
CONSERVATION LAWS; UNIQUENESS OF SOLUTIONS

1. Conservation laws for the linear models

A remarkable feature of most of the dispersive equations coming from physical applications is that they are
characterized by certain conservation laws, which are integral expressions over fixed time slices which a priori
should be functions of time, but which are actually time independent. Some of these conserved quantities, such
as the energy, give us an a priori control over the solution, which is often of crucial importance to understand
the long time behavior of solutions. Moreover, as we shall see in this lecture, the conserved energy (or other
analogous quantities) allow us to make uniqueness assertions about solutions.

1.1. Conservation laws for the linear wave equation. Consider the linear wave equation

(1.1) utt −4u = 0, u = u(t, x), (t, x) ∈ R1+n,

where we assume as in the first lecture that u ∈ C2(R1+n). We can write the wave equation in the following
form:

(1.2) divt,x
(
ut,−∇xu

)
= 0,

where we set

divt,x(f, g1, g2, . . . gn) = ∂tf +

n∑
j=1

∂

∂xj
gj .

If we take the product of the preceding vanishing divergence relation with ut, we infer

0 = ut · divt,x
(
ut,−∇xu

)
= ∂t

(1

2
u2t
)
− divx

(
ut · ∇xu

)
+ ∂t

(1

2
|∇xu|2

)
= ∂t

(1

2
|∇t,xu

∣∣2)− divx
(
ut · ∇xu

)
.

(1.3)

We can derive a global and a local energy conservation law from this relation.

To begin with, assume that u ∈ C2(R1+n) is compactly supported on fixed time slices t = const. Then we
can integrate (1.5) over the space-time slab [0, T ]× Rn, and obtain

0 =

∫ T

0

∫
Rn

[
∂t
(1

2
|∇t,xu

∣∣2)− divx
(
ut · ∇xu

)]
dxdt

=

∫
Rn

1

2
|∇t,xu

∣∣2 dx∣∣
t=T
−
∫
Rn

1

2
|∇t,xu

∣∣2 dx∣∣
t=0

.

Setting

E(T ) :=

∫
Rn

1

2
|∇t,xu

∣∣2 dx∣∣
t=T

the energy of u at time T , we see that the energy is actually independent of the time. This is a global
conservation law:

Proposition 1.1. We have

E(T ) = E(0) ∀T ∈ R.

We can also deduce more delicate local conservation laws. For some p = (t0, x0) ∈ R1+n with t0 > 0,
consider the backward solid light cone K centered at p and given by

K = {(t, x) | t ≤ t0, |t− t0| ≥ |x− x0|}.
1



2 CONSERVATION LAWS; UNIQUENESS OF SOLUTIONS

Further consider the truncated solid light cone

K0,t1 = K ∩
(
[0, t1]× Rn

)
for 0 ≤ t1 ≤ t0. Let

M0,t1 := {(t, x) | 0 ≤ t ≤ t1, |t− t0| = |x− x0|}

the mantle of the solid truncated light cone. We can now integrate (1.5) over K0,t1 and apply the divergence
theorem. This results in

(1.4) 0 =

∫
∂K0,t1

(1

2
|∇t,xu

∣∣2,−ut · ∇xu) · −→n dσ,
where −→n denotes the outward pointing perpendicular unit vector on the boundary. Now observe that

−→n = (1,
−→
0 )

on K0,t1 ∩ {t = t1} while

−→n = (−1,
−→
0 )

on K0,t1 ∩ {t = 0}.
Finally, at a point (t, x) = (t, x0 + |x− x0| · ω), ω ∈ Sn−1 on M0,t1 , we have

−→n =
1√
2
· (1, ω).

The following key computation reveals that the boundary contribution from the mantle to the preceding
integral is non-negative:(1

2
|∇t,xu

∣∣2,−ut · ∇xu) · (1, ω) =
1

2
(ut − ω · ∇xu)2 +

1

2
(|∇xu|2 − (ω · ∇xu)2) ≥ 1

2
(ut − ω · ∇xu)2 ≥ 0,

since

(ω · ∇xu)2 ≤ |∇xu|2

from the Cauchy-Schwarz inequality. We can thus draw the following conclusion from (1.4):

Proposition 1.2. Using the notation from before, we have the inequality( ∫
|x−x0|≤|t1−t0|

|∇x,tu|2 dx
)∣∣
t=t1
≤
∫
|x−x0|≤t0

|∇x,tu|2 dx

Letting t0 → +∞ and t1 = T this becomes∫
Rn
|∇x,tu|2 dx|t=T ≤

∫
Rn
|∇x,tu|2 dx|t=0

and by symmetry between the times t = T, t = 0 this again recovers the conservation law Prop. 1.1. The
preceding derivation furnishes additional information, however.

One immediate application of the preceding proposition concerns uniqueness of solutions of the linear wave
equation:

Corollary 1.3. Let u1,2 ∈ C2(R1+n) be two solutions of the linear wave equation on R1+n. Assume using
the preceding notation that

u1(0, x) = u2(0, x), u1,t(0, x) = u2,t(0, x), ∀|x− x0| ≤ t0.

Then we have

u1(t, x) = u2(t, x), (t, x) ∈ K0,t0 .
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Proof. Observe that u(t, x) := u1(t, x) − u2(t, x) is also a solution of the free wave equation, and since
∇t,xu(0, x) = 0 for |x− x0| ≤ t0, applying Prop. 1.2 for any t1 ∈ [0, t0] implies

∇t,xu(t1, x) = 0 |x− x0| ≤ |t1 − t0|.

But then for any T ∈ [0, t0] and x satisfying |x− x0| ≤ |T − t0| we have

u(T, x) = u(T, x)− u(0, x) =

∫ T

0

ut(t, x) dt =

∫ T

0

0 dt = 0.

�

We could have deduced this property from the solution formulae in the cases n = 1, 3, but here we obtain
this property in full generality without explicitly solving the wave equation!

Importantly the energy is not the only conserved quantity for the free wave equation. Another such
quantity, the momentum, is obtained as follows: multiplying (1.2) by uxj , j = 1, 2, . . . , n, we find

0 = uxj · divt,x
(
ut,−∇xu

)
= divt,x

(
uxj · ut,−uxj · ∇xu

)
− 1

2
∂xj
(
u2t − |∇xu|2

)
(1.5)

If we integrate this relation over the space-time slab [0, T ]× Rn, we find

Mj(T ) = Mj(0), j = 1, 2, . . . , n,

where we set Mj(t) =
∫
Rn uxj · ut dx. This conservation law is somewhat less useful since the quantities Mj

are not positive definite, and hence do not furnish an obvious way to control the size of the solution.

Taking advantage of the obvious commutation properties of derivatives on R1+n, we note that if 2u = 0,
then so is

∏n
j=0

∂αj

∂x
αj
j

u, where we set x0 := t, and we assume u is sufficiently regular such that the differentiated

function is still of class C2(R1+n). This is certainly the case when u ∈ C∞(R1+n). Under this assumption,
we then obtain infinitely many more conserved quantities, namely

(1.6) E
( n∏
j=0

∂αj

∂x
αj
j

u
)
,
(
α0, α1, . . . , αn

)
∈ Nn+1.

What distinguishes the original quantities E,Mj is that for many interesting nonlinear wave equations, there
are analogues for them, while there are no analogues for the family of conservation laws (1.6).

1.2. Conservation laws for the linear Schrodinger equation. By contrast to the linear wave equation,
there are two natural positive definite conserved quantities for the linear Schrodinger equation, and which are
also preserved for a class of important nonlinear Schrodinger equations (NLS). These are the mass and the
energy: letting ψ(t, x) a solution of

i∂tψ +4ψ = 0,

then we set

m(t) =

∫
Rn
|ψ|2(t, x) dx, E(t) :=

1

2

∫
Rn
|∇ψ|2(t, x) dx.

Here we use the notation

|∇ψ|2 =

n∑
j=1

| ∂
∂xj

ψ|2.

That these quantities are indeed conserved follows from

Proposition 1.4. Assume that ψ ∈ C∞(Rn) is a solution of the Schrodinger equation such that

ψ(t, ·) ∈ S(Rn), ψt(t, ·) ∈ S(Rn)

for all t ∈ R. Then we have

m(t) = m(0), E(t) = E(0), ∀t ∈ R.
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Proof. Note that if ψ is a solution of the Schrodinger equation, then so is ∂
∂xj

ψ, j = 1, 2, . . . , n. The energy

conservation follows hence from the mass conservation. For the latter, we observe that

i
d

dt

∫
Rn
|ψ(t, x)|2 dx = 2i

∫
Rn

Im
(
iψtψ̄

)
dx = −2i

∫
Rn

Im
(
4ψψ̄

)
dx

= +2i

∫
Rn

Im
(
|∇ψ|2

)
dx

= 0.

�

Using the preceding proposition, we can immediately infer the following uniqueness result:

Corollary 1.5. Let ψ ∈ C∞(Rn) is a solution of the Schrodinger equation such that

ψ(t, ·) ∈ S(Rn), ψt(t, ·) ∈ S(Rn)

for all t ∈ R, and such that ψ(0, x) = 0 for all x ∈ Rn. Then

ψ = 0.

1.3. Conservation laws for the linear KdV equation. Finally we state

Proposition 1.6. Assume that ψ ∈ C∞(Rn) is a solution of the linear KdV equation such that

ψ(t, ·) ∈ S(Rn), ψt(t, ·) ∈ S(Rn)

for all t ∈ R. Then setting

m(t) :=

∫
R
ψ2 dx,

we have

m(t) = m(0) ∀t ∈ R.

Proof. This is again a consequence of integration by parts. Using that

ψt + ψxxx = 0,

we find

d

dt
m(t) = 2

∫
R
ψψt dx = −2

∫
R
ψψxxx dx = +2

∫
R
ψxψxx dx

=

∫
R

d

dx

(
ψ2
x

)
dx

= 0.

�

Remark 1.7. It is an amazing fact that the true nonlinear KdV equation

ψt + ψxxx − 6ψψx = 0

admits an infinite family of conservation laws, involving expressions with more and more derivatives. This
is related to the fact that this model is completely integrable, and hence belongs to a class of very special
nonlinear PDE. Most dispersive PDE do not have this structure.
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2. A more abstract approach to conservation laws: energy momentum tensor for the wave
equation

We follow the presentation in Shatah-Struwe(2000). Let u ∈ C2
(
Rn+1

)
a solution of the free wave equation:

2u = utt −4u = 0. Consider the formal space time integral, called a Lagrangian action functional

(2.1) L(u) :=

∫
Rn+1

(
|ut|2 − |∇xu|2

)
dxdt.

Let us consider the formal variation of this expression with respect to a compactly supported function φ ∈
C2

0

(
Rn+1

)
. This means we consider

∂

∂ε
L
(
u+ εφ

)∣∣
ε=0

=

∫
Rn+1

2
(
ut · φt −∇xu · ∇xφ

)
dxdt.

This last integral is now well-defined, and performing integration by parts, this becomes∫
Rn+1

2
(
ut · φt −∇xu · ∇xφ

)
dxdt = −2

∫
Rn+1

2u · φdtdx = 0.

It follows that u is a critical point for the Lagrangian action functional L(u).

The Lagrangian in turn can be used to derive conservation laws, due to the fact that there is no explicit
dependence of t, x in it, which makes it invariant under general coordinate changes. First, let us write the
integrand in the Lagrangian in the following succinct way:

(2.2) |ut|2 − |∇xu|2 =

n∑
α,β=0

ηαβ · ∂αu · ∂βu,

where we define ∂0 = ∂t, ∂i = ∂xi , i = 1, 2, . . . , n. Also, we have

ηαβ =

 1 0 . . . 0
0 −1 . . . 0
0 0 . . .− 1


Write

L(∇u, η) :=

n∑
α,β=0

ηαβ · ∂αu · ∂βu =: ηαβ · ∂αu · ∂βu.

Here we omit the summation sign at the end, with the convention that one sums over identical indices occurring
twice. The one makes

Definition 2.1. The family of functions

Tαβ :=
1

2
ηαβL(∇u, η)− ∂L(∇u, η)

∂ηαβ
, 0 ≤ α, β ≤ n,

is called the energy momentum tensor. We also set

Tαβ = ηαγηβδTγδ.

For example, we observe that

T00 =
1

2
·
(
|ut|2 − |∇xu|2

)
− |ut|2 = −1

2
·
(
|ut|2 + |∇xu|2

)
is the energy density, up to a constant.

The conservation laws for the wave equation which we observed on an ad hoc basis now emerge as a
consequence of the following
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Proposition 2.2. If u ∈ C2(Rn+1) is a solution of the free wave equation, then we have the following
vanishing divergence relations:

n∑
α=0

∂αT
αβ =: ∂αT

αβ = 0, 0 ≤ β ≤ n.

Proof. Instead of direct calculation, we use the observation that the Lagrangian action functional is invariant
under general coordinate changes to derive this. Specifically, we shall use the invariance under one parameter
groups of diffeomorphisms. Let

U ⊂ Rn+1

a pre-compact open subset, let τ ∈ C∞0
(
Rn+1;Rn+1

)
with support contained inside U , and let ε∗ > 0 be small

enough such that setting

Gε := id + ετ ∈ C∞
(
Rn+1;Rn+1

)
,

we have that

Gε
(
U
)

= U, 0 ≤ ε < ε∗,

and Gε is a diffeomorhpism. Then we observe that letting
∣∣dGε∣∣ be the determinant of the Jacobian matrix

dGε :=
(∂Gβε
∂α

)
0≤α,β≤n,

we have that (exercise) ∣∣dGε∣∣ = 1 + ε · ∂ατα +O
(
ε2
)
.

Now from the basic change of variables formula we infer that∫
U

L(∇u, η) ◦Gε ·
∣∣dGε∣∣ dxdt =

∫
Gε(U)

L(∇u, η) dxdt =

∫
U

L(∇u, η) dxdt

It follows that

(2.3)
d

dε

(∫
U

L(∇u, η) ◦Gε ·
∣∣dGε∣∣ dxdt)∣∣ε=0

= 0.

We shall explicitly compute this derivative. To begin with, we would like to interpret

L(∇u, η) ◦Gε = ηαβε · ∂αuε · ∂βuε,

where we set

uε := u ◦Gε,
and ηαβε is a suitably modified space-time metric.

Observe that letting ∂αu = pα, α = 0, . . . , n, we have

∂αuε = ∂αu+ ε · ∂α
(
∂βu · τβ

)
+O

(
ε2
)
,

In turn we can write ∫
U

ηαβε · ∂ε
(
∂αuε · ∂βuε

)∣∣
ε=0

dtdx

= 2

∫
U

ηαβε · ∂βuε · ∂α
(
∂γu · τγ

)∣∣
ε=0

dtdx

= −2

∫
U

∂α
(
ηαβε · ∂βuε

)
·
(
∂γu · τγ

)∣∣
ε=0

dtdx

= 0,

since u solves the free wave equation. It follows that in order to evaluate the left hand side of (2.3), we only
need to consider the case when the operator d

dε falls on ηαβε or on
∣∣dGε∣∣. For the former case, we need to
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compute the coefficient matrix ηαβε to linear order in ε. Letting G−1ε the inverse of the diffeomorphism Gε,
we infer that (

∂β
(
Gε
)
◦G−1ε

)γ · ∂α(G−1ε )β = δγα,

∂β
(
Gε
)γ · ∂α(G−1ε )β ◦Gε = δγα

where we sum over β and the right hand side is the usual delta function which vanishes except δγα = 1 when
α = γ. We now deduce that (summing over repeated indices)

ηαβε = ηγδ ·
[(
∂γ
(
G−1ε

)
◦Gε

]α · (∂δ(G−1ε ) ◦Gε]β
In fact, in light of ∂αuε =

(
∂νu ◦Gε

)
· ∂αGνε , we then get

ηαβε · ∂αuε · ∂βuε

= ηγδ ·
[(
∂γ
(
G−1ε

)
◦Gε

]α · (∂δ(G−1ε ) ◦Gε]β · (∂νu ◦Gε) · ∂αGνε · (∂µu ◦Gε) · ∂βGµε
= ηνµ · (∂νu ◦Gε

)
·
(
∂µu ◦Gε

)
= L(∇u, η) ◦Gε

We then compute that

ηαβε = ηγδ ·
(
δαγ − ε∂γτα +O(ε2)

)
·
(
δβδ − ε∂δτ

β +O(ε2)
)

= ηαβ − ε
(
∂βτα + ∂ατβ

)
+O

(
ε2
)
.

Coming back to (2.3), we see that the left hand side equals∫
U

(
L(∇u, η) · ∂ατα −

∂L(∇u, η)

∂ηαβ
·
(
∂βτα + ∂ατβ

))
dtdx

= −
∫
U

τβ∂α
(
ηαβL(∇u, η)− 2

∂L(∇u, η)

∂ηαβ

)
dtdx

Since τ was arbitrary, the proposition follows.
�


