
SINGULAR INTEGRAL OPERATORS IN HIGHER DIMENSIONS;

CALDERON-ZYGMUND OPERATORS

We follow the treatment in Muscalu-Schlag, Vol 1.

1. Calderon Zygmund kernels

The Hilbert transform in one dimension is given by the Fourier multiplier m(ξ) = −iπsign(ξ) = −iπ ξ
|ξ| ,

meaning that

H(f) =

∫ ∞
∞

e2πix·ξm(ξ)f̂(ξ) dξ.

There are very natural analogues of the Hilbert transform, so-called Riesz multipliersRj , on higher dimensional

Rn, which are given by Fourier multipliers
ξj
|ξ| (where now |ξ| denotes the Euclidean length), and so we have

Rj(f) =

∫
Rn
e2πix·ξ

ξj
|ξ|
f̂(ξ) dξ,

where now f is a function on Rn. Such operators occur naturally in lots of areas of PDE, and their boundedness
properties in analogy to those of the Hilbert transform are of great importance.
Here we shall develop a general theory of singular integral operators given in terms of convolution with certain
kernels, in analogy to the kernel 1

x−y for the Hilbert transform, and such that these operators do have good

boundedness properties in Lp-spaces. Our theory shall also encompass Riesz multipliers.

Definition 1.1. We call a function K : Rn\{0} → C a Calderon-Zygmund kernel, provided the following
three properties obtain:

(1) We have the bound |K(x)| ≤ B|x|−n for some B ∈ R.
(2) We have the bound ∫

|x|>2|y|
|K(x)−K(x− y)| dx ≤ B

for all y 6= 0 and a fixed B.
(3) We have the following cancellation property:∫

r<|x|<s
K(x) dx = 0∀r, s > 0

The somewhat complicated second condition in this definition, called Hormander condition, is in fact
ensured by a more elementary condition, called strong Calderon-Zygmund condition: assume K differentiable
on Rn\{0} and

|∇K(x)| ≤ B|x|−n−1

In fact, we have

Lemma 1.2. The preceding condition implies the Hormander condition.

Proof. Using the fundamental theorem of calculus, write

K(x)−K(x− y) = −
∫ 1

0

∇xK(x− ty) · y dt

and so for |y| < |x|
2 we have∣∣K(x)−K(x− y)

∣∣ ≤ B|y|( |x|
2

)−n−1 = 2n+1B|y||x|−n−1.
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Then we get ∫
|x|>2|y|

|K(x)−K(x− y)| dx ≤ 2n+1B|y|
∫
|x|>2|y|

|x|−n−1 dx

≤ B1|y| · |y|−1 = B1,

which gives Hormander’s condition with a constant B1. �

A Calderon-Zygmund operator is an operator given by the formal expression

Tf(x) := lim
ε→0

∫
Rn
χ|x−y|>εK(x− y)f(y) dy,

where K is a Calderon-Zygmund operator. That this is indeed a well-defined operator, at least when f ∈
S(Rn), follows from

Lemma 1.3. The expression Tf(x) is well-defined as long as f ∈ S(Rn).

Proof. Write ∫
Rn
χ|x−y|>εK(x− y)f(y) dy

=

∫
Rn
χ|y|>εK(y)f(x− y) dy

=

∫
Rn
χ1>|y|>εK(y)[f(x− y)− f(x)] dy +

∫
Rn
χ|y|>1K(y)f(x− y) dy,

where we have taken advantage of the cancellation property (1). But then∣∣K(y)[f(x− y)− f(x)]
∣∣ ≤ B∥∥∇f∥∥

L∞
|y|−n+1,

which is an absolutely integrable function near y = 0. It follows that the limit

lim
ε→0

∫
Rn
χ1>|y|>εK(y)[f(x− y)− f(x)] dy

exists. �

In the sequel, we shall develop a theory of Lp-boundedness of Calderon-Zygmund operators T as above. In
fact, this shall be naturally divided into two parts, an easier L2-boundedness part, and a harder ’almost L1’
type bound. It is for for the latter part that we shall have to introduce one of the main tools of the theory, the
so-called Calderon-Zygmund decomposition of a function. Once these two ’endpoint estimates’ are in place,
the remaining Lp-estimates shall follow via Marcinkiewicz interpolation.

2. L2-boundedness of Calderon-Zygmund operators

Here we prove the following

Proposition 2.1. Let T be a Calderon-Zygmund operator given in terms of a Calderon-Zygmund kernel.
There exists a constant C = C(n) such that we have∥∥Tf∥∥

L2 ≤ CB
∥∥f∥∥

L2

In particular, T extends as a continuous operator to L2(Rn).

Proof. For r, s > 0, introduce the ’truncated operator’

Tr,s(f)(x) :=

∫
Rn
K(y)χr<|y|<sf(x− y) dy.

Throughout we shall assume f ∈ S(Rn) to make everything well-defined. Recall that

T̂r,s(f)(ξ) = F
(
K(y)χr<|y|<s

)
(ξ)f̂(ξ)
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Due to Plancherel’s theorem, it suffices to establish an L∞-bound for the first factor on the right which is
uniform in r, s > 0. In fact, we have∥∥Tr,s(f)

∥∥
L2(Rn) =

∥∥T̂r,s(f)
∥∥
L2(Rn) ≤

∥∥F(K(y)χr<|y|<s
)∥∥
L∞(Rn)

∥∥f̂(ξ)
∥∥
L2(Rn)

=
∥∥F(K(y)χr<|y|<s

)∥∥
L∞(Rn)

∥∥f∥∥
L2(Rn).

It follows that it suffices to show∥∥F(K(y)χr<|y|<s
)∥∥
L∞(Rn) ≤ CB ∀r, s > 0.

Observe that we have

F
(
K(y)χr<|y|<s

)
=

∫
r<|y|<s

K(y)e−2πiy·ξ dy

=

∫
r<|y|<min{s,|ξ|−1}

K(y)e−2πiy·ξ dy

+

∫
max{r,|ξ|−1}<|y|<s

K(y)e−2πiy·ξ dy

:= A+B.

We estimate each of these terms.

(i): the estimate for (A). Using the cancellation property (1), we get

|A| =
∣∣ ∫
r<|y|<min{s,|ξ|−1}

K(y)[e−2πiy·ξ − 1] dy
∣∣

≤ 2π

∫
r<|y|<min{s,|ξ|−1}

|y||ξ||K(y) dy

≤ 2πB|ξ|
∫
r<|y|<min{s,|ξ|−1}

|y|−n+1 dy

≤ B1,

uniformly in r, s > 0.

(i): the estimate for (B). Here we exploit the cancellation condition (2) for the kernel K. Write∫
max{r,|ξ|−1}<|y|<s

K(y)e−2πiy·ξ dy = −
∫
max{r,|ξ|−1}<|y|<s

K(y)e
−2πi(y+ ξ

2|ξ|2
)·ξ
dy,

whence

2B =

∫
max{r,|ξ|−1}<|y|<s

[K(y)−K(y − ξ

2|ξ|2
)]e−2πiy·ξ dy

−
∫
max{r,|ξ|−1}<|y− ξ

2|ξ|2
|<s

\{max{r,|ξ|−1}<|y|<s}

K(y − ξ

2|ξ|2
)e−2πiy·ξ dy

+

∫
{max{r,|ξ|−1}<|y|<s}

\{max{r,|ξ|−1}<|y− ξ

2|ξ|2
|<s}

K(y − ξ

2|ξ|2
)e−2πiy·ξ dy

Then we have ∣∣ ∫
max{r,|ξ|−1}<|y|<s

[K(y)−K(y − ξ

2|ξ|2
)]e−2πiy·ξ dy

∣∣
≤
∫
|ξ|−1<|y|

∣∣K(y)−K(y − ξ

2|ξ|2
)
∣∣ dy ≤ B
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uniformly in ξ 6= 0. For the second integral above over the more complicated region

{max{r, |ξ|−1} < |y − ξ

2|ξ|2
| < s}\{max{r, |ξ|−1} < |y| < s}

note that we either have

|y| ≥ s, max{r, |ξ|−1} < |y − ξ

2|ξ|2
| < s

which implies

|y − ξ

2|ξ|2
| ≥ −1

2
|ξ|−1 + s ≥ 1

2
s,

or else

|y| < max{r, |ξ|−1}, max{r, |ξ|−1} < |y − ξ

2|ξ|2
| < s,

which gives

|y − ξ

2|ξ|2
| < max{r, |ξ|−1}+

1

2
|ξ|−1 ≤ 3

2
max{r, |ξ|−1}.

In either case there is a number γ > 0 such that |y − ξ
2|ξ|2 | ∈ [γ, 2γ]. But then, using condition (1) on the

kernel, we get ∣∣ ∫
max{r,|ξ|−1}<|y− ξ

2|ξ|2
|<s

\{max{r,|ξ|−1}<|y|<s}

K(y − ξ

2|ξ|2
)e−2πiy·ξ dy

∣∣
≤
∫
|y− ξ

2|ξ|2
|∈[γ,2γ]

∣∣K(y − ξ

2|ξ|2
)
∣∣ dy

≤ B
∫
|y− ξ

2|ξ|2
|∈[γ,2γ]

|y − ξ

2|ξ|2
|−n dy

≤ B1

The integral ∫
{max{r,|ξ|−1}<|y|<s}

\{max{r,|ξ|−1}<|y− ξ

2|ξ|2
|<s}

K(y − ξ

2|ξ|2
)e−2πiy·ξ dy

is similar.
�
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