

SINGULAR INTEGRAL OPERATORS IN HIGHER DIMENSIONS; CALDERON-ZYGMUND OPERATORS

We follow the treatment in Muscalu-Schlag, Vol 1.

1. CALDERON ZYGMUND KERNELS

The Hilbert transform in one dimension is given by the Fourier multiplier $m(\xi) = -i\pi\text{sign}(\xi) = -i\pi\frac{\xi}{|\xi|}$, meaning that

$$H(f) = \int_{-\infty}^{\infty} e^{2\pi ix \cdot \xi} m(\xi) \widehat{f}(\xi) d\xi.$$

There are very natural analogues of the Hilbert transform, so-called Riesz multipliers R_j , on higher dimensional \mathbb{R}^n , which are given by Fourier multipliers $\frac{\xi_j}{|\xi|}$ (where now $|\xi|$ denotes the Euclidean length), and so we have

$$R_j(f) = \int_{\mathbb{R}^n} e^{2\pi ix \cdot \xi} \frac{\xi_j}{|\xi|} \widehat{f}(\xi) d\xi,$$

where now f is a function on \mathbb{R}^n . Such operators occur naturally in lots of areas of PDE, and their boundedness properties in analogy to those of the Hilbert transform are of great importance.

Here we shall develop a general theory of singular integral operators given in terms of convolution with certain kernels, in analogy to the kernel $\frac{1}{x-y}$ for the Hilbert transform, and such that these operators do have good boundedness properties in L^p -spaces. Our theory shall also encompass Riesz multipliers.

Definition 1.1. *We call a function $K : \mathbb{R}^n \setminus \{0\} \rightarrow \mathbf{C}$ a Calderon-Zygmund kernel, provided the following three properties obtain:*

- (1) *We have the bound $|K(x)| \leq B|x|^{-n}$ for some $B \in \mathbb{R}$.*
- (2) *We have the bound*

$$\int_{|x| > 2|y|} |K(x) - K(x-y)| dx \leq B$$

for all $y \neq 0$ and a fixed B .

- (3) *We have the following cancellation property:*

$$\int_{r < |x| < s} K(x) dx = 0 \quad \forall r, s > 0$$

The somewhat complicated second condition in this definition, called *Hormander condition*, is in fact ensured by a more elementary condition, called *strong Calderon-Zygmund condition*: assume K differentiable on $\mathbb{R}^n \setminus \{0\}$ and

$$|\nabla K(x)| \leq B|x|^{-n-1}$$

In fact, we have

Lemma 1.2. *The preceding condition implies the Hormander condition.*

Proof. Using the fundamental theorem of calculus, write

$$K(x) - K(x-y) = - \int_0^1 \nabla_x K(x-ty) \cdot y dt$$

and so for $|y| < \frac{|x|}{2}$ we have

$$|K(x) - K(x-y)| \leq B|y| \left(\frac{|x|}{2} \right)^{-n-1} = 2^{n+1} B|y||x|^{-n-1}.$$

Then we get

$$\begin{aligned} \int_{|x|>2|y|} |K(x) - K(x-y)| dx &\leq 2^{n+1} B|y| \int_{|x|>2|y|} |x|^{-n-1} dx \\ &\leq B_1|y| \cdot |y|^{-1} = B_1, \end{aligned}$$

which gives Hormander's condition with a constant B_1 . \square

A Calderon-Zygmund operator is an operator given by the formal expression

$$Tf(x) := \lim_{\varepsilon \rightarrow 0} \int_{\mathbb{R}^n} \chi_{|x-y|>\varepsilon} K(x-y) f(y) dy,$$

where K is a Calderon-Zygmund operator. That this is indeed a well-defined operator, at least when $f \in \mathcal{S}(\mathbb{R}^n)$, follows from

Lemma 1.3. *The expression $Tf(x)$ is well-defined as long as $f \in \mathcal{S}(\mathbb{R}^n)$.*

Proof. Write

$$\begin{aligned} &\int_{\mathbb{R}^n} \chi_{|x-y|>\varepsilon} K(x-y) f(y) dy \\ &= \int_{\mathbb{R}^n} \chi_{|y|>\varepsilon} K(y) f(x-y) dy \\ &= \int_{\mathbb{R}^n} \chi_{1>|y|>\varepsilon} K(y) [f(x-y) - f(x)] dy + \int_{\mathbb{R}^n} \chi_{|y|>1} K(y) f(x-y) dy, \end{aligned}$$

where we have taken advantage of the cancellation property (1). But then

$$|K(y)[f(x-y) - f(x)]| \leq B \|\nabla f\|_{L^\infty} |y|^{-n+1},$$

which is an absolutely integrable function near $y = 0$. It follows that the limit

$$\lim_{\varepsilon \rightarrow 0} \int_{\mathbb{R}^n} \chi_{1>|y|>\varepsilon} K(y) [f(x-y) - f(x)] dy$$

exists. \square

In the sequel, we shall develop a theory of L^p -boundedness of Calderon-Zygmund operators T as above. In fact, this shall be naturally divided into two parts, an easier L^2 -boundedness part, and a harder 'almost L^1 ' type bound. It is for the latter part that we shall have to introduce one of the main tools of the theory, the so-called Calderon-Zygmund decomposition of a function. Once these two 'endpoint estimates' are in place, the remaining L^p -estimates shall follow via Marcinkiewicz interpolation.

2. L^2 -BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS

Here we prove the following

Proposition 2.1. *Let T be a Calderon-Zygmund operator given in terms of a Calderon-Zygmund kernel. There exists a constant $C = C(n)$ such that we have*

$$\|Tf\|_{L^2} \leq CB\|f\|_{L^2}$$

In particular, T extends as a continuous operator to $L^2(\mathbb{R}^n)$.

Proof. For $r, s > 0$, introduce the 'truncated operator'

$$T_{r,s}(f)(x) := \int_{\mathbb{R}^n} K(y) \chi_{r<|y|<s} f(x-y) dy.$$

Throughout we shall assume $f \in \mathcal{S}(\mathbb{R}^n)$ to make everything well-defined. Recall that

$$\widehat{T_{r,s}(f)}(\xi) = \mathcal{F}(K(y) \chi_{r<|y|<s})(\xi) \widehat{f}(\xi)$$

Due to Plancherel's theorem, it suffices to establish an L^∞ -bound for the first factor on the right which is uniform in $r, s > 0$. In fact, we have

$$\begin{aligned}\|T_{r,s}(f)\|_{L^2(\mathbb{R}^n)} &= \|\widehat{T_{r,s}(f)}\|_{L^2(\mathbb{R}^n)} \leq \|\mathcal{F}(K(y)\chi_{r<|y|<s})\|_{L^\infty(\mathbb{R}^n)} \|\widehat{f}(\xi)\|_{L^2(\mathbb{R}^n)} \\ &= \|\mathcal{F}(K(y)\chi_{r<|y|<s})\|_{L^\infty(\mathbb{R}^n)} \|f\|_{L^2(\mathbb{R}^n)}.\end{aligned}$$

It follows that it suffices to show

$$\|\mathcal{F}(K(y)\chi_{r<|y|<s})\|_{L^\infty(\mathbb{R}^n)} \leq CB \forall r, s > 0.$$

Observe that we have

$$\begin{aligned}\mathcal{F}(K(y)\chi_{r<|y|<s}) &= \int_{r<|y|<s} K(y)e^{-2\pi iy\cdot\xi} dy \\ &= \int_{r<|y|<\min\{s,|\xi|^{-1}\}} K(y)e^{-2\pi iy\cdot\xi} dy \\ &\quad + \int_{\max\{r,|\xi|^{-1}\}<|y|<s} K(y)e^{-2\pi iy\cdot\xi} dy \\ &:= A + B.\end{aligned}$$

We estimate each of these terms.

(i): *the estimate for (A).* Using the cancellation property (1), we get

$$\begin{aligned}|A| &= \left| \int_{r<|y|<\min\{s,|\xi|^{-1}\}} K(y)[e^{-2\pi iy\cdot\xi} - 1] dy \right| \\ &\leq 2\pi \int_{r<|y|<\min\{s,|\xi|^{-1}\}} |y||\xi||K(y) dy \\ &\leq 2\pi B|\xi| \int_{r<|y|<\min\{s,|\xi|^{-1}\}} |y|^{-n+1} dy \\ &\leq B_1,\end{aligned}$$

uniformly in $r, s > 0$.

(ii): *the estimate for (B).* Here we exploit the cancellation condition (2) for the kernel K . Write

$$\int_{\max\{r,|\xi|^{-1}\}<|y|<s} K(y)e^{-2\pi iy\cdot\xi} dy = - \int_{\max\{r,|\xi|^{-1}\}<|y|<s} K(y)e^{-2\pi i(y+\frac{\xi}{2|\xi|^2})\cdot\xi} dy,$$

whence

$$\begin{aligned}2B &= \int_{\max\{r,|\xi|^{-1}\}<|y|<s} [K(y) - K(y - \frac{\xi}{2|\xi|^2})]e^{-2\pi iy\cdot\xi} dy \\ &\quad - \int_{\substack{\max\{r,|\xi|^{-1}\}<|y-\frac{\xi}{2|\xi|^2}|<s \\ \setminus \{\max\{r,|\xi|^{-1}\}<|y|<s\}}} K(y - \frac{\xi}{2|\xi|^2})e^{-2\pi iy\cdot\xi} dy \\ &\quad + \int_{\substack{\{\max\{r,|\xi|^{-1}\}<|y|<s\} \\ \setminus \{\max\{r,|\xi|^{-1}\}<|y-\frac{\xi}{2|\xi|^2}|<s\}}} K(y - \frac{\xi}{2|\xi|^2})e^{-2\pi iy\cdot\xi} dy\end{aligned}$$

Then we have

$$\begin{aligned}&\left| \int_{\max\{r,|\xi|^{-1}\}<|y|<s} [K(y) - K(y - \frac{\xi}{2|\xi|^2})]e^{-2\pi iy\cdot\xi} dy \right| \\ &\leq \int_{|\xi|^{-1}<|y|} \left| K(y) - K(y - \frac{\xi}{2|\xi|^2}) \right| dy \leq B\end{aligned}$$

uniformly in $\xi \neq 0$. For the second integral above over the more complicated region

$$\{\max\{r, |\xi|^{-1}\} < |y - \frac{\xi}{2|\xi|^2}| < s\} \setminus \{\max\{r, |\xi|^{-1}\} < |y| < s\}$$

note that we either have

$$|y| \geq s, \max\{r, |\xi|^{-1}\} < |y - \frac{\xi}{2|\xi|^2}| < s$$

which implies

$$|y - \frac{\xi}{2|\xi|^2}| \geq -\frac{1}{2}|\xi|^{-1} + s \geq \frac{1}{2}s,$$

or else

$$|y| < \max\{r, |\xi|^{-1}\}, \max\{r, |\xi|^{-1}\} < |y - \frac{\xi}{2|\xi|^2}| < s,$$

which gives

$$|y - \frac{\xi}{2|\xi|^2}| < \max\{r, |\xi|^{-1}\} + \frac{1}{2}|\xi|^{-1} \leq \frac{3}{2} \max\{r, |\xi|^{-1}\}.$$

In either case there is a number $\gamma > 0$ such that $|y - \frac{\xi}{2|\xi|^2}| \in [\gamma, 2\gamma]$. But then, using condition (1) on the kernel, we get

$$\begin{aligned} & \left| \int_{\substack{\max\{r, |\xi|^{-1}\} < |y - \frac{\xi}{2|\xi|^2}| < s \\ \setminus \{\max\{r, |\xi|^{-1}\} < |y| < s\}}} K(y - \frac{\xi}{2|\xi|^2}) e^{-2\pi i y \cdot \xi} dy \right| \\ & \leq \int_{|y - \frac{\xi}{2|\xi|^2}| \in [\gamma, 2\gamma]} |K(y - \frac{\xi}{2|\xi|^2})| dy \\ & \leq B \int_{|y - \frac{\xi}{2|\xi|^2}| \in [\gamma, 2\gamma]} |y - \frac{\xi}{2|\xi|^2}|^{-n} dy \\ & \leq B_1 \end{aligned}$$

The integral

$$\int_{\substack{\{\max\{r, |\xi|^{-1}\} < |y| < s\} \\ \setminus \{\max\{r, |\xi|^{-1}\} < |y - \frac{\xi}{2|\xi|^2}| < s\}}} K(y - \frac{\xi}{2|\xi|^2}) e^{-2\pi i y \cdot \xi} dy$$

is similar. □