FUNCTIONS OF SOBOLEV REGULARITY; THE SPACES H*(R")

1. DEFINITION AND BASIC PROPERTIES OF THE SPACES H*®(R™)

So far we have restricted solutions to our linear dispersive models to highly regular function spaces, such
as S(R™). It is however both very natural and important to consider a much larger class of solutions, namely
those in a particular class of Sobolev spaces, H®. Here we define these function spaces and give some basic
properties:

Definition 1.1. We say a function f € L*(R™) belongs to the Sobolev space H*(R™), s > 0, provided the
function

FO) -1+ g% € LAR™).
If so, we introduce the norm R '
||f||HS(R") = | f(&) - 1+ |£|2)§HL2(R")'

We also define the homogeneous Sobolev norm
HfHHs(Rn) = ||J?(5) ' |£‘S||L2(R")'

Remark 1.2. We stress that s > 0 can take any non-negative real number (one can also introduce the Sobolev
spaces for negative indices, but we will mostly avoid these in this course). In the special case that s = k € N>,
we have an alternative definition of the space H*, namely

Hk:{feL%Rﬁﬁwﬂgl%feL%RUVQGN"MHWQgk}
.
J
In the preceding definition we use the notation
o = (a17a2a"'aan) eN

as well as
n
lof =" oy,
=1

so this norm differs from the usual Euclidean one for multi indices.
We mention the following basic proposition without proof:

Proposition 1.3. The sets H® form vector spaces (over C). Furthermore, letting
(g = [ FOFE - 1+l de,

whence HfHH = \/{f, f)ms, the space H® becomes a Hilbert space. The space S(R™) C H*(R™) is a dense
subspace.

We shall soon see that if s is sufficiently large, then H® embeds into other function spaces, in particular
those of continuous or continuously differentiable functions. Assertions of this type are referred to as Sobolev
embedding type results. The simplest form this takes is the following:

Proposition 1.4. Let s > . Then if f € S(R™) we have the inequality
£ 1| e gy < Coon = [

In particular, by density of S(R™) inside H*(R"™), every function f € H*(R™) has a representative in L (R™)
satisfying
)] oy < Con - £ L
1
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Proof. Use the Fourier inversion theorem to write for f € S(R™)

f@)=@m™ [ J©)- e ds

~

— 0 [ Qi) gl e e

Then use the Cauchy-Schwarz inequality to infer that
em e [ st P et
< @20) 7 [+ 167 oy - 11+ 1€12)% Ao
= Cn,s : || 1 + ‘£| ﬂ’L%R")’

where we set
Cn,s = (27r)_n : ”(1 + |£|2)_§HL2(R”) <000
since s > 5. -

We now intend to both generalize and sharpen the preceding proposition. A key technical method for this
consists in frequency localization.

2. FREQUENCY LOCALIZATION AND THE BASICS OF LITTLEWOOD-PALEY THEORY

Let x € C§°(R™) a non-negative function which is supported on the annulus 1 < |z < 4 (where the norm
is the usual Euclidean one), and we furthermore have that

xx)=1,1<|z| <2.

= ZX(@)

l€Z

Then observe that the function

is in fact C*°(R™\{0}), and we have the bounds
Cy = n(x) > 1, z € R"\{0},

for some constant C; > 1, as well as

|Vn(z)| < | ‘ z € R™\{0},
for another constant Cs. If we now introduce the cutoffs
x(57)
1/’1 x) = )
(@) n(z)

then for each [ € Z we clearly have ¢;(z) € C§°(R™) and () # 0 only if |z| € [%1,4 - 21, Furthermore, we
have that ;(z) is non-negative and bounded from above by a constant independent of I, and finally, we have

> hi(x) = 1Yz € R™\{0}.
l

We also observe the bounds
’V’;wl(x)’ <Cp-lz|™F z e R,
where C}, is independent of [.
We can now introduce a Littlewood-Paley decomposition of a function f € S(R™) as follows:

Definition 2.1. Define the frequency localized pieces P, f(x), l € Z, as follows:

Pif(z) = (21)" / W(e) - e EF(e) de.
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We then observe the following basic

Lemma 2.2. We have the decomposition

f=>_nf

lez
In fact, the sum converges absolutely and uniformly in x.

Proof. Observe that if f € C§°(R™\{0}) then we have
F=>"w©7f

and in fact the sum on the right is only a finite sum. In particular, we can write

f=>_nf,

IEZ

since integration and summation in the Fourier inversion formula can be interchanged. For general f € S(R"),
set for € > 0,

Ge = Xec.ce1(6) (6)
where Y.....-1 € C§°(R™\{0}) takes values in [0, 1] and equals 1 on the set {|¢| € [¢,67!]}. Then write

Y Pf=> Pg.+> P(f—g)
l l l
:gsﬁLZPl(f*ge)a
l

and observe that
li — gellpeemmy < lim || — G =0
Lim [ f = el oo (ny < 1 [[f = Gell 1.eny = 0,
and similarly

lim | lePl(f = 99| poo ) < ;ig%il: 1 (F = Gl ey

< Clim | f -3 .
_Csh_%ﬂf Gellr mmy
=0.
OJ

Let us now use the localization operators P; to sharpen and generalize the preceding proposition. To begin
with, note that due to the fact that

fa=1r=*7,
we infer

Pof(x) = (o [)(x) = | oz —y)- f(y)dy.
R'Fl
where the function ¢y € S (R™). We can then immediately deduce that

(2.1) |Pof ()] < [|vo

by applying the Cauchy-Schwarz inequality, and this can be interpreted as a frequency localized version of
Proposition 1.3.
By writing

‘LQ(R“) : HfHLz(R") =Cr- HfHLZ(R“)’ vz € R"

ol =) Fw)dy = [ dow) - fo—9)dy
R™ R™
and applying Minkowski’s integral inequality instead, we also infer the estimate

(2.2) HPOfHLZ(]R") <[4

|L1(]R”) ' Hme(Rn) =0y HfHLZ(Rn)'
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Using a simple interpolation argument, we can also deduce bounds for the norms
1PofllLe@ny,2 < p < 00,
using

Lemma 2.3. For a function g € L?>(R™) N L>(R"), we have the bound"

p=2 2
l9ll oy < 91l 2% @) - gl 2 any 2 < p < o0

Proof. Write

n

l9[175 @) = / gl de = / ol gl d < [} / 9" de

= |lg] i;Q(Rn) : HgHQL?(R")’

from which the desired estimate follows by taking the p-th root of both sides.

Using the preceding estimates for || Py f||z2®n), | Pof| Lo ®n), We can now infer

(2.3) ||P0f||Lp(Rn) < CngHL2(R")’ pE [2, 00]7

for some universal constant Cs.

We now replicate this reasoning for more general (logarithmic) frequency I € Z. Thus write

Pif(z) = (4dr = f)(z) = . Oi(z —y) - f(y) dy.

The fact that n(x) = n(2%) for any a € Z implies that
=Xy 2y g
1111(1’) - (77() )(21) - wO(Ql)'
This implies

i(w) = 2" - dho(2'x).
Then we verify directly that

l

QM LY(R) — WO |L1(]R”)’ Y L2(Rm) — 2% - MO ‘L2(R")'
Using Lemma 2.3 as before, we then infer that
(2.4) [P Loy < Cs- 2% 5 [P Lo gy 2 S P < 00

We can reformulate this inequality in terms of Sobolev norms as follows:
Proposition 2.4. There is a universal constant C,, such that letting f € S(R™), | € Z, we have for2 < p < oo
1P oy < G [1F [y
where
p—2

n
§= = —.
2 p

IThis lemma holds for any measure space, not just R”
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Proof. This is a consequence of the fact that

2%1.%2 ’ HPlme(Rn) = 2%.%;2 ’ le(f) ’ ﬂ‘m(w)
< Cs€1F 7 l®) - Fl oy
n. p=2
< CHM tr 'ﬂ’LQ(R")
= O£l
where in the first equality we have used Plancherel’s theorem. |

3. THE FUNDAMENTAL THEOREM OF LITTLEWOOD-PALEY THEORY AND SOBOLEV EMBEDDING

We now would like to derive an analogue of Prop. 2.4 without the Fourier operator P, localizing to frequency
¢ ~ 2!, Using Lemma 2.2, we have for f € S(R™) the simple inequality

1l oy < D NPFI ooy
leZ
and for each [ € Z we can invoke Prop. 2.4. However, the sum
>l
lez

is not majorized by H f H f7o+ for this we would have to replace the [*-sum by a square-sum. The fact that this
can be accomplished is non-trivial and related to the fundamental theorem of Littlewood-Paley theory. Here
we derive the latter assuming some background from Harmonic Analysis (Calderon-Zygmund operators, Mih-
lin theorem) which are covered in my course on Harmonic Analysis, and further the remarkable Khinchine’s
inequality.

To begin with, we introduce the Rademacher functionson § := [0,1] C R, where the notation indicates that
we interpret the unit interval as a probability space, and the Rademacher functions as independent identically
distributed Random variables. Set

1 1
bi(w) =41, w e 0, 5], b(w)=-1l,we (5,1},

and more generally let
bi(w) = b1 (27 w),w € [0,1],

where 271w is interpreted mod 1. Then it it straightforward to verify that
/ bl(w)bl/(w) dw = 51’1/,
Q

and the {§;} form indeed independent random variables on 2. We can now state

Theorem 3.1. (Khintchine’s inequality) For 1 < p < oo, there exist positive constants A,, B, such that for
any n-tuple of complex numbers {c;}]_,, we have

Ay (Sal)f < [ [ mal ao < 8, (e
1 a 1

Proof. By considering the real and imaginary parts of the ¢; separately, we can reduce to real valued ¢;. We
first prove the right hand inequality, and the left hand one will follow by duality. The main step consists in
leveraging the independence of the {b;} in order to derive a powerful bound on the measure of the set Ay of
w € Q for which

|Zbl(w)cl| >A>0.
l
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The trick is to observe that for any positive real constant u we have

/ etribi@en gy, — H/ eFHbi@er gy, — H M.
Q +a

Furthermore, we can bound

pey —Hcy 2.2
el +e < eﬂ I
— =
We conclude that
2.2
Ay < 207 / Ty < 9e-N . [[ 57
Q 1

Since this is true for any p, we can choose p = ﬁ, which results in
l

{AA‘ < 26_22?11\2,

The upper bound in Khintchine’s inequality is now straightforward to obtain: use that
/ 1> bi(w)e]” dw :/ PAPTH Ay | dX
Q 0
(oo} )\2
< 2/ pAPTL e 2 Tal® )

0
P
=B, (D _lal’)*.
l
To derive the lower bound of Khintchine’s inequality, we use that

Z|cl|2:/ |Zbl(w)clf2dw
1 2
< (/Q|zl:bl(w)cl| dw)”'(/ﬂ};bl(w)cl| dw)q,

where p, ¢ € (1,00) are chosen to be Holder dual, i. e.
1 1
-4 - = 1
p q

and we have used Holder’s inequality in the last step. Using the upper bound already proven, we infer that
1 1
Sl < B (Sl ([ |5 nwaf'as)
1 1 l

The lower bound follows (for p replaced by ¢) with

7

Q=

A,=B,".

The preceding theorem is the main ingredient in the proof of the following fundamental

Theorem 3.2. Let 1 < p < oo. Then there exist positive constants Dy, E, such that the we have

Dollfll o gy < N 1P | oy < Bollf oy
l

In words, the LP-norm of f is comparable to the LP-norm of the Littlewood-Paley square function

O IRfP)E.

l
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Corollary 3.3. Assume co > p > 2. Then we have the inequality

1
||f||LP(]R") < Fp- (Z lef||2Lp(Rn))2'

l

Proof. (Cor.) From the first inequality of the preceding theorem, we infer that

£ 11 gy < Do I P2 ey
l
%
=D IR

-1 2 i
<D (NP geny)
l
where we have taken advantage of Minkowski’s inequality for the last step. O

The proof of Theorem 3.2 uses Mihlin’s theorem as a key ingredient, and we shall use this as a black box:
Theorem 3.4. Let m(-) € C*°(R™"\{0}) satisfying the bounds
[VEm(E)] < Cr- €[ 7*, k> 0.
Then defining T f by means of the Fourier transform

~

TF(€) =m(&)- f(&)
for f € S(R™), we have that
7Aooy < Mo [ oy
for a suitable finite constant My, provided 1 < p < co.

Proof. (Theorem 3.2 ) We first prove the upper bound. Letting {b;} be the Rademacher functions from before,
we have? for 1 < p < 00

(3.1) A (YR
l

ya
2

< IR bl o< By (SR
Q :

where the inequality holds uniformly in € R™ (i. e. we fix the argument x of P, f). But then using that
is a probability space we have from Holder’s inequality that

J ISR 0y o < (13D RS 0y )
=[(fIZ A el a?

1 1
<By- H(Z ‘Plf‘Q) ’ HLP(R”)'

l

Ly (R")

We need to recover the upper bound for || f||z»®n) from this. Now the trick is to write (recall Lemma 2.2)

(3.2) f=/ (Zﬁlgw'bl(w)) dw,
£y

where we define

NP (). By = D&
Jw —%:-Plf bl( )7-Plg Elwlg(g) g(g)

23ee the addendum at the end for a justification of the passage to infinite sums
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To check (3.2), use that

/Q(;ﬁgwobl(w))dw/QZB/}SZﬁbl(w)bl/(w)dw

L

=Y PRRf=/.
l

Using Mihlin’s theorem and a direct verification, one checks that the operator ), b (w)f’l acts boundedly on
LP(R™) uniformly in w € Q. Tt follows that

1 1
0 many < H [ Nl oy @ < By 35 - 1R ey
l

giving the desired upper bound.

To get the lower bound, use (3.1) to deduce

(IR <t |13 rne)]” do
Q 7

l

pointwise. Applying fRn and again taking advantage of Theorem 3.4 we obtain

/Rn(zl:!sz|2)gdx<Ap1~/Rn/ﬂ|§ljplfbl(w)|pdwdx
:Agl'/Q/RJZPZfbl(wﬂpdxdw
l

<Dpn- Hf||ip(w)

As a consequence, we can now prove the desired generalization of Proposition 2.4 :

Proposition 3.5. Let 2 < p < oo, and set

n p—2
§i= = —.
2 p
Then we have for f € S(R™)
||f||LP(R") < Cpn- HfHHS(R")'

Proof. Due to Corollary 3.3 , we have
1
||fHLP(]R") < Dy (Z HBin,P(]R")) -
1

Thanks to Prop. 2.4, we can bound the term on the left by

(Z HPlinp(Rn))E < Epn - (Z HPlfHZS(]R"))§
l l

S Op,n : Hf‘

Hs(]Rn)?

as desired.
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4. ADDENDUM: JUSTIFICATION OF (3.1)

We obtain this inequality as limiting version of the case with finitely many summands. Letting f € S(R"),
introduce for N 2 € N the frequency-truncated function

Ny

SN Ny = Z P f.

I=—N,

Then we indeed have
(Z |Plf[—N1,N2]|2)g = /Q | ZBf[—Nth] y(w)[f dw < By, - (Z |Plf[—N1,N2]|2)g
l l l

by direct application of Khintchine’s inequality, since the sums are finite. By the earlier argument we then
infer that

Dyll i ol gy < NS PS03l B2 oy < Bpllfima vt oy
l

The idea then is to let N; 2 — +00, and to use that

Nl_wloi%z_,oo Hf[—NhN'z]HLP(Rn) = ||f||LP(]R")’
Nlﬁolgg\l,zqooH(;|Plf[*N1’N2]|2)%HLP(Rn - Z'Plfl HLP(]R”

for 1 < p < co. We show the second limiting relation, leaving the first as an exercise. Observe that

O IR fiemma ) —( Z|Plf| )z
l

_ Zle[—Nl,Nz]c ‘Plf|
(S Pfvmagl2)? + (5 | Bf))

[NIE

(3 nm)E- (Sl ni v [P
le[—Ny,Ns]¢ (Zl |Bf[—N17N2]‘2)% + (Zl |Bf|2)%

provided ), |Plf|2 # 0. Then note that since

(3 mP)E<s Y IRl

ZG[le,Nz]L le[le,NQ}C

and furthermore

0< (Zle[—Nth]‘: |Plf|2)§ <1
=~ 1 2.1 —
(1 1P )% + (4 [PA])2

on the set of points where ), |Plf|2 # 0, it suffices to show that

wim > RSl ey =0
B2 €[~ N1,Na]e

provided 1 < p < co. To see this, observe that (exercise!)
HPlfHLoo <C-2 ||fHL1(]R")’ | PlfHLl <C- HfHLl(R")'

Using an elementary interpolation argument as before (exercise), we infer (1 < p < 00).

p—1,
||Plf||Lp <c-27 ||f||L1(]R")




10 FUNCTIONS OF SOBOLEV REGULARITY; THE SPACES HS(RY)
But then we have
_p=1.N,1
H Z |Plf|HLP(]R") S Z HPlfHLP(R") <C-27 v HfHLl(R")’
I<—N; I<—N;
and the final term on the right obviously converges to 0 as N; — oco. We leave the proof that
N,lziinoo I Z |Bf|HLP(]R”) =0
1> N>
as an exercise (use that P, f decays rapidly with respect to [ since the Fourier transform of f is also a Schwartz
function).



