l

Plfbl(ω)
∣∣p dω

pointwise. Applying
∫
Rn and again taking advantage of Theorem 3.4 we obtain∫

Rn

(∑
l

∣∣Plf ∣∣2) p2 dx ≤ A−1
p ·

∫
Rn

∫
Ω

∣∣∑
l

Plfbl(ω)
∣∣p dωdx

= A−1
p ·

∫
Ω

∫
Rn

∣∣∑
l

Plfbl(ω)
∣∣p dxdω

≤ Dp,n ·
∥∥f∥∥p

Lp(Rn)

�

As a consequence, we can now prove the desired generalization of Proposition 2.4 :

Proposition 3.5. Let 2 ≤ p <∞, and set

s :=
n

2
· p− 2

p
.

Then we have for f ∈ S(Rn) ∥∥f∥∥
Lp(Rn)

≤ Cp,n ·
∥∥f∥∥

Ḣs(Rn)
.

Proof. Due to Corollary 3.3 , we have∥∥f∥∥
Lp(Rn)

≤ Dp,n ·
(∑

l

∥∥Plf∥∥2

Lp(Rn)

) 1
2 .

Thanks to Prop. 2.4, we can bound the term on the left by(∑
l

∥∥Plf∥∥2

Lp(Rn)

) 1
2 ≤ Ep,n ·

(∑
l

∥∥Plf∥∥2

Ḣs(Rn)

) 1
2

≤ Cp,n ·
∥∥f∥∥

Ḣs(Rn)
,

as desired.
�
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4. Addendum: justification of (3.1)

We obtain this inequality as limiting version of the case with finitely many summands. Letting f ∈ S(Rn),
introduce for N1,2 ∈ N the frequency-truncated function

f[−N1,N2] :=

N2∑
l=−N1

Plf.

Then we indeed have

Ap ·
(∑

l

∣∣Plf[−N1,N2]

∣∣2) p2 ≤ ∫
Ω

∣∣∑
l

Plf[−N1,N2] · bl(ω)
∣∣p dω ≤ Bp · (∑

l

∣∣Plf[−N1,N2]

∣∣2) p2
by direct application of Khintchine’s inequality, since the sums are finite. By the earlier argument we then
infer that

Dp

∥∥f[−N1,N2]

∥∥
Lp(Rn)

≤
∥∥(
∑
l

|Plf[−N1,N2]|2)
1
2

∥∥
Lp(Rn)

≤ Ep
∥∥f[−N1,N2]

∥∥
Lp(Rn)

The idea then is to let N1,2 → +∞, and to use that

lim
N1→∞,N2→∞

∥∥f[−N1,N2]

∥∥
Lp(Rn)

=
∥∥f∥∥

Lp(Rn)
,

lim
N1→∞,N2→∞

∥∥(
∑
l

|Plf[−N1,N2]|2)
1
2

∥∥
Lp(Rn)

=
∥∥(
∑
l

|Plf |2)
1
2

∥∥
Lp(Rn)

for 1 < p <∞. We show the second limiting relation, leaving the first as an exercise. Observe that

(
∑
l

|Plf[−N1,N2]|2)
1
2 − (

∑
l

∣∣Plf ∣∣2)
1
2

=

∑
l∈[−N1,N2]c |Plf |2

(
∑
l |Plf[−N1,N2]|2)

1
2 + (

∑
l

∣∣Plf ∣∣2)
1
2

=
( ∑
l∈[−N1,N2]c

|Plf |2
) 1

2 ·
(∑

l∈[−N1,N2]c |Plf |2
) 1

2

(
∑
l |Plf[−N1,N2]|2)

1
2 + (

∑
l

∣∣Plf ∣∣2)
1
2

provided
∑
l

∣∣Plf ∣∣2 6= 0. Then note that since( ∑
l∈[−N1,N2]c

|Plf |2
) 1

2 ≤
∑

l∈[−N1,N2]c

|Plf |,

and furthermore

0 ≤
(∑

l∈[−N1,N2]c |Plf |2
) 1

2

(
∑
l |Plf[−N1,N2]|2)

1
2 + (

∑
l

∣∣Plf ∣∣2)
1
2

≤ 1

on the set of points where
∑
l

∣∣Plf ∣∣2 6= 0, it suffices to show that

lim
N1,2→+∞

∥∥ ∑
l∈[−N1,N2]c

|Plf |
∥∥
Lp(Rn)

= 0

provided 1 < p <∞. To see this, observe that (exercise!)∥∥Plf∥∥L∞ ≤ C · 2nl · ∥∥f∥∥L1(Rn)
,
∥∥Plf∥∥L1 ≤ C ·

∥∥f∥∥
L1(Rn)

.

Using an elementary interpolation argument as before (exercise), we infer (1 ≤ p ≤ ∞).∥∥Plf∥∥Lp ≤ C · 2 p−1
p ·nl ·

∥∥f∥∥
L1(Rn)
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But then we have ∥∥ ∑
l<−N1

|Plf |
∥∥
Lp(Rn)

≤
∑

l<−N1

∥∥Plf∥∥Lp(Rn)
≤ C · 2−

p−1
p ·N1l ·

∥∥f∥∥
L1(Rn)

,

and the final term on the right obviously converges to 0 as N1 →∞. We leave the proof that

lim
N2→∞

∥∥ ∑
l>N2

|Plf |
∥∥
Lp(Rn)

= 0

as an exercise (use that Plf decays rapidly with respect to l since the Fourier transform of f is also a Schwartz
function).


