SINGULAR INTEGRAL OPERATORS IN HIGHER DIMENSIONS;
CALDERON-ZYGMUND OPERATORS

We follow the treatment in Muscalu-Schlag, Vol 1.

1. CALDERON ZYGMUND KERNELS

The Hilbert transform in one dimension is given by the Fourier multiplier m(§) = —imsign(§) = *iﬂ'%,
meaning that

) = [ i) f(6) de.

oo
There are very natural analogues of the Hilbert transform, so-called Riesz multipliers R;, on higher dimensional

R"™, which are given by Fourier multipliers % (where now |£| denotes the Euclidean length), and so we have
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where now f is a function on R™. Such operators occur naturally in lots of areas of PDE, and their boundedness
properties in analogy to those of the Hilbert transform are of great importance.

Here we shall develop a general theory of singular integral operators given in terms of convolution with certain
kernels, in analogy to the kernel ﬁ for the Hilbert transform, and such that these operators do have good
boundedness properties in LP-spaces. Our theory shall also encompass Riesz multipliers.

Definition 1.1. We call a function K : R"\{0} — C a Calderon-Zygmund kernel, provided the following
three properties obtain:

(1) We have the bound |K(z)| < B|z|™™ for some B € R.
(2) We have the bound

[ K@ - Ke-yldr<B
lz[>2]y]

for all y # 0 and a fized B.
(3) We have the following cancellation property:

/ K(z)dz=0Vr,s >0
r<|z|<s

The somewhat complicated second condition in this definition, called Hormander condition, is in fact

ensured by a more elementary condition, called strong Calderon-Zygmund condition: assume K differentiable
on R™\{0} and

VK (2)| < Blz| 7"
In fact, we have

Lemma 1.2. The preceding condition implies the Hormander condition.

Proof. Using the fundamental theorem of calculus, write
1
Kix)-K(z—y) = —/ V. K(x—ty)-ydt
0

and so for |y| < IiQ‘ we have

TIy—n— n —n—
[ (&) ~ K(x — )] < Blol() =" = 2741 By laf .
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Then we get

/ K(2) — K(x - y)|de < 2 Bly| 2]~ da
[z|>2]y| [z|>2]y|

< Bily|-ly|™" = B,
which gives Hormander’s condition with a constant Bj. O

A Calderon-Zygmund operator is an operator given by the formal expression

Tf(l‘) = lim X|I,y‘>€K(l‘ - y)f(y) dy,

e—=0 Jpn

where K is a Calderon-Zygmund operator. That this is indeed a well-defined operator, at least when f €
S(R™), follows from

Lemma 1.3. The expression T f(x) is well-defined as long as f € S(R™).
Proof. Write

| XemoeK @ =) ) dy

= [ XuseK) @ =y

— [ K@) =)~ @] dy+ [ K@) - v)d,
Rﬂ, ]Rn

where we have taken advantage of the cancellation property (1). But then

[KWfte =) = £ < BIVT b,
which is an absolutely integrable function near y = 0. It follows that the limit

lim - X1>\y|>6K(y)[f(x - y) - f(l’)] dy

e—0

exists. O

In the sequel, we shall develop a theory of LP-boundedness of Calderon-Zygmund operators T" as above. In
fact, this shall be naturally divided into two parts, an easier L?-boundedness part, and a harder ’almost L'’
type bound. It is for for the latter part that we shall have to introduce one of the main tools of the theory, the
so-called Calderon-Zygmund decomposition of a function. Once these two ’endpoint estimates’ are in place,
the remaining LP-estimates shall follow via Marcinkiewicz interpolation.

2. L?-BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS
Here we prove the following

Proposition 2.1. Let T' be a Calderon-Zygmund operator given in terms of a Calderon-Zygmund kernel.
There exists a constant C = C(n) such that we have

ITf]l2 < B ]2
In particular, T extends as a continuous operator to L*(R™).

Proof. For r,s > 0, introduce the ’truncated operator’
T(N@) = [ K@eayicaf @ =)y
Throughout we shall assume f € S(R™) to make everything well-defined. Recall that
T o (F)(€) = F(E@xr<iyi<s) O F(E)
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Due to Plancherel’s theorem, it suffices to establish an L*-bound for the first factor on the right which is
uniform in r, s > 0. In fact, we have

I oy = I Trs (D] oy < IFE @xr<tyi<) | oo o 1FE ooy
= Hf(K(y)xr<\y|<s)HLw(R")

sy

It follows that it suffices to show
H]:(K(y)XK\yKS)||Loc(JRn) < COBVr,s>0.

Observe that we have
I(K(y)Xr<\y\<s) = / I((y)e_%ﬁy‘5 dy

r<|y|<s

-/ Kl
r<|y|<min{s,[§[~1}

+ / K(y)e*%”'y'§ dy
max{r,|§]~1}<|y|<s

= A+ B.
We estimate each of these terms.

(i): the estimate for (A). Using the cancellation property (1), we get

Al = | / K(y)le 27 — 1] dy|
r<|y|<min{s,|¢]|~1}

<or / Iyl €11 () dy
r<|y|<min{s,|&|~1}

< 2 B[] lyl =" dy
r<ly|<min{s,[| -}

< Blv
uniformly in r,s > 0.

(i): the estimate for (B). Here we exploit the cancellation condition (2) for the kernel K. Write

; —2mi —£ ).
/ Ky iy = - [ K(ye 0w g,
max{r, ||~ }<[y[<s max{r,[§| 71} <|y|<s

whence

f —2miy-
25 - | (K () ~ Kly — 5ol > dy
max{r,|€|~1}<|y|<s €l
5 —2miy-§
- [nax{r,lsl’l}dyfﬁksf{(y 3R W
\{max{r,|é| " }<lyl<s}

6 —27miy-§
+/ {max{r,|¢| " }<|y|<s} K(y B 2|£‘2)e w
\{max{r,|§|71}<‘y_2\§%|<s}

Then we have

£ o
[K(y) — K(y — )e 2 E dy
|/max{r,51}<|y<s 2(¢J?

3
< K(y) — K(y — dy < B
/€1<|y\ (y) — K(y 2|£‘2)| y <
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uniformly in £ # 0. For the second integral above over the more complicated region
_ 4 _
{max{r, |¢|7"} < |y - 2\T|2| < sP\{max{r, [¢|7"} < |y| < s}

note that we either have

_ 3
ly| > s, max{r,[¢|7"} < |y — W| <s

which implies

£ L. 1
— > —— >
‘y 2|§|2|— 2|£‘ +s 2> 287

or else I3
ly| < max{r, |¢|"}, max{r, [¢| 7'} < |y — W‘ <5,
which gives
[y 5] < max{r, €71} + 2Je[ " < 2 maxgr.¢] 1}
T e T

In either case there is a number v > 0 such that |y — 2\§T|2| € [y, 27]. But then, using condition (1) on the
kernel, we get

£
’ max{T,|£|71}<‘y—2‘£%|<s K(y B 2|€‘2

\{max{r,|¢| " }<|y|<s}

)e—2ﬂ'iy~f dy|

£

B
ly— ez 1 €07:27] 21¢J?
§
<B ly — ™" dy
w-sizlelan 2E°
< B
The integral
S

)e—Qwiy-E dy

fmaxirle M<lyl<sy KW 2/¢2
\{max{r,|§|_1}<‘y*ﬁ|<s}

is similar.



