CONSERVATION LAWS; UNIQUENESS OF SOLUTIONS

1. CONSERVATION LAWS FOR THE LINEAR MODELS

A remarkable feature of most of the dispersive equations coming from physical applications is that they are
characterized by certain conservation laws, which are integral expressions over fixed time slices which a priori
should be functions of time, but which are actually time independent. Some of these conserved quantities, such
as the emnergy, give us an a priori control over the solution, which is often of crucial importance to understand
the long time behavior of solutions. Moreover, as we shall see in this lecture, the conserved energy (or other
analogous quantities) allow us to make uniqueness assertions about solutions.

1.1. Conservation laws for the linear wave equation. Consider the linear wave equation
(1.1) uy — Au =0, u=u(t,z), (t,z) € R**"

where we assume as in the first lecture that u € C2(R1*™). We can write the wave equation in the following
form:

(1.2) divy g (us, —Veu) =0,

where we set
"9
dive o (f, 91,92, -9n) = O f + ; %jgj-
If we take the product of the preceding vanishing divergence relation with us, we infer

0= uy - divy o (ug, —Vyu) = @(%uf) — divy (ug - Vou) + at(%|ku\2)
(1.3)
= at(%‘vt,xuf) — diVx (Ut . qu)

We can derive a global and a local energy conservation law from this relation.

To begin with, assume that v € C?(R*") is compactly supported on fixed time slices ¢ = const. Then we
can integrate (1.5) over the space-time slab [0, 7] x R™, and obtain

T
0:/ / [5t(%|vt,xU|2) — div, (ug - Vou)] dadt
0 n

1 1
= An §|Vt’fu|2dx‘t=T — An, §|Vt,a:u|2d$|t:0~

Setting

1
E(T) ;:/ S Vieul*dol,_,
Rn

the energy of u at time T, we see that the energy is actually independent of the time. This is a global
conservation law:

Proposition 1.1. We have
E(T)=E0)VT e R.
We can also deduce more delicate local conservation laws. For some p = (tg,z9) € R with tq > 0,

consider the backward solid light cone K centered at p and given by

K= {(t,x) |t S to, |t—t0‘ Z |£L'—{L‘0|}.
1
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Further consider the truncated solid light cone
Koy, = KN ([O,tl] x R™)
for 0 <ty <tgy. Let
Moy, :={(t,z)|0<t<t, |t —to] = |x — 0|}

the mantle of the solid truncated light cone. We can now integrate (1.5) over Ko+, and apply the divergence
theorem. This results in

1
(1.4) 0= / (7|Vmu 2, —Ug un) -7 do,
0Koy 2
where 7 denotes the outward pointing perpendicular unit vector on the boundary. Now observe that
_>
w=(1,0)

on Ko, N{t =t} while
W= (-1,0)

on KO,tl N {t = O}
Finally, at a point (t,z) = (t,z0 + |z — x¢| - w), w € S"! on My+,, we have

1
n=—-(1,w).

V2
The following key computation reveals that the boundary contribution from the mantle to the preceding

integral is non-negative:

1 2 1 1
(§|Vt7xu| , — Uy - qu) (Lw) = §(Ut —w-Vau)? + §(|V%u|2 —(w-Veu)?) > =(uy — w- Vau)® >0,

N | =

since
(w- Veu)? < |Vyul?
from the Cauchy-Schwarz inequality. We can thus draw the following conclusion from (1.4):

Proposition 1.2. Using the notation from before, we have the inequality

(/ |V1,tu\2d:z:)|t:t1 S/ |vz,tu|2dx
|mfzo\§|t17t0\ |I*£L’0|St0

Letting tg — 400 and ¢t; = T this becomes

/ Vol deloer < / IV, suf? deloeg

and by symmetry between the times ¢ = T,¢ = 0 this again recovers the conservation law Prop. 1.1. The
preceding derivation furnishes additional information, however.

One immediate application of the preceding proposition concerns uniqueness of solutions of the linear wave
equation:

Corollary 1.3. Let uy o € C*(R'™™) be two solutions of the linear wave equation on R'™™. Assume using
the preceding notation that

u1(0,z) = u2(0, ), u1,4(0, ) = ug (0, ), V|x — zo| < to.

Then we have
ui(t,x) = u2(t,x), (t,z) € Kog,-
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Proof. Observe that u(t,z) := uy(t,x) — ua(t,x) is also a solution of the free wave equation, and since
Viou(0,2) =0 for | — zg| < to, applying Prop. 1.2 for any ¢, € [0, ] implies

Vizu(t,z) = 0]z — xo| < |t1 — tol.

But then for any T € [0, to] and z satisfying |z — zo| < [T — to| we have

T T
w(T,z) =u(T,z) —u(0,z) = /0 ug(t, ) dt = /0 0dt =0.
U

We could have deduced this property from the solution formulae in the cases n = 1,3, but here we obtain
this property in full generality without explicitly solving the wave equation!

Importantly the energy is not the only conserved quantity for the free wave equation. Another such
quantity, the momentum, is obtained as follows: multiplying (1.2) by u,;, j = 1,2,...,n, we find

(1.5) 0=y, -dive, (ut, —Vgcu) = divy 4 (umj SUgy —Ug; - Vmu) — %&Ci (uf — \Vmu|2)

If we integrate this relation over the space-time slab [0, 7] x R™, we find
MJ(T) = ]\4J(0)7 ] = 1,27 ceeyn,

where we set M, (t) = fRn Ug, - ur dr. This conservation law is somewhat less useful since the quantities M;
are not positive definite, and hence do not furnish an obvious way to control the size of the solution.

Taking advantage of the obvious commutation properties of derivatives on R*", we note that if Ou = 0,
then so is | |?:0 %u, where we set ¢ := t, and we assume u is sufficiently regular such that the differentiated
T .
J

function is still of class C?(R!*™). This is certainly the case when u € C°°(R'*"). Under this assumption,
we then obtain infinitely many more conserved quantities, namely

(1.6) E(Haiu), (ao,al,...,an) e N*HL,

What distinguishes the original quantities &, M; is that for many interesting nonlinear wave equations, there
are analogues for them, while there are no analogues for the family of conservation laws (1.6).

1.2. Conservation laws for the linear Schrodinger equation. By contrast to the linear wave equation,
there are two natural positive definite conserved quantities for the linear Schrodinger equation, and which are
also preserved for a class of important nonlinear Schrodinger equations (NLS). These are the mass and the
energy: letting ¥ (¢, z) a solution of

0 + A = 0,

then we set )
mit) = [ WPt de, B0 =5 [ [V6P(ta) da.

Here we use the notation
"0
2 _ O 2
Vol =2 15 vP
j=1
That these quantities are indeed conserved follows from
Proposition 1.4. Assume that ) € C*°(R™) is a solution of the Schrodinger equation such that
7/}(ta ) € S(Rn)v ¢t(t7 ) € S(Rn)
for allt € R. Then we have
m(t) = m(0), E(t) = E(0), Vt € R.
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Proof. Note that if ¥ is a solution of the Schrodinger equation, then so is a%jw, j=1,2,...,n. The energy
conservation follows hence from the mass conservation. For the latter, we observe that

4
dt Jgn

[(t,z)|* doz = 21/ Im (iyy1)) do = 721'/ Im (M) da

n n

:+2i/ Im (|V|?) da

=0.
O
Using the preceding proposition, we can immediately infer the following uniqueness result:

Corollary 1.5. Let ¢ € C*°(R"™) is a solution of the Schrodinger equation such that

P(t,-) € S(R™), (¢, ) € S(R")
for allt € R, and such that ¥(0,2) =0 for all z € R™. Then

¥ =0.

1.3. Conservation laws for the linear KdV equation. Finally we state
Proposition 1.6. Assume that v € C*°(R"™) is a solution of the linear KdV equation such that

1#(157 ) € S(Rn)v wt(ta ) € S(Rn)
for allt € R. Then setting

m(t) :z/w2 dz,
R
we have
m(t) = m(0) vVt € R.
Proof. This is again a consequence of integration by parts. Using that
wt + wrxz = 07
we find
d
dt R R R
d o
= | — d
AL
=0.
O

Remark 1.7. Tt is an amazing fact that the true nonlinear KdV equation

¢t + d)x:c:c - 6¢¢x =0

admits an infinite family of conservation laws, involving expressions with more and more derivatives. This
is related to the fact that this model is completely integrable, and hence belongs to a class of very special
nonlinear PDE. Most dispersive PDE do not have this structure.
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2. A MORE ABSTRACT APPROACH TO CONSERVATION LAWS: ENERGY MOMENTUM TENSOR FOR THE WAVE
EQUATION

We follow the presentation in Shatah-Struwe(2000). Let u € C*(R™*!) a solution of the free wave equation:
Ou = uyy — Au = 0. Consider the formal space time integral, called a Lagrangian action functional

(2.1) L(u) = /]R+ (Juel? — |V oul?) dadt.

Let us consider the formal variation of this expression with respect to a compactly supported function ¢ €
Cc? (R”H). This means we consider

0
gc(u +e9)|._, = /Rm 2(ug - oy — Vou - Vo) dudt.
This last integral is now well-defined, and performing integration by parts, this becomes
/ 2(ut cpy — Vu- qui)) dxdt = —2/ Ou - ¢ dtdx = 0.
Rn+1 Rn+1
It follows that w is a critical point for the Lagrangian action functional L(u).
The Lagrangian in turn can be used to derive conservation laws, due to the fact that there is no explicit

dependence of ¢,z in it, which makes it invariant under general coordinate changes. First, let us write the
integrand in the Lagrangian in the following succinct way:

(2.2) lug|> — |Vul? = Z 7P - dou - Dpu,
a,3=0
where we define 9y = 0y, 0; = 0y, i =1, 2,...,n. Also, we have
1 0... 0
=10 -1 ...0
0o 0 ...—1
Write

L(Vu,n) = Z 7P Do - gu =: P - Dyu - Dgu.
a,B=0

Here we omit the summation sign at the end, with the convention that one sums over identical indices occurring
twice. The one makes

Definition 2.1. The family of functions

OL(Nwm) B<n

1
Top = 577(15L(Vu,77) s VS <

is called the energy momentum tensor. We also set
T8 — navn’géTw;.

For example, we observe that

1 1
Too = 3 (|Ut|2 — \qu|2) — Jug? = —5 (|Ut|2 + \Vmu|2)
is the energy density, up to a constant.

The conservation laws for the wave equation which we observed on an ad hoc basis now emerge as a
consequence of the following
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Proposition 2.2. If u € C*(R"*) is a solution of the free wave equation, then we have the following
vanishing divergence relations:
n
D 0.7 = 0,7 =0,0< B <n.
a=0
Proof. Instead of direct calculation, we use the observation that the Lagrangian action functional is invariant
under general coordinate changes to derive this. Specifically, we shall use the invariance under one parameter
groups of diffeomorphisms. Let
UcC Rn+1
a pre-compact open subset, let 7 € C§° (R"‘H; R"+1) with support contained inside U, and let £, > 0 be small
enough such that setting
G :=id+er € C®(R"H R,
we have that
G.(U)=U,0<e<e,,
and G, is a diffeomorhpism. Then we observe that letting ‘ng‘ be the determinant of the Jacobian matrix

ez
Oa )Oga,ﬁgn’

dG. := (

we have that (exercise)
’dG5’ =14+¢e-0,7%+ 0(52).

Now from the basic change of variables formula we infer that

/ L(Vu,n) o Ge - |dG.| dudt = / L(Vu,n) dzdt = / L(Vu,n) dvdt
U G:(U) U
It follows that

d

(2.3) 7(/ L(Vu,n) 0 G. - [dGe| dadt )| _, = 0.

de

We shall explicitly compute this derivative. To begin with, we would like to interpret
L(Vu,n) 0 G = 12P - d,u. - dpu,,

where we set
ue == u o G,

and 728 is a suitably modified space-time metric.
Observe that letting d,u = po, @ =0, ..., n, we have

Datte = D+ - 0a (Dpu - 75) + O(e?),

In turn we can write
/U 2P - 0. (Oaue - Opuc)|__, dtda
=2 /U 0P - Oguc - 0o (Oyu - )| _, dida
S /U Do (028 - Opu) - (Byu - 7)|__, dtd

:O’

since u solves the free wave equation. It follows that in order to evaluate the left hand side of (2.3), we only
need to consider the case when the operator i falls on n2# or on ‘dG | For the former case, we need to
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compute the coefficient matrix n%? to linear order in e. Letting GZ! the inverse of the diffeomorphism G,
we infer that

(95(G2) 0 G - 0, (G2Y) =57,
05(G2)" - 0 (G2 0 G = 67

where we sum over 3 and the right hand side is the usual delta function which vanishes except §) = 1 when
a =~. We now deduce that (summing over repeated indices)

ne? = [(0,(GY) 0 Ge] - (95(G27) 0 G
In fact, in light of J,u. = ((‘3,,u o GE) - 0,,G%, we then get
7P - Ooue - Dpu.
= [(05(G2Y) 0 GL]™ - (05(G2Y) 0 Ge]” - (Byu o GL) - 0uGY - (Buuo Ge) - DsGH
=0 (QuoG.) - (OuuoGe)
= L(Vu,n) oG,
We then compute that
nof =y (65 — 0,7 + 0(e?)) - (6? — s’ + 0(e?))
=P — 5(857'0‘ + 8%‘6) + 0(52).
Coming back to (2.3), we see that the left hand side equals

« 6L(vu777) Joe’ a3
/U(L(Vu,n)-&ﬂ —W-(a T 4+ 0% )) dtdz

OL(Vu,n)
- _ By _ ’
= /UT 0] (nagL(Vu,n) 2 R ) dtdx

Since 7 was arbitrary, the proposition follows.



