

THE ENDPOINT ESTIMATE FOR CALDERON-ZYGMUND OPERATORS

We follow the treatment in Muscalu-Schlag, Vol 1.

1. CALDERON-ZYGMUND DECOMPOSITION OF A FUNCTION

Here we introduce a fundamental technical tool in Harmonic Analysis on \mathbb{R}^n , which allows us to decompose general functions $f \in L^1(\mathbb{R}^n)$ into a 'good part' in the sense that it is bounded and a 'bad part', which is, however, restricted to a relatively small set.

Theorem 1.1. (Calderon-Zygmund) *Let $f \in L^1(\mathbb{R}^n)$, and fix $\lambda > 0$. Then we can write*

$$f = g + b$$

with $|g| \leq \lambda$ a.e. and $b = \sum_Q \chi_Q f$ with the sum running over a disjoint collection of cubes and such that

$$\lambda < |Q|^{-1} \int_Q |f(x)| dx < 2^n \lambda$$

Moreover, we can bound the support of the 'bad part' b by

$$|\cup Q| \leq \lambda^{-1} \|f\|_{L^1(\mathbb{R}^n)}.$$

Proof. First, we partition \mathbb{R}^n for every $k \in \mathbb{Z}$ into a (almost) disjoint collection of (closed) dyadic cubes $Q \in \mathcal{D}_l$ as follows: these have vertices in the points

$$(2^l k_1, 2^l k_2, \dots, 2^l k_n), k_j \in \mathbb{Z}$$

and edges parallel to the coordinates and of length 2^l .

We now begin an inductive process defining the cubes Q in the Calderon-Zygmund decomposition. First, pick $l_* \in \mathbb{Z}$ large enough such that

$$2^{-nl_*} \int_{\mathbb{R}^n} |f| dx \leq \lambda.$$

Then we have

$$|Q|^{-1} \int_Q |f| dx \leq \lambda$$

for every cube $Q \in \mathcal{D}_{l_*}$. Now for each cube $Q \in \mathcal{D}_{l_*}$ look at its 'children', obtained by passing from l_* to $l_* - 1$ and taking those cubes $Q' \in \mathcal{D}_{l_*-1}$ with $Q' \subset Q$. Then if we have

$$|Q'|^{-1} \int_{Q'} |f| dx > \lambda$$

for such a cube, we stop the process and add the cube Q' to the collection of 'bad cubes'. Otherwise, replace Q by Q' and restart the process, i. e. pass to $l_* - 2$, consider the dyadic children of Q' and proceed as before. Taking the collection \mathcal{B} of all bad cubes where the process stopped, we then set

$$b := \sum_{Q \in \mathcal{B}} \chi_Q f,$$

where the sum converges in the L^1 -sense, and further

$$g := f - \sum_{Q \in \mathcal{B}} \chi_Q f$$

Now if $x \in \mathbb{R}^n \setminus \cup_{\mathcal{B}} Q$, then by definition there is a sequence of shrinking cubes $Q_i \rightarrow x$ and for each of these we have

$$|Q_i|^{-1} \int_{Q_i} |f| dx \leq \lambda.$$

By the Lebesgue differentiation theorem, we have

$$\lim_{i \rightarrow \infty} |Q_i|^{-1} \int_{Q_i} |f| dx = |f(x)|$$

for almost every x and any shrinking sequence of cubes Q_i converging to x . It follows that

$$|g(x)| \leq \lambda$$

almost everywhere.

Also, if Q is a 'bad cube', then its 'parent' \tilde{Q} which is the dyadic cube of twice its edge length and containing it is by definition such that

$$|\tilde{Q}|^{-1} \int_{\tilde{Q}} |f| dx \leq \lambda,$$

and so we have

$$|Q|^{-1} \int_Q |f| dx \leq 2^n \cdot |\tilde{Q}|^{-1} \int_{\tilde{Q}} |f| dx \leq 2^n \lambda.$$

Finally, we have

$$|\cup_{\mathcal{B}} Q| \leq \sum_{\mathcal{B}} |Q| \leq \lambda^{-1} \sum_{Q \in \mathcal{B}} \int_Q |f|(x) dx \leq \lambda^{-1} \|f\|_{L^1(\mathbb{R}^n)},$$

where we have used the (almost) disjointness of the cubes Q . □

2. THE WEAK ENDPOINT BOUND FOR CALDERON-ZYGMUND OPERATORS

Using the preceding result, we shall now prove

Theorem 2.1. *Let T be a Calderon-Zygmund operator, given by*

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) dy$$

for $f \in \mathcal{S}(\mathbb{R}^n)$. Then we have the weak L^1 -bound

$$|\{x \in \mathbb{R}^n \mid |Tf(x)| > \lambda\}| \leq CB\lambda^{-1} \|f\|_{L^1(\mathbb{R}^n)} \quad \forall \lambda > 0$$

for a suitable universal constant $C = C(n)$ and B as in the definition of Calderon-Zygmund kernel.

Proof. Replacing T by $B^{-1}T$, it suffices to assume $B = 1$. In fact, assume we have the bound in the case $B = 1$. Then we have

$$\{|Tf(x)| > \lambda\} = \{|B^{-1}Tf(x)| > B^{-1}\lambda\},$$

where $B^{-1}T$ is a C.Z.-kernel with $B = 1$, and so we get

$$\begin{aligned} |\{|Tf(x)| > \lambda\}| &= |\{|B^{-1}Tf(x)| > B^{-1}\lambda\}| \leq C(n) \cdot (B^{-1}\lambda)^{-1} \cdot \|f\|_{L^1(\mathbb{R}^n)} \\ &= C(n)B\lambda^{-1} \cdot \|f\|_{L^1(\mathbb{R}^n)}. \end{aligned}$$

Fix $\lambda > 0$, $f \in \mathcal{S}(\mathbb{R}^n)$, and implement the corresponding Calderon-Zygmund decomposition of f , $f = g + b$ associated to λ . In fact, we modify this a bit, so that the 'bad part' also has an important vanishing property: write

$$f = f_1 + f_2,$$

where we set

$$f_1 = g + \sum_{\mathcal{B}} \chi_Q(x) |Q|^{-1} \int_Q f(y) dy, \quad f_2 = b - \sum_{\mathcal{B}} \chi_Q(x) |Q|^{-1} \int_Q f(y) dy.$$

Then we observe the following

- The function f_1 is bounded. In fact, we have

$$|f_1| \leq \max\{|g|, \sup_{Q \in \mathcal{B}} |Q|^{-1} \int_Q |f(x)| dx\} \leq 2^n \lambda.$$

- Both functions are bounded in $L^1(\mathbb{R}^n)$. In fact we have

$$\|f_1\|_{L^1(\mathbb{R}^n)} \leq \|g\|_{L^1} + \sum_{Q \in \mathcal{B}} \int_Q |f(x)| dx = \|f\|_{L^1},$$

while

$$\|f_2\|_{L^1} \leq \|b\|_{L^1} + \sum_{Q \in \mathcal{B}} \int_Q |f(x)| dx \leq 2\|f\|_{L^1}.$$

- The function f_2 has vanishing average over each $Q \in \mathcal{B}$. In fact, we have for $Q \in \mathcal{B}$

$$\int_Q f_2(x) dx = \int_Q (f(x) - |Q|^{-1} \int_Q f(y) dy) dx = 0.$$

We shall now use two different arguments to handle $f_{1,2}$. To begin with, observe that since

$$Tf = Tf_1 + Tf_2,$$

we have

$$\{x \in \mathbb{R}^n \mid |Tf(x)| > \lambda\} \subset \{x \in \mathbb{R}^n \mid |Tf_1(x)| > \frac{\lambda}{2}\} \cup \{x \in \mathbb{R}^n \mid |Tf_2(x)| > \frac{\lambda}{2}\},$$

and so it suffices to show that

$$|\{x \in \mathbb{R}^n \mid |Tf_j(x)| > \lambda\}| \leq C\lambda^{-1}\|f\|_{L^1}, \quad j = 1, 2.$$

The argument for f_1 . This is simpler, since we can invoke the L^2 -boundedness of T which we have already proved. Thus we have

$$|\{x \in \mathbb{R}^n \mid |Tf_1(x)| > \lambda\}| \leq \lambda^{-2} \int_{\mathbb{R}^n} [Tf_1(x)]^2 dx \leq C\lambda^{-2}\|f_1\|_{L^2(\mathbb{R}^n)}^2$$

From the preceding, we know that $\|f_1\|_{L^1(\mathbb{R}^n)} \leq \|f\|_{L^1(\mathbb{R}^n)}$, and using the L^∞ -bound $\|f_1\| \leq 2^n\lambda$, we can pass to

$$\|f_1\|_{L^2}^2 = \int_{\mathbb{R}^n} |f_1| \cdot |f_1| dx \leq 2^n\lambda \int_{\mathbb{R}^n} |f_1|(x) dx \leq 2^n\lambda\|f\|_{L^1},$$

and so we get

$$|\{x \in \mathbb{R}^n \mid |Tf_1(x)| > \lambda\}| \leq C_1\lambda^{-1}\|f\|_{L^1},$$

as desired.

The argument for f_2 . This is a bit more complicated. For each bad cube $Q \in \mathcal{B}$, pick a sufficiently large dilate Q_* , such that

$$|x - y| \geq 2|y - y_1| \quad \forall y, y_1 \in Q$$

and where $x \in (Q_*)^c$ is arbitrary. We can immediately reduce to bounding the set

$$|\{x \in \mathbb{R}^n \setminus \cup_{\mathcal{B}} Q_* \mid |Tf_2(x)| > \lambda\}|$$

on account of $|\cup_{\mathcal{B}} Q_*| \leq \sum_{\mathcal{B}} |Q_*| \leq C\lambda^{-1}\|f\|_{L^1}$. For $x \in \mathbb{R}^n \setminus \cup_{\mathcal{B}} Q_*$, write

$$\begin{aligned} Tf_2(x) &= \int_{\mathbb{R}^n} K(x - y) f_2(y) dy = \sum_{\mathcal{B}} \int_{\mathbb{R}^n} K(x - y) f_Q(y) dy \\ &= \sum_{\mathcal{B}} \int_Q K(x - y) f_Q(y) dy \end{aligned}$$

where we have set $f_Q(y) := \chi_Q(y)[f(y) - |Q|^{-1} \int_Q f(x) dx]$.

But then using the vanishing property of f_Q we have

$$\int_Q K(x - y) f_Q(y) dy = \int_Q [K(x - y) - K(x - y_Q)] f_Q(y) dy$$

where y_Q is the centre of Q . We conclude that

$$\begin{aligned} |\{x \in \mathbb{R}^n \setminus \cup_{\mathcal{B}} Q_* \mid |Tf_2(x)| > \lambda\}| &\leq \lambda^{-1} \int_{\mathbb{R}^n \setminus \cup_{\mathcal{B}} Q_*} |Tf_2(x)| dx \\ &\leq \lambda^{-1} \int_{\mathbb{R}^n \setminus \cup_{\mathcal{B}} Q_*} \sum_{\mathcal{B}} \int_Q |K(x-y) - K(x-y_Q)| |f_Q(y)| dy dx \end{aligned}$$

Switching the order of integration, we have

$$\int_{\mathbb{R}^n \setminus \cup_{\mathcal{B}} Q_*} |K(x-y) - K(x-y_Q)| dx \leq C$$

by the properties of the kernel K , and so

$$\begin{aligned} \lambda^{-1} \int_{\mathbb{R}^n \setminus \cup_{\mathcal{B}} Q_*} \sum_{\mathcal{B}} \int_Q |K(x-y) - K(x-y_Q)| |f_Q(y)| dy dx \\ \leq C\lambda^{-1} \sum_{\mathcal{B}} \int_Q |f_Q(y)| dy \leq C\lambda^{-1} \|f\|_{L^1}, \end{aligned}$$

as desired. \square

3. L^p -BOUNDEDNESS FOR CALDERON-ZYGMUND OPERATORS

By Marcinkiewicz interpolation the preceding sections imply the boundedness of C.-Z. operators on all spaces $L^p(\mathbb{R}^n)$, $1 < p \leq 2$. By duality, we extend that to all $1 < p < \infty$. In fact, if $2 \leq p < \infty$, observe that

$$\begin{aligned} \|T(f)\|_{L^p(\mathbb{R}^n)} &= \sup_{\|g\|_{L^{p'}} \leq 1} \left| \int_{\mathbb{R}^n} T(f)(x) \overline{g(x)} dx \right| \\ &= \sup_{\|g\|_{L^{p'}} \leq 1} \left| \int_{\mathbb{R}^n} f(x) \overline{T^*g(x)} dx \right| \end{aligned}$$

where we define the dual C.-Z. operator T^* by

$$T^*(g)(x) := \int_{\mathbb{R}^n} \overline{K}(y-x) g(y) dy.$$

It is immediate to verify that T^* is C.-Z. provided T is, and so we have

$$\|T^*(g)\|_{L^{p'}(\mathbb{R}^n)} \lesssim \|g\|_{L^{p'}(\mathbb{R}^n)}.$$

We conclude via Holder's inequality that

$$\sup_{\|g\|_{L^{p'}} \leq 1} \left| \int_{\mathbb{R}^n} f(x) \overline{T^*g(x)} dx \right| \leq \|f\|_{L^p(\mathbb{R}^n)} \|T^*g\|_{L^{p'}(\mathbb{R}^n)} \lesssim \|f\|_{L^p(\mathbb{R}^n)},$$

as desired.