
THE ENDPOINT ESTIMATE FOR CALDERON-ZYGMUND OPERATORS

We follow the treatment in Muscalu-Schlag, Vol 1.

1. Calderon-Zygmund decomposition of a function

Here we introduce a fundamental technical tool in Harmonic Analysis on Rn, which allows us to decompose
general functions f ∈ L1(Rn) into a ’good part’ in the sense that it is bounded and a ’bad part’, which is,
however, restricted to a relatively small set.

Theorem 1.1. (Calderon-Zygmund) Let f ∈ L1(Rn), and fix λ > 0. Then we can write

f = g + b

with |g| ≤ λ a.e. and b =
∑

Q χQf with the sum running over a disjoint collection of cubes and such that

λ < |Q|−1
∫
Q

|f(x)|dx < 2nλ

Moreover, we can bound the support of the ’bad part’ b by∣∣ ∪Q∣∣ ≤ λ−1∥∥f∥∥
L1(Rn)

.

Proof. First, we partition Rn for every k ∈ Z into a (almost) disjoint collection of (closed) dyadic cubes
Q ∈ Dl as follows: these have vertices in the points

(2lk1, 2
lk2, . . . , 2

lkn), kj ∈ Z

and edges parallel to the coordinates and of length 2l.
We now begin an inductive process defining the cubes Q in the Calderon-Zygmund decomposition. First, pick
l∗ ∈ Z large enough such that

2−nl∗
∫
Rn

|f | dx ≤ λ.

Then we have

|Q|−1
∫
Q

|f | dx ≤ λ

for every cube Q ∈ Dl∗. Now for each cube Q ∈ Dl∗ look at its ’children’, obtained by passing from l∗ to
l∗ − 1 and taking those cubes Q′ ∈ Dl∗−1 with Q′ ⊂ Q. Then if we have

|Q′|−1
∫
Q′
|f | dx > λ

for such a cube, we stop the process and add the cube Q′ to the collection of ’bad cubes’. Otherwise, replace
Q by Q′ and restart the process, i. e. pass to l∗− 2, consider the dyadic children of Q′ and proceed as before.
Taking the collection B of all bad cubes where the process stopped, we then set

b :=
∑
Q∈B

χQf,

where the sum converges in the L1-sense, and further

g := f −
∑
Q∈B

χQf

Now if x ∈ Rn\ ∪B Q, then by definition there is a sequence of shrinking cubes Qi → x and for each of these
we have

|Qi|−1
∫
Qi

|f | dx ≤ λ.
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By the Lebesgue differentiation theorem, we have

lim
i→∞

|Qi|−1
∫
Qi

|f | dx = |f(x)|

for almost every x and any shrinking sequence of cubes Qi converging to x. It follows that

|g(x)| ≤ λ
almost everywhere.

Also, if Q is a ’bad cube’, then its ’parent’ Q̃ which is the dyadic cube of twice its edge length and containing
it is by definition such that

|Q̃|−1
∫
Q̃

|f | dx ≤ λ,

and so we have

|Q|−1
∫
Q

|f | dx ≤ 2n · |Q̃|−1
∫
Q̃

|f | dx ≤ 2nλ.

Finally, we have ∣∣ ∪B Q∣∣ ≤∑
B

∣∣Q∣∣ ≤ λ−1 ∑
Q∈B

∫
Q

|f |(x) dx ≤ λ−1
∥∥f∥∥

L1(Rn)
,

where we have used the (almost) disjointness of the cubes Q.
�

2. The weak endpoint bound for Calderon-Zygmund operators

Using the preceding result, we shall now prove

Theorem 2.1. Let T be a Calderon-Zygmund operator, given by

Tf(x) =

∫
Rn

K(x− y)f(y) dy

for f ∈ S(Rn). Then we have the weak L1-bound∣∣{x ∈ Rn | |Tf(x)| > λ}
∣∣ ≤ CBλ−1∥∥f∥∥

L1(Rn)
∀λ > 0

for a suitable universal constant C = C(n) and B as in the definition of Calderon-Zygmund kernel.

Proof. Replacing T by B−1T , it suffices to assume B = 1. In fact, assume we have the bound in the case
B = 1. Then we have

{|Tf(x)| > λ} = {
∣∣B−1Tf(x)

∣∣ > B−1λ},
where B−1T is a C.Z.-kernel with B = 1, and so we get∣∣{∣∣Tf(x)

∣∣ > λ}
∣∣ =

∣∣{∣∣B−1Tf(x)
∣∣ > B−1λ}

∣∣ ≤ C(n) · (B−1λ)−1 ·
∥∥f∥∥

L1(Rn)

= C(n)Bλ−1 ·
∥∥f∥∥

L1(Rn)
.

Fix λ > 0, f ∈ S(Rn), and implement the corresponding Calderon-Zygmund decomposition of f , f = g+ b
associated to λ. In fact, we modify this a bit, so that the ’bad part’ also has an important vanishing property:
write

f = f1 + f2,

where we set

f1 = g +
∑
B
χQ(x)|Q|−1

∫
Q

f(y) dy, f2 = b−
∑
B
χQ(x)|Q|−1

∫
Q

f(y) dy.

Then we observe the following

• The function f1 is bounded. In fact, we have∣∣f1∣∣ ≤ max{
∣∣g∣∣, sup

Q∈B
|Q|−1

∫
Q

|f(x)| dx} ≤ 2nλ.
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• Both functions are bounded in L1(Rn). In fact we have∥∥f1∥∥L1(Rn)
≤
∥∥g∥∥

L1 +
∑
Q∈B

∫
Q

|f(x)| dx =
∥∥f∥∥

L1 ,

while ∥∥f2∥∥L1 ≤
∥∥b∥∥

L1 +
∑
Q∈B

∫
Q

|f(x)| dx ≤ 2
∥∥f∥∥

L1 .

• The function f2 has vanishing average over each Q ∈ B. In fact, we have for Q ∈ B∫
Q

f2(x) dx =

∫
Q

(f(x)− |Q|−1
∫
Q

f(y) dy) dx = 0.

We shall now use two different arguments to handle f1,2. To begin with, observe that since

Tf = Tf1 + Tf2,

we have

{x ∈ Rn | |Tf(x)| > λ} ⊂ {x ∈ Rn | |Tf1(x)| > λ

2
} ∪ {x ∈ Rn | |Tf2(x)| > λ

2
},

and so it suffices to show that∣∣{x ∈ Rn | |Tfj(x)| > λ}
∣∣ ≤ Cλ−1∥∥f∥∥

L1 , j = 1, 2.

The argument for f1. This is simpler, since we can invoke the L2-boundedness of T which we have already
proved. Thus we have∣∣{x ∈ Rn | |Tf1(x)| > λ}

∣∣ ≤ λ−2 ∫
Rn

[Tf1(x)]2 dx ≤ Cλ−2‖f1‖2L2(Rn)

From the preceding, we know that ‖f1‖L1(Rn) ≤ ‖f‖L1(Rn), and using the L∞-bound ‖f1‖ ≤ 2nλ, we can pass
to ∥∥f1∥∥2L2 =

∫
Rn

|f1| · |f1| dx ≤ 2nλ

∫
Rn

|f1|(x) dx ≤ 2nλ‖f‖L1 ,

and so we get ∣∣{x ∈ Rn | |Tf1(x)| > λ}
∣∣ ≤ C1λ

−1‖f‖L1 ,

as desired.

The argument for f2. This is a bit more complicated. For each bad cube Q ∈ B, pick a sufficiently large
dilate Q∗, such that

|x− y| ≥ 2|y − y1| ∀y, y1 ∈ Q
and where x ∈ (Q∗)

c is arbitrary. We can immediately reduce to bounding the set∣∣{x ∈ Rn\ ∪B Q∗ | |Tf2(x)| > λ}
∣∣

on account of
∣∣ ∪B Q∗∣∣ ≤∑B |Q∗| ≤ Cλ−1‖f‖L1 . For x ∈ Rn\ ∪B Q∗, write

Tf2(x) =

∫
Rn

K(x− y)f2(y) dy =
∑
B

∫
Rn

K(x− y)fQ(y) dy

=
∑
B

∫
Q

K(x− y)fQ(y) dy

where we have set fQ(y) := χQ(y)[f(y)− |Q|−1
∫
Q
f(x) dx].

But then using the vanishing property of fQ we have∫
Q

K(x− y)fQ(y) dy =

∫
Q

[K(x− y)−K(x− yQ)]fQ(y) dy
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where yQ is the centre of Q. We conclude that∣∣{x ∈ Rn\ ∪B Q∗ | |Tf2(x)| > λ}
∣∣ ≤ λ−1 ∫

Rn\∪BQ∗
|Tf2(x)| dx

≤ λ−1
∫
Rn\∪BQ∗

∑
B

∫
Q

|K(x− y)−K(x− yQ)||fQ(y)| dydx

Switching the order of integration, we have∫
Rn\∪BQ∗

|K(x− y)−K(x− yQ)| dx ≤ C

by the properties of the kernel K, and so

λ−1
∫
Rn\∪BQ∗

∑
B

∫
Q

|K(x− y)−K(x− yQ)||fQ(y)| dydx

≤ Cλ−1
∑
B

∫
Q

|fQ(y)| dy ≤ Cλ−1
∥∥f∥∥

L1 ,

as desired.
�

3. Lp-boundedness for Calderon-Zygmund operators

By Marcinkiewicz interpolation the preceding sections imply the boundedness of C.-Z. operators on all
spaces Lp(Rn), 1 < p ≤ 2. By duality, we extend that to all 1 < p <∞. In fact, if 2 ≤ p <∞, observe that∥∥T (f)

∥∥
Lp(Rn)

= sup
‖g‖

Lp′≤1

∣∣ ∫
Rn

T (f)(x)g(x) dx
∣∣

= sup
‖g‖

Lp′≤1

∣∣ ∫
Rn

f(x)T ∗g(x) dx
∣∣

where we define the dual C.-Z. operator T ∗ by

T ∗(g)(x) :=

∫
Rn

K(y − x)g(y) dy.

It is immediate to verify that T ∗ is C.-Z. provided T is,and so we have∥∥T ∗(g)
∥∥
Lp′ (Rn)

.
∥∥g∥∥

Lp′ (Rn)
.

We conclude via Holder’s inequality that

sup
‖g‖

Lp′≤1

∣∣ ∫
Rn

f(x)T ∗g(x) dx
∣∣ ≤ ∥∥f∥∥

Lp(Rn)

∥∥T ∗g∥∥
Lp′ (Rn)

.
∥∥f∥∥

Lp(Rn)
,

as desired.
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