THE ENDPOINT ESTIMATE FOR CALDERON-ZYGMUND OPERATORS

We follow the treatment in Muscalu-Schlag, Vol 1.

1. CALDERON-ZYGMUND DECOMPOSITION OF A FUNCTION

Here we introduce a fundamental technical tool in Harmonic Analysis on R™, which allows us to decompose
general functions f € L*(R") into a 'good part’ in the sense that it is bounded and a ’bad part’, which is,
however, restricted to a relatively small set.

Theorem 1.1. (Calderon-Zygmund) Let f € L*(R™), and fit A > 0. Then we can write

f=g+b
with |g] < X a.e. and b= ZQ xqf with the sum running over a disjoint collection of cubes and such that

A< Q! /Q (@)l < 27\

Moreover, we can bound the support of the ’bad part’ b by
[VQI< AT s gy
Proof. First, we partition R™ for every k € Z into a (almost) disjoint collection of (closed) dyadic cubes
Q@ € D, as follows: these have vertices in the points
(2'ky, 2ka, ..., 2k, kj € Z
and edges parallel to the coordinates and of length 2.

We now begin an inductive process defining the cubes @ in the Calderon-Zygmund decomposition. First, pick
l« € Z large enough such that

2—”1*/ |f]dx < \.
]R’n
Then we have

|Q|1/Q|f|dx <)

for every cube @ € D;.. Now for each cube @ € Dy, look at its ’children’, obtained by passing from [, to
l, — 1 and taking those cubes Q' € Dy,_1 with Q' C Q. Then if we have

@17 [ if1de>

for such a cube, we stop the process and add the cube Q' to the collection of ’bad cubes’. Otherwise, replace
Q@ by Q' and restart the process, i. e. pass to [, — 2, consider the dyadic children of ()’ and proceed as before.
Taking the collection B of all bad cubes where the process stopped, we then set

b= xof,
QeB
where the sum converges in the L!-sense, and further
g:=Ff-Y xof
QenB

Now if z € R™\ Ug @, then by definition there is a sequence of shrinking cubes Q; — = and for each of these
we have

Qi [ e <

1



By the Lebesgue differentiation theorem, we have
lim Q4" [ 171do = |f(a)
1— 00 Q’L

for almost every z and any shrinking sequence of cubes @; converging to x. It follows that
lg(z)] < A

almost everywhere. N
Also, if ) is a ’bad cube’, then its 'parent’ () which is the dyadic cube of twice its edge length and containing
it is by definition such that

@ [ 1f1de <
Q
and so we have
Q" [ Uiz <2 1@ [ irlde <2
Q Q

Finally, we have

sl < 3 1Ql <X Y [ ifi@)de < A7 g
B Q

QeB
where we have used the (almost) disjointness of the cubes Q.

2. THE WEAK ENDPOINT BOUND FOR CALDERON-ZYGMUND OPERATORS
Using the preceding result, we shall now prove

Theorem 2.1. Let T be a Calderon-Zygmund operator, given by

Tia)= | Kl=y)fy)dy
for f € S(R™). Then we have the weak L*-bound

{z e R™||Tf(x)] > A} < CBA7'||f]| ) YA>0

(Rn

for a suitable universal constant C = C(n) and B as in the definition of Calderon-Zygmund kernel.

Proof. Replacing T by B~'T, it suffices to assume B = 1. In fact, assume we have the bound in the case
B = 1. Then we have
(ITf()| > A} = {|B'Tf(x)| > B~A},
where B~!T is a C.Z.-kernel with B = 1, and so we get
{|Tf@)] >N = {[BT'Tf(@)] > BTA < Cn) - (BTN (£ 11 o)

= C(n)BA™" - HfHLl(]R")'

Fix A > 0, f € S(R™), and implement the corresponding Calderon-Zygmund decomposition of f, f =¢g+b
associated to A. In fact, we modify this a bit, so that the 'bad part’ also has an important vanishing property:
write

f=fi+ fo

where we set

f g+ZB:XQ(x)IQ|1/Qf(y) dy, fo = bZB:XQ(x)IQII/Qf(y) dy.

Then we observe the following
e The function f; is bounded. In fact, we have

,sup Q]! / F(@)] da} < 27
QeB Q
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e Both functions are bounded in L!(R™). In fact we have

101y < Nills + 32 [ 17 = 5]

QeB

while

el < el + 3 [ 1@l <2l

QeB
e The function f; has vanishing average over each @ € B. In fact, we have for Q € B

[ starae= [ 0107 | sy =

We shall now use two different arguments to handle f; 2. To begin with, observe that since
Tf=ThH+Tf,
we have
fr e R ([T()| > A} € {z € R [TAG)] > 3} Ufz € B[ [T@)] > 5},
and so it suffices to show that
{z e R"[|Tf;(x)] > A} < CAH|f|0r 5 = 1,2

The argument for f1. This is simpler, since we can invoke the L?-boundedness of 7' which we have already
proved. Thus we have

{z e R"[|Tfi(x)] > A} < A72 /Rn [T f1(2)]? dz < CA72| fill72(mn)

From the preceding, we know that || fi||z1®n) < || f|lz1(rn), and using the L>-bound [ fi|| < 2™\, we can pass
to

15ll7 = [ 1al1nlde <25 [ (i@ de <20,

and so we get
{z e R*[|Tfi(2)] > A} < CLATH I fll e,

as desired.

The argument for fo. This is a bit more complicated. For each bad cube @ € B, pick a sufficiently large
dilate Q., such that

[z —yl = 2y — | Vy, 31 € Q
and where z € (Q.)¢ is arbitrary. We can immediately reduce to bounding the set

[{z € R"\ U Q. ||T f2(2)| > A}|
on account of ’ Un Q*‘ <35 lQu < CATY|f|lz1. For x € R™\ Ug Q. write

Tfo(z /K:c— ) f2(y dy_z K (x—y)foly) dy

— K(x — d
;/Q (z —y)foly) dy

where we have set fo(y) := xoW)[f(y) — Q]! fQ f(z)dx]
But then using the vanishing property of fg we have

/ Kz — y)foly) dy = / K(x —y) — K(z - yo)lfoly) dy
Q Q
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where yq is the centre of (). We conclude that

{2 € R"™\ Ug Q. | [Tfo(2)] > A}| < A~ / T f(z)) da

R \UBQ«
SA‘l/ Z/ |K(z —y) — K(z —y0)||fo(y)| dydz
R \UBQ« B /@

Switching the order of integration, we have
[ K@ - Ke-ld<C
RM\Up Q-
by the properties of the kernel K, and so

o 3 1K) = K = sollotw)
UsQ« R

<oNt dy < A1 '
< ;/ng(yn y< Y7L,

as desired.

3. LP-BOUNDEDNESS FOR CALDERON-ZYGMUND OPERATORS

By Marcinkiewicz interpolation the preceding sections imply the boundedness of C.-Z. operators on all
spaces LP(R™), 1 < p < 2. By duality, we extend that to all 1 < p < oo. In fact, if 2 < p < 0o, observe that

17 ey =, 30| [ T @i

gl pr <1

= sup ’ f(m)T*g(x)dm|

llgll » <1 JR™

where we define the dual C.-Z. operator T by

T'(0)(w) = | Rly=a)alo) v
It is immediate to verify that T* is C.-Z. provided T is,and so we have
17D Lo gy S N9l ey

We conclude via Holder’s inequality that

sop_| [ f@T @ da] < 1] e

lgll, v <1

T"g

’LP’(R") N HfHLP(]R”)’

as desired.



