

FOURIER MULTIPLIERS; MIKHLIN MULTIPLIER THEOREM

We follow Muscalu-Schlag Vol. I.

1. INTRODUCTION

Up until now we have studies operators which were given as convolution integrals $Tf(x) = \int_{\mathbb{R}^n} K(x - y)f(y) dy$, and deduced their L^p -boundedness in terms of suitable conditions on K . However, many operators, such as the Riesz operators $R_j f = \partial_{x_j} \sqrt{-\Delta}^{-1} f$, can be conveniently expressed in terms of the Fourier transform, i. e. we often encounter operators of the form

$$(1.1) \quad Tf(x) = \int_{\mathbb{R}^n} e^{2\pi i x \cdot \xi} m(\xi) \hat{f}(\xi) d\xi.$$

For example, the Riesz multipliers are given by the Fourier multiplier $m(\xi) = \frac{\xi_j}{|\xi|}$, and the Hilbert transform (on $\mathbb{R} = \mathbb{R}^1$) is given by multiplier $m(\xi) = c \text{sign} \xi$. It is then very natural to develop a theory of L^p -boundedness of such operators in terms of suitable conditions on $m(\xi)$. Fortunately, we shall be able to develop such a theory quite easily based on our earlier studies of Calderon-Zygmund operators.

2. LOCALIZATION TO DYADIC SCALES

An extremely useful and versatile tool in studying operators of the form (1.1) is *localization to dyadic scales*. Here there is nothing sacrosanct about *dyadic* scales $\xi \sim 2^k$, $k \in \mathbb{Z}$, it being possible to replace this by scales of the form $\xi \sim a^k$ for any $a > 1$. What matters is that the scales grow or shrink exponentially with k , which enables summation over these scales in many situations. However, dyadic is the generally used standard, so we adhere to it.

The very first step of so-called *Littlewood-Paley calculus*, which is the study of the properties of functions in terms of their dyadic parts, is the introduction of a suitable *partition of unity* subordinate to dyadic scales, as in the following

Lemma 2.1. *There exists a radial function $\psi \in C_0^\infty(\mathbb{R}^n)$ supported on $\mathbb{R}^n \setminus \{0\}$ and with the property that*

$$\sum_{j \in \mathbb{Z}} \psi\left(\frac{x}{2^j}\right) = 1 \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

Also, we may ensure that for any $x \in \mathbb{R}^n \setminus \{0\}$ there are at most two non-zero terms in the sum on the left.

Proof. Pick a radial function $\chi(x) \in C_0^\infty(\mathbb{R}^n)$ with $\chi(x) = 1$, $|x| \leq 1$, and $\chi(x) = 0$, $|x| \geq 2$. Further, let

$$\psi(x) := \chi(x) - \chi(2x)$$

Note that $\psi(x) = 0$ unless $\frac{1}{2} < |x| < 2$. Thus, if $\psi\left(\frac{x}{2^j}\right) \neq 0$, then depending on whether $1 \leq \frac{x}{2^j} < 2$ or $\frac{1}{2} < \frac{x}{2^j} < 1$, we we can have $\psi\left(\frac{x}{2^{j+1}}\right) \neq 0$ or $\psi\left(\frac{x}{2^{j-1}}\right) \neq 0$ but $\psi\left(\frac{x}{2^k}\right) = 0$ for all other values of k . Thus we have the final assertion of the lemma for this choice of ψ . Moreover, we have

$$\sum_{j=-N}^{j=N} \psi\left(\frac{x}{2^j}\right) = \chi\left(\frac{x}{2^N}\right) - \chi(2^{N+1}x)$$

Given $x \neq 0$, pick N large enough such that $\frac{|x|}{2^N} \leq 1$ and $2^{N+1}|x| > 2$. Thus we get

$$\sum_{j \in \mathbb{Z}} \psi\left(\frac{x}{2^j}\right) = 1 \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

□

The cutoffs $\psi(\frac{x}{2^j})$ of the preceding lemma allow us to introduce the so-called Littlewood-Paley localizers P_j : for any $f \in \mathcal{S}(\mathbb{R}^n)$, say, we put

$$\widehat{P_j f}(\xi) := \psi\left(\frac{\xi}{2^j}\right) \widehat{f}(\xi).$$

Then the preceding lemma easily implies that

$$\sum_{j \in \mathbb{Z}} P_j f = f.$$

In many situations it is extremely useful to replace a function f by its dyadically localized pieces $P_j f$, $j \in \mathbb{Z}$, as this gives much better control, and one eventually sums over the different dyadic scales. Such a procedure will be quite successful in the proof of the following theorem.

3. L^p -BOUNDS FOR FOURIER MULTIPLIERS

We now prove a quite general theorem that implies good L^p -bounds for a wide variety of Fourier multipliers, which in particular encompasses all Riesz multipliers. This is the *Mikhlin multiplier theorem*

Theorem 3.1. (*Mikhlin*) *Let $m : \mathbb{R}^n \setminus \{0\} \rightarrow \mathbf{C}$ satisfy the bounds*

$$|\partial_\xi^\gamma m(\xi)| \leq B|\xi|^{-|\gamma|}, \quad |\gamma| \leq n+2, \quad \xi \neq 0.$$

for any multi-index γ of length $\leq n+2$. Then the corresponding Fourier multiplier satisfies the bounds

$$\|\mathcal{F}^{-1}(m\widehat{f})\|_{L^p(\mathbb{R}^n)} \leq C(n, p) \cdot B \|f\|_{L^p(\mathbb{R}^n)}, \quad 1 < p < \infty,$$

Proof. This is an application of the dyadic localization technique. Thus we instead consider the localized operators

$$T_j f := T P_j f = \mathcal{F}^{-1}\left(m\psi\left(\frac{\xi}{2^j}\right)\widehat{f}\right),$$

where we have replaced the kernel $m(\xi)$ by the localized $m(\xi)\psi(\frac{\xi}{2^j})$. Then our strategy will be to show that each of the T_j is in fact a strong Calderon Zygmund operator with kernel bounds which decay suitably in relation to j and can be summed up to show that the original operator $T = \mathcal{F}^{-1}(m\widehat{f})$ satisfies all the required properties in C.-Z. theory to give L^p -boundedness.

Thus write

$$\mathcal{F}^{-1}\left(m\psi\left(\frac{\xi}{2^j}\right)\widehat{f}\right) = \int_{\mathbb{R}^n} K_j(x-y) f(y) dy,$$

where $K_j(x) = \mathcal{F}^{-1}(m(\xi)\psi(\frac{\xi}{2^j}))$. To bound K_j , note that for any $k \in [0, n+2]$, we have

$$|x^k| |K_j(x)| \leq C \sum_{|\gamma|=k} |x^\gamma K_j(x)| = C_1 \sum_{|\gamma|=k} |\mathcal{F}^{-1}(\partial_\xi^\gamma m_j(\xi))|$$

Thus we get

$$\| |x^k| K_j(x) \|_{L^\infty(\mathbb{R}^n)} \leq C_1 \sum_{|\gamma|=k} \|\partial_\xi^\gamma m_j\|_{L^1(\mathbb{R}^n)} \leq C_2 \cdot B 2^{(n-k)j}$$

or in other words

$$|K_j(x)| \leq C_2 \cdot B 2^{(n-k)j} |x|^{-k}, \quad k \in [0, n+2]$$

Similarly, since differentiation with respect to x translates into multiplication with ξ up to a constant, we get

$$|\nabla K_j(x)| \leq C_2 \cdot B 2^{(n+1-k)j} |x|^{-k}, \quad k \in [0, n+2].$$

The strategy now is to infer similar bounds for the sum $K(x) = \sum_j K_j(x)$ by using the preceding bounds with suitably chosen $k \in [0, n+2]$. Thus we get for $x \neq 0$

$$|K(x)| \leq \sum_{2^j < |x|^{-1}} C_2 \cdot B 2^{nj} + \sum_{2^j > |x|^{-1}} C_2 \cdot B 2^{-j} |x|^{-n-1} \leq C_3 \cdot B |x|^{-n}$$

Also

$$|\nabla K(x)| \leq \sum_{2^j < |x|^{-1}} C_2 \cdot B 2^{(n+1)j} + \sum_{2^j > |x|^{-1}} C_2 \cdot B 2^{-j} |x|^{-n-2} \leq C_3 \cdot B |x|^{-n-1}$$

Note that in the last sum we used $k = n + 2$.

The proof of the theorem is now straightforward. We know that the condition on ∇K characteristic for a strong C.-Z. operator implies the Hormander condition, and we also have the required pointwise bound on K for a C.-Z. operator. We also know from the proof of the weak L^1 -bound for C.-Z. operators that we only need the L^2 -boundedness in addition to the preceding two conditions to give all L^p -bounds for $1 < p < \infty$. The L^2 -bound, however, is obvious, since by Plancherel's theorem we have

$$\|T\|_{L^2 \rightarrow L^2} \leq \|m\|_{L^\infty} \leq B.$$

□

Corollary 3.2. *We have the bounds*

$$\|R_j f\|_{L^p(\mathbb{R}^n)} \leq C_p \|f\|_{L^p(\mathbb{R}^n)}, \quad j = 1, 2, \dots, n, \quad 1 < p < \infty$$

In particular, if

$$\Delta f = h$$

with $h \in \mathcal{S}(\mathbb{R}^n)$, say, and $\lim_{|x| \rightarrow \infty} f(x) = 0$, then we have

$$\|\nabla^2 f\|_{L^p(\mathbb{R}^n)} := \sum_{1 \leq i, j \leq n} \|\partial_{x_i x_j}^2 f\|_{L^p(\mathbb{R}^n)} \leq C_p \|h\|_{L^p(\mathbb{R}^n)}, \quad 1 < p < \infty.$$

Proof. The first part follows since $\widehat{R_j f} = \frac{\xi_j}{|\xi|} \widehat{f}(\xi)$, and the symbol $m(\xi) := \frac{\xi_j}{|\xi|}$ satisfies the properties of the Mikhlin multiplier theorem (in fact for any $|\gamma| \geq 0$).

The second part follows since

$$\partial_{x_i x_j}^2 f = -R_i R_j h$$

□

4. MORE GENERAL FOURIER MULTIPLIERS

The issue of L^p -boundedness of Fourier multipliers of the form

$$Tf(x) = \int_{\mathbb{R}^n} e^{2\pi i x \cdot \xi} m(\xi) \widehat{f}(\xi) d\xi$$

hinges delicately on the differentiability properties of the multiplier m . The preceding proof revealed that we may allow a singularity of m at a point (here $\xi = 0$) provided we carefully control the growth of the derivatives of m as we approach the singularity. Note that this also encompasses the Hilbert transform with multiplier $c \frac{\xi}{|\xi|}$. But what happens with 'more singular' symbols, such as the ball multiplier

$$m(\xi) := \chi_B(\xi)$$

where $B = B_1(0) \subset \mathbb{R}^n$, $n \geq 2$, say, and χ_B denotes the characteristic function of this set? Here $m(\xi)$ is singular along $\partial B = S^{n-1}$, and our preceding method of proof breaks down. In fact, here we have the *complete failure* of L^p -boundedness:

Theorem 4.1. (C. Fefferman 1971) *For any $p \neq 2$, the Fourier multiplier χ_B on functions in \mathbb{R}^n , $n \geq 2$, is not bounded. Thus for any $M > 0$ and $p \neq 2$, there is $f \in \mathcal{S}(\mathbb{R}^n)$, $f \neq 0$, and such that*

$$\|\mathcal{F}^{-1}(\chi_B(\xi) \widehat{f}(\xi))\|_{L^p(\mathbb{R}^n)} \geq M \|f\|_{L^p(\mathbb{R}^n)}.$$

A natural variation here is to consider the 'slightly less singular' multiplier

$$m_\delta(\xi) := (1 - |\xi|^2)_+^\delta = (1 - |\xi|^2)_+^\delta \chi_B(\xi), \delta > 0$$

It turns out that then one gets a certain range of p around $p = 2$ for which one does have L^p -boundedness, and in fact the optimal result is known in $n = 2$ dimensions (due to Carleson-Sjölin), but the optimal result for $n \geq 3$ is open as of this moment in time (Bochner-Riesz Conjecture).