

FUNCTIONS OF SOBOLEV REGULARITY; THE SPACES $H^s(\mathbb{R}^n)$

1. DEFINITION AND BASIC PROPERTIES OF THE SPACES $H^s(\mathbb{R}^n)$

So far we have restricted solutions to our linear dispersive models to highly regular function spaces, such as $\mathcal{S}(\mathbb{R}^n)$. It is however both very natural and important to consider a much larger class of solutions, namely those in a particular class of Sobolev spaces, H^s . Here we define these function spaces and give some basic properties:

Definition 1.1. *We say a function $f \in L^2(\mathbb{R}^n)$ belongs to the Sobolev space $H^s(\mathbb{R}^n)$, $s \geq 0$, provided the function*

$$\widehat{f}(\xi) \cdot (1 + |\xi|^2)^{\frac{s}{2}} \in L^2(\mathbb{R}^n).$$

If so, we introduce the norm

$$\|f\|_{H^s(\mathbb{R}^n)} := \|\widehat{f}(\xi) \cdot (1 + |\xi|^2)^{\frac{s}{2}}\|_{L^2(\mathbb{R}^n)}.$$

We also define the homogeneous Sobolev norm

$$\|f\|_{\dot{H}^s(\mathbb{R}^n)} := \|\widehat{f}(\xi) \cdot |\xi|^s\|_{L^2(\mathbb{R}^n)}.$$

Remark 1.2. We stress that $s \geq 0$ can take any non-negative real number (one can also introduce the Sobolev spaces for negative indices, but we will mostly avoid these in this course). In the special case that $s = k \in \mathbb{N}_{\geq 0}$, we have an alternative definition of the space H^k , namely

$$H^k = \{f \in L^2(\mathbb{R}^n) \mid \prod_{j=1}^n \frac{\partial^{\alpha_j}}{\partial x_j^{\alpha_j}} f \in L^2(\mathbb{R}^n) \forall \underline{\alpha} \in \mathbb{N}^n \text{ with } |\underline{\alpha}| \leq k\}$$

In the preceding definition we use the notation

$$\underline{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}$$

as well as

$$|\underline{\alpha}| := \sum_{j=1}^n |\alpha_j|,$$

so this norm *differs* from the usual Euclidean one for multi indices.

We mention the following basic proposition without proof:

Proposition 1.3. *The sets H^s form vector spaces (over \mathbb{C}). Furthermore, letting*

$$\langle f, g \rangle_{H^s} := \int_{\mathbb{R}^n} \widehat{f}(\xi) \overline{\widehat{g}(\xi)} \cdot (1 + |\xi|^2)^s d\xi,$$

whence $\|f\|_{H^s} = \sqrt{\langle f, f \rangle_{H^s}}$, the space H^s becomes a Hilbert space. The space $\mathcal{S}(\mathbb{R}^n) \subset H^s(\mathbb{R}^n)$ is a dense subspace.

We shall soon see that if s is sufficiently large, then H^s embeds into other function spaces, in particular those of continuous or continuously differentiable functions. Assertions of this type are referred to as *Sobolev embedding* type results. The simplest form this takes is the following:

Proposition 1.4. *Let $s > \frac{n}{2}$. Then if $f \in \mathcal{S}(\mathbb{R}^n)$ we have the inequality*

$$\|f\|_{L^\infty(\mathbb{R}^n)} \leq C_{s,n} \cdot \|f\|_{H^s}$$

In particular, by density of $\mathcal{S}(\mathbb{R}^n)$ inside $H^s(\mathbb{R}^n)$, every function $f \in H^s(\mathbb{R}^n)$ has a representative in $L^\infty(\mathbb{R}^n)$ satisfying

$$\|f\|_{L^\infty(\mathbb{R}^n)} \leq C_{s,n} \cdot \|f\|_{H^s}.$$

Proof. Use the Fourier inversion theorem to write for $f \in \mathcal{S}(\mathbb{R}^n)$

$$\begin{aligned} f(x) &= (2\pi)^{-n} \cdot \int_{\mathbb{R}^n} \widehat{f}(\xi) \cdot e^{ix \cdot \xi} d\xi \\ &= (2\pi)^{-n} \cdot \int_{\mathbb{R}^n} (1 + |\xi|^2)^{-\frac{s}{2}} \cdot (1 + |\xi|^2)^{\frac{s}{2}} \widehat{f}(\xi) \cdot e^{ix \cdot \xi} d\xi \end{aligned}$$

Then use the Cauchy-Schwarz inequality to infer that

$$\begin{aligned} &\left| (2\pi)^{-n} \cdot \int_{\mathbb{R}^n} (1 + |\xi|^2)^{-\frac{s}{2}} \cdot (1 + |\xi|^2)^{\frac{s}{2}} \widehat{f}(\xi) \cdot e^{ix \cdot \xi} d\xi \right| \\ &\leq (2\pi)^{-n} \cdot \|(1 + |\xi|^2)^{-\frac{s}{2}}\|_{L^2(\mathbb{R}^n)} \cdot \|(1 + |\xi|^2)^{\frac{s}{2}} \widehat{f}\|_{L^2(\mathbb{R}^n)} \\ &= C_{n,s} \cdot \|(1 + |\xi|^2)^{\frac{s}{2}} \widehat{f}\|_{L^2(\mathbb{R}^n)}, \end{aligned}$$

where we set

$$C_{n,s} := (2\pi)^{-n} \cdot \|(1 + |\xi|^2)^{-\frac{s}{2}}\|_{L^2(\mathbb{R}^n)} < \infty$$

since $s > \frac{n}{2}$. \square

We now intend to both generalize and sharpen the preceding proposition. A key technical method for this consists in *frequency localization*.

2. FREQUENCY LOCALIZATION AND THE BASICS OF LITTLEWOOD-PALEY THEORY

Let $\chi \in C_0^\infty(\mathbb{R}^n)$ a non-negative function which is supported on the annulus $\frac{1}{2} \leq |x| \leq 4$ (where the norm is the usual Euclidean one), and we furthermore have that

$$\chi(x) = 1, \quad 1 \leq |x| \leq 2.$$

Then observe that the function

$$\eta(x) := \sum_{l \in \mathbb{Z}} \chi\left(\frac{x}{2^l}\right)$$

is in fact $C^\infty(\mathbb{R}^n \setminus \{0\})$, and we have the bounds

$$C_1 \geq \eta(x) \geq 1, \quad x \in \mathbb{R}^n \setminus \{0\},$$

for some constant $C_1 > 1$, as well as

$$|\nabla \eta(x)| \leq \frac{C_2}{|x|}, \quad x \in \mathbb{R}^n \setminus \{0\},$$

for another constant C_2 . If we now introduce the cutoffs

$$\psi_l(x) := \frac{\chi\left(\frac{x}{2^l}\right)}{\eta(x)},$$

then for each $l \in \mathbb{Z}$ we clearly have $\psi_l(x) \in C_0^\infty(\mathbb{R}^n)$ and $\psi_l(x) \neq 0$ only if $|x| \in [\frac{2^l}{2}, 4 \cdot 2^l]$. Furthermore, we have that $\psi_l(x)$ is non-negative and bounded from above by a constant independent of l , and finally, we have

$$\sum_l \psi_l(x) = 1 \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

We also observe the bounds

$$|\nabla_x^k \psi_l(x)| \leq C_k \cdot |x|^{-k}, \quad x \in \mathbb{R}^n,$$

where C_k is independent of l .

We can now introduce a *Littlewood-Paley decomposition* of a function $f \in \mathcal{S}(\mathbb{R}^n)$ as follows:

Definition 2.1. Define the frequency localized pieces $P_l f(x)$, $l \in \mathbb{Z}$, as follows:

$$P_l f(x) := (2\pi)^{-n} \int_{\mathbb{R}^n} \psi_l(\xi) \cdot e^{ix \cdot \xi} \widehat{f}(\xi) d\xi.$$

We then observe the following basic

Lemma 2.2. *We have the decomposition*

$$f = \sum_{l \in \mathbb{Z}} P_l f.$$

In fact, the sum converges absolutely and uniformly in x .

Proof. Observe that if $\widehat{f} \in C_0^\infty(\mathbb{R}^n \setminus \{0\})$ then we have

$$\widehat{f} = \sum_{l \in \mathbb{Z}} \psi_l(\xi) \widehat{f}$$

and in fact the sum on the right is only a finite sum. In particular, we can write

$$f = \sum_{l \in \mathbb{Z}} P_l f,$$

since integration and summation in the Fourier inversion formula can be interchanged. For general $f \in \mathcal{S}(\mathbb{R}^n)$, set for $\varepsilon > 0$,

$$\widehat{g}_\varepsilon := \widetilde{\chi}_{\varepsilon < \cdot < \varepsilon^{-1}}(\xi) \cdot \widehat{f}(\xi)$$

where $\widetilde{\chi}_{\varepsilon < \cdot < \varepsilon^{-1}} \in C_0^\infty(\mathbb{R}^n \setminus \{0\})$ takes values in $[0, 1]$ and equals 1 on the set $\{|\xi| \in [\varepsilon, \varepsilon^{-1}]\}$. Then write

$$\begin{aligned} \sum_l P_l f &= \sum_l P_l g_\varepsilon + \sum_l P_l (f - g_\varepsilon) \\ &= g_\varepsilon + \sum_l P_l (f - g_\varepsilon), \end{aligned}$$

and observe that

$$\lim_{\varepsilon \rightarrow 0} \|f - g_\varepsilon\|_{L^\infty(\mathbb{R}^n)} \leq \lim_{\varepsilon \rightarrow 0} \|\widehat{f} - \widehat{g}_\varepsilon\|_{L^1(\mathbb{R}^n)} = 0,$$

and similarly

$$\begin{aligned} \lim_{\varepsilon \rightarrow 0} \left\| \sum_l P_l (f - g_\varepsilon) \right\|_{L^\infty(\mathbb{R}^n)} &\leq \lim_{\varepsilon \rightarrow 0} \sum_l \|\psi_l(\widehat{f} - \widehat{g}_\varepsilon)\|_{L^1(\mathbb{R}^n)} \\ &\leq C \lim_{\varepsilon \rightarrow 0} \|\widehat{f} - \widehat{g}_\varepsilon\|_{L^1(\mathbb{R}^n)} \\ &= 0. \end{aligned}$$

□

Let us now use the localization operators P_l to sharpen and generalize the preceding proposition. To begin with, note that due to the fact that

$$\widehat{fg} = \widehat{f} * \widehat{g},$$

we infer

$$P_0 f(x) = (\check{\psi}_0 * f)(x) = \int_{\mathbb{R}^n} \check{\psi}_0(x - y) \cdot f(y) dy.$$

where the function $\check{\psi}_0 \in \mathcal{S}(\mathbb{R}^n)$. We can then immediately deduce that

$$(2.1) \quad |P_0 f(x)| \leq \|\check{\psi}_0\|_{L^2(\mathbb{R}^n)} \cdot \|f\|_{L^2(\mathbb{R}^n)} = C_1 \cdot \|f\|_{L^2(\mathbb{R}^n)}, \quad \forall x \in \mathbb{R}^n$$

by applying the Cauchy-Schwarz inequality, and this can be interpreted as a *frequency localized version* of Proposition 1.3.

By writing

$$\int_{\mathbb{R}^n} \check{\psi}_0(x - y) \cdot f(y) dy = \int_{\mathbb{R}^n} \check{\psi}_0(y) \cdot f(x - y) dy$$

and applying Minkowski's integral inequality instead, we also infer the estimate

$$(2.2) \quad \|P_0 f\|_{L^2(\mathbb{R}^n)} \leq \|\check{\psi}_0\|_{L^1(\mathbb{R}^n)} \cdot \|f\|_{L^2(\mathbb{R}^n)} = C_2 \cdot \|f\|_{L^2(\mathbb{R}^n)}.$$

Using a simple interpolation argument, we can also deduce bounds for the norms

$$\|P_0 f\|_{L^p(\mathbb{R}^n)}, 2 < p < \infty,$$

using

Lemma 2.3. *For a function $g \in L^2(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$, we have the bound¹*

$$\|g\|_{L^p(\mathbb{R}^n)} \leq \|g\|_{L^\infty(\mathbb{R}^n)}^{\frac{p-2}{p}} \cdot \|g\|_{L^2(\mathbb{R}^n)}^{\frac{2}{p}}, \quad 2 \leq p \leq \infty.$$

Proof. Write

$$\begin{aligned} \|g\|_{L^p(\mathbb{R}^n)}^p &= \int_{\mathbb{R}^n} |g|^p dx = \int_{\mathbb{R}^n} |g|^2 \cdot |g|^{p-2} dx \leq \|g\|_{L^\infty(\mathbb{R}^n)}^{p-2} \cdot \int_{\mathbb{R}^n} |g|^2 dx \\ &= \|g\|_{L^\infty(\mathbb{R}^n)}^{p-2} \cdot \|g\|_{L^2(\mathbb{R}^n)}^2, \end{aligned}$$

from which the desired estimate follows by taking the p -th root of both sides. \square

Using the preceding estimates for $\|P_0 f\|_{L^2(\mathbb{R}^n)}$, $\|P_0 f\|_{L^\infty(\mathbb{R}^n)}$, we can now infer

$$(2.3) \quad \|P_0 f\|_{L^p(\mathbb{R}^n)} \leq C_3 \|f\|_{L^2(\mathbb{R}^n)}, \quad p \in [2, \infty],$$

for some universal constant C_3 .

We now replicate this reasoning for more general (logarithmic) frequency $l \in \mathbb{Z}$. Thus write

$$P_l f(x) = (\check{\psi}_l * f)(x) = \int_{\mathbb{R}^n} \check{\psi}_l(x-y) \cdot f(y) dy.$$

The fact that $\eta(x) = \eta(2^a x)$ for any $a \in \mathbb{Z}$ implies that

$$\psi_l(x) = \left(\frac{\chi(\cdot)}{\eta(\cdot)} \right) \left(\frac{x}{2^l} \right) = \psi_0 \left(\frac{x}{2^l} \right).$$

This implies

$$\check{\psi}_l(x) = 2^{nl} \cdot \check{\psi}_0(2^l x).$$

Then we verify directly that

$$\|\check{\psi}_l\|_{L^1(\mathbb{R}^n)} = \|\check{\psi}_0\|_{L^1(\mathbb{R}^n)}, \quad \|\check{\psi}_l\|_{L^2(\mathbb{R}^n)} = 2^{\frac{nl}{2}} \cdot \|\check{\psi}_0\|_{L^2(\mathbb{R}^n)}.$$

Using Lemma 2.3 as before, we then infer that

$$(2.4) \quad \|P_l f\|_{L^p(\mathbb{R}^n)} \leq C_3 \cdot 2^{\frac{nl}{2} \cdot \frac{p-2}{p}} \cdot \|P_l f\|_{L^2(\mathbb{R}^n)}, \quad 2 \leq p \leq \infty.$$

We can reformulate this inequality in terms of Sobolev norms as follows:

Proposition 2.4. *There is a universal constant C_n such that letting $f \in \mathcal{S}(\mathbb{R}^n)$, $l \in \mathbb{Z}$, we have for $2 \leq p \leq \infty$*

$$\|P_l f\|_{L^p(\mathbb{R}^n)} \leq C_n \cdot \|f\|_{\dot{H}^s},$$

where

$$s = \frac{n}{2} \cdot \frac{p-2}{p}.$$

¹This lemma holds for any measure space, not just \mathbb{R}^n

Proof. This is a consequence of the fact that

$$\begin{aligned} 2^{\frac{n}{2}l \cdot \frac{p-2}{p}} \cdot \|P_l f\|_{L^2(\mathbb{R}^n)} &= 2^{\frac{n}{2}l \cdot \frac{p-2}{p}} \cdot \|\psi_l(\xi) \cdot \widehat{f}\|_{L^2(\mathbb{R}^n)} \\ &\leq C_5 \|\xi^{\frac{n}{2} \cdot \frac{p-2}{p}} \psi_l(\xi) \cdot \widehat{f}\|_{L^2(\mathbb{R}^n)} \\ &\leq C \|\xi^{\frac{n}{2} \cdot \frac{p-2}{p}} \cdot \widehat{f}\|_{L^2(\mathbb{R}^n)} \\ &= C \|f\|_{\dot{H}^s}, \end{aligned}$$

where in the first equality we have used Plancherel's theorem. \square

3. THE FUNDAMENTAL THEOREM OF LITTLEWOOD-PALEY THEORY AND SOBOLEV EMBEDDING

We now would like to derive an analogue of Prop. 2.4 without the Fourier operator P_l localizing to frequency $\xi \sim 2^l$. Using Lemma 2.2, we have for $f \in \mathcal{S}(\mathbb{R}^n)$ the simple inequality

$$\|f\|_{L^p(\mathbb{R}^n)} \leq \sum_{l \in \mathbb{Z}} \|P_l f\|_{L^p(\mathbb{R}^n)},$$

and for each $l \in \mathbb{Z}$ we can invoke Prop. 2.4. However, the sum

$$\sum_{l \in \mathbb{Z}} \|P_l f\|_{\dot{H}^s}$$

is not majorized by $\|f\|_{\dot{H}^s}$, for this we would have to replace the l^1 -sum by a *square-sum*. The fact that this can be accomplished is non-trivial and related to the fundamental theorem of Littlewood-Paley theory. Here we derive the latter assuming some background from Harmonic Analysis (Calderon-Zygmund operators, Mihlin theorem) which are covered in my course on Harmonic Analysis, and further the remarkable *Khintchine's inequality*.

To begin with, we introduce the *Rademacher functions* on $\Omega := [0, 1] \subset \mathbb{R}$, where the notation indicates that we interpret the unit interval as a probability space, and the Rademacher functions as independent identically distributed Random variables. Set

$$b_1(\omega) = +1, \omega \in [0, \frac{1}{2}], b_1(\omega) = -1, \omega \in (\frac{1}{2}, 1],$$

and more generally let

$$b_l(\omega) = b_1(2^{l-1}\omega), \omega \in [0, 1],$$

where $2^{l-1}\omega$ is interpreted mod 1. Then it is straightforward to verify that

$$\int_{\Omega} b_l(\omega) b_{l'}(\omega) d\omega = \delta_{l,l'},$$

and the $\{b_l\}$ form indeed independent random variables on Ω . We can now state

Theorem 3.1. (*Khintchine's inequality*) For $1 < p < \infty$, there exist positive constants A_p, B_p such that for any n -tuple of complex numbers $\{c_l\}_{l=1}^n$, we have

$$A_p \cdot \left(\sum_l |c_l|^2 \right)^{\frac{p}{2}} \leq \int_{\Omega} \left| \sum_l b_l(\omega) c_l \right|^p d\omega \leq B_p \cdot \left(\sum_l |c_l|^2 \right)^{\frac{p}{2}}.$$

Proof. By considering the real and imaginary parts of the c_l separately, we can reduce to real valued c_l . We first prove the right hand inequality, and the left hand one will follow by duality. The main step consists in leveraging the independence of the $\{b_l\}$ in order to derive a powerful bound on the measure of the set \mathcal{A}_{λ} of $\omega \in \Omega$ for which

$$\left| \sum_l b_l(\omega) c_l \right| \geq \lambda > 0.$$

The trick is to observe that for any positive real constant μ we have

$$\int_{\Omega} e^{\pm\mu \sum_l b_l(\omega) c_l} d\omega = \prod_l \int_{\Omega} e^{\pm\mu b_l(\omega) c_l} d\omega = \prod_l \frac{e^{\mu c_l} + e^{-\mu c_l}}{2}.$$

Furthermore, we can bound

$$\frac{e^{\mu c_l} + e^{-\mu c_l}}{2} \leq e^{\frac{\mu^2 c_l^2}{2}}.$$

We conclude that

$$|\mathcal{A}_\lambda| \leq 2e^{-\mu\lambda} \cdot \int_{\Omega} e^{\mu \sum_l b_l(\omega) c_l} d\omega \leq 2e^{-\mu\lambda} \cdot \prod_l e^{\frac{\mu^2 c_l^2}{2}}.$$

Since this is true for any μ , we can choose $\mu = \frac{\lambda}{\sum_l |c_l|^2}$, which results in

$$|\mathcal{A}_\lambda| \leq 2e^{-\frac{\lambda^2}{2\sum_l |c_l|^2}}.$$

The upper bound in Khintchine's inequality is now straightforward to obtain: use that

$$\begin{aligned} \int_{\Omega} \left| \sum_l b_l(\omega) c_l \right|^p d\omega &= \int_0^\infty p\lambda^{p-1} |\mathcal{A}_\lambda| d\lambda \\ &\leq 2 \int_0^\infty p\lambda^{p-1} \cdot e^{-\frac{\lambda^2}{2\sum_l |c_l|^2}} d\lambda \\ &= B_p \cdot \left(\sum_l |c_l|^2 \right)^{\frac{p}{2}}. \end{aligned}$$

To derive the lower bound of Khintchine's inequality, we use that

$$\begin{aligned} \sum_l |c_l|^2 &= \int_{\Omega} \left| \sum_l b_l(\omega) c_l \right|^2 d\omega \\ &\leq \left(\int_{\Omega} \left| \sum_l b_l(\omega) c_l \right|^p d\omega \right)^{\frac{1}{p}} \cdot \left(\int_{\Omega} \left| \sum_l b_l(\omega) c_l \right|^q d\omega \right)^{\frac{1}{q}}, \end{aligned}$$

where $p, q \in (1, \infty)$ are chosen to be *Holder dual*, i. e.

$$\frac{1}{p} + \frac{1}{q} = 1,$$

and we have used Holder's inequality in the last step. Using the upper bound already proven, we infer that

$$\sum_l |c_l|^2 \leq B_p^{\frac{1}{p}} \cdot \left(\sum_l |c_l|^2 \right)^{\frac{1}{2}} \cdot \left(\int_{\Omega} \left| \sum_l b_l(\omega) c_l \right|^q d\omega \right)^{\frac{1}{q}}.$$

The lower bound follows (for p replaced by q) with

$$A_q = B_p^{-\frac{q}{p}}.$$

□

The preceding theorem is the main ingredient in the proof of the following fundamental

Theorem 3.2. *Let $1 < p < \infty$. Then there exist positive constants D_p, E_p such that the we have*

$$D_p \|f\|_{L^p(\mathbb{R}^n)} \leq \left\| \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^n)} \leq E_p \|f\|_{L^p(\mathbb{R}^n)}.$$

In words, the L^p -norm of f is comparable to the L^p -norm of the Littlewood-Paley square function

$$\left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}}.$$

Corollary 3.3. *Assume $\infty > p \geq 2$. Then we have the inequality*

$$\|f\|_{L^p(\mathbb{R}^n)} \leq F_p \cdot \left(\sum_l \|P_l f\|_{L^p(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}}.$$

Proof. (Cor.) From the first inequality of the preceding theorem, we infer that

$$\begin{aligned} \|f\|_{L^p(\mathbb{R}^n)} &\leq D_p^{-1} \|(\sum_l |P_l f|^2)^{\frac{1}{2}}\|_{L^p(\mathbb{R}^n)} \\ &= D_p^{-1} \left\| \sum_l |P_l f|^2 \right\|_{L^{\frac{p}{2}}(\mathbb{R}^n)}^{\frac{1}{2}} \\ &\leq D_p^{-1} \left(\sum_l \|P_l f\|_{L^p(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}}, \end{aligned}$$

where we have taken advantage of Minkowski's inequality for the last step. \square

The proof of Theorem 3.2 uses *Mihlin's theorem* as a key ingredient, and we shall use this as a black box:

Theorem 3.4. *Let $m(\cdot) \in C^\infty(\mathbb{R}^n \setminus \{0\})$ satisfying the bounds*

$$|\nabla_\xi^k m(\xi)| \leq C_k \cdot |\xi|^{-k}, \quad k \geq 0.$$

Then defining Tf by means of the Fourier transform

$$\widehat{Tf}(\xi) := m(\xi) \cdot \widehat{f}(\xi)$$

for $f \in \mathcal{S}(\mathbb{R}^n)$, we have that

$$\|Tf\|_{L^p(\mathbb{R}^n)} \leq M_p \cdot \|f\|_{L^p(\mathbb{R}^n)}$$

for a suitable finite constant M_p , provided $1 < p < \infty$.

Proof. (Theorem 3.2) We first prove the upper bound. Letting $\{b_l\}$ be the Rademacher functions from before, we have² for $1 < p < \infty$

$$(3.1) \quad A_p \cdot \left(\sum_l |P_l f|^2 \right)^{\frac{p}{2}} \leq \int_{\Omega} \left| \sum_l P_l f \cdot b_l(\omega) \right|^p d\omega \leq B_p \cdot \left(\sum_l |P_l f|^2 \right)^{\frac{p}{2}}.$$

where the inequality holds uniformly in $x \in \mathbb{R}^n$ (i. e. we fix the argument x of $P_l f$). But then using that Ω is a probability space we have from Holder's inequality that

$$\begin{aligned} \int_{\Omega} \left\| \sum_l P_l f \cdot b_l(\omega) \right\|_{L^p(\mathbb{R}^n)} d\omega &\leq \left(\int_{\Omega} \left\| \sum_l P_l f \cdot b_l(\omega) \right\|_{L^p(\mathbb{R}^n)}^p d\omega \right)^{\frac{1}{p}} \\ &= \left\| \left(\int_{\Omega} \left| \sum_l P_l f \cdot b_l(\omega) \right|^p d\omega \right)^{\frac{1}{p}} \right\|_{L^p(\mathbb{R}^n)} \\ &\leq B_p^{\frac{1}{p}} \cdot \left\| \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^n)}. \end{aligned}$$

We need to recover the upper bound for $\|f\|_{L^p(\mathbb{R}^n)}$ from this. Now the trick is to write (recall Lemma 2.2)

$$(3.2) \quad f = \int_{\Omega} \left(\sum_l \widetilde{P}_l g_\omega \cdot b_l(\omega) \right) d\omega,$$

where we define

$$g_\omega := \sum_{l'} P_{l'} f \cdot b_{l'}(\omega), \quad \widehat{\widetilde{P}_l g} = \frac{\psi_l(\xi)}{\sum_l \psi_l^2(\xi)} \cdot \widehat{g}(\xi).$$

²See the addendum at the end for a justification of the passage to infinite sums

To check (3.2), use that

$$\begin{aligned} \int_{\Omega} \left(\sum_l \tilde{P}_l g_{\omega} \cdot b_l(\omega) \right) d\omega &= \int_{\Omega} \sum_{l,l'} P_{l'} \tilde{P}_l f \cdot b_l(\omega) b_{l'}(\omega) d\omega \\ &= \sum_l P_l \tilde{P}_l f = f. \end{aligned}$$

Using Mihlin's theorem and a direct verification, one checks that the operator $\sum_l b_l(\omega) \tilde{P}_l$ acts boundedly on $L^p(\mathbb{R}^n)$ uniformly in $\omega \in \Omega$. It follows that

$$\|f\|_{L^p(\mathbb{R}^n)} \leq H_p \cdot \int_{\Omega} \|g_{\omega}\|_{L^p(\mathbb{R}^n)} d\omega \leq H_p \cdot B_p^{\frac{1}{p}} \cdot \left\| \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^n)},$$

giving the desired upper bound.

To get the lower bound, use (3.1) to deduce

$$\left(\sum_l |P_l f|^2 \right)^{\frac{p}{2}} \leq A_p^{-1} \cdot \int_{\Omega} \left| \sum_l P_l f b_l(\omega) \right|^p d\omega$$

pointwise. Applying $\int_{\mathbb{R}^n}$ and again taking advantage of Theorem 3.4 we obtain

$$\begin{aligned} \int_{\mathbb{R}^n} \left(\sum_l |P_l f|^2 \right)^{\frac{p}{2}} dx &\leq A_p^{-1} \cdot \int_{\mathbb{R}^n} \int_{\Omega} \left| \sum_l P_l f b_l(\omega) \right|^p d\omega dx \\ &= A_p^{-1} \cdot \int_{\Omega} \int_{\mathbb{R}^n} \left| \sum_l P_l f b_l(\omega) \right|^p dx d\omega \\ &\leq D_{p,n} \cdot \|f\|_{L^p(\mathbb{R}^n)}^p \end{aligned}$$

□

As a consequence, we can now prove the desired generalization of Proposition 2.4 :

Proposition 3.5. *Let $2 \leq p < \infty$, and set*

$$s := \frac{n}{2} \cdot \frac{p-2}{p}.$$

Then we have for $f \in \mathcal{S}(\mathbb{R}^n)$

$$\|f\|_{L^p(\mathbb{R}^n)} \leq C_{p,n} \cdot \|f\|_{\dot{H}^s(\mathbb{R}^n)}.$$

Proof. Due to Corollary 3.3, we have

$$\|f\|_{L^p(\mathbb{R}^n)} \leq D_{p,n} \cdot \left(\sum_l \|P_l f\|_{L^p(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}}.$$

Thanks to Prop. 2.4, we can bound the term on the left by

$$\begin{aligned} \left(\sum_l \|P_l f\|_{L^p(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}} &\leq E_{p,n} \cdot \left(\sum_l \|P_l f\|_{\dot{H}^s(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}} \\ &\leq C_{p,n} \cdot \|f\|_{\dot{H}^s(\mathbb{R}^n)}, \end{aligned}$$

as desired.

□

4. ADDENDUM: JUSTIFICATION OF (3.1)

We obtain this inequality as limiting version of the case with finitely many summands. Letting $f \in \mathcal{S}(\mathbb{R}^n)$, introduce for $N_{1,2} \in \mathbb{N}$ the frequency-truncated function

$$f_{[-N_1, N_2]} := \sum_{l=-N_1}^{N_2} P_l f.$$

Then we indeed have

$$A_p \cdot \left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{p}{2}} \leq \int_{\Omega} \left| \sum_l P_l f_{[-N_1, N_2]} \cdot b_l(\omega) \right|^p d\omega \leq B_p \cdot \left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{p}{2}}$$

by direct application of Khintchine's inequality, since the sums are finite. By the earlier argument we then infer that

$$D_p \|f_{[-N_1, N_2]}\|_{L^p(\mathbb{R}^n)} \leq \left\| \left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^n)} \leq E_p \|f_{[-N_1, N_2]}\|_{L^p(\mathbb{R}^n)}$$

The idea then is to let $N_{1,2} \rightarrow +\infty$, and to use that

$$\begin{aligned} \lim_{N_1 \rightarrow \infty, N_2 \rightarrow \infty} \|f_{[-N_1, N_2]}\|_{L^p(\mathbb{R}^n)} &= \|f\|_{L^p(\mathbb{R}^n)}, \\ \lim_{N_1 \rightarrow \infty, N_2 \rightarrow \infty} \left\| \left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^n)} &= \left\| \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\mathbb{R}^n)} \end{aligned}$$

for $1 < p < \infty$. We show the second limiting relation, leaving the first as an exercise. Observe that

$$\begin{aligned} & \left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{1}{2}} - \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}} \\ &= \frac{\sum_{l \in [-N_1, N_2]^c} |P_l f|^2}{\left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{1}{2}} + \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}}} \\ &= \left(\sum_{l \in [-N_1, N_2]^c} |P_l f|^2 \right)^{\frac{1}{2}} \cdot \frac{\left(\sum_{l \in [-N_1, N_2]^c} |P_l f|^2 \right)^{\frac{1}{2}}}{\left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{1}{2}} + \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}}} \end{aligned}$$

provided $\sum_l |P_l f|^2 \neq 0$. Then note that since

$$\left(\sum_{l \in [-N_1, N_2]^c} |P_l f|^2 \right)^{\frac{1}{2}} \leq \sum_{l \in [-N_1, N_2]^c} |P_l f|,$$

and furthermore

$$0 \leq \frac{\left(\sum_{l \in [-N_1, N_2]^c} |P_l f|^2 \right)^{\frac{1}{2}}}{\left(\sum_l |P_l f_{[-N_1, N_2]}|^2 \right)^{\frac{1}{2}} + \left(\sum_l |P_l f|^2 \right)^{\frac{1}{2}}} \leq 1$$

on the set of points where $\sum_l |P_l f|^2 \neq 0$, it suffices to show that

$$\lim_{N_{1,2} \rightarrow +\infty} \left\| \sum_{l \in [-N_1, N_2]^c} |P_l f| \right\|_{L^p(\mathbb{R}^n)} = 0$$

provided $1 < p < \infty$. To see this, observe that (exercise!)

$$\|P_l f\|_{L^\infty} \leq C \cdot 2^{nl} \cdot \|f\|_{L^1(\mathbb{R}^n)}, \quad \|P_l f\|_{L^1} \leq C \cdot \|f\|_{L^1(\mathbb{R}^n)}.$$

Using an elementary interpolation argument as before (exercise), we infer ($1 \leq p \leq \infty$).

$$\|P_l f\|_{L^p} \leq C \cdot 2^{\frac{p-1}{p} \cdot nl} \cdot \|f\|_{L^1(\mathbb{R}^n)}$$

But then we have

$$\left\| \sum_{l < -N_1} |P_l f| \right\|_{L^p(\mathbb{R}^n)} \leq \sum_{l < -N_1} \|P_l f\|_{L^p(\mathbb{R}^n)} \leq C \cdot 2^{-\frac{p-1}{p} \cdot N_1 l} \cdot \|f\|_{L^1(\mathbb{R}^n)},$$

and the final term on the right obviously converges to 0 as $N_1 \rightarrow \infty$. We leave the proof that

$$\lim_{N_2 \rightarrow \infty} \left\| \sum_{l > N_2} |P_l f| \right\|_{L^p(\mathbb{R}^n)} = 0$$

as an exercise (use that $P_l f$ decays rapidly with respect to l since the Fourier transform of f is also a Schwartz function).