

# Serie 9

## Optimal transport, Fall semester

EPFL, Mathematics section, Dr. Xavier Fernández-Real

**Exercise 9.1** (Wasserstein and  $L^p$ -distances are not comparable). Let  $p \in [1, \infty)$ . Give an example of two sequences of compactly supported nonnegative functions  $f_n, g_n \in L^p(\mathbb{R}^d)$  with  $\int f_n = \int g_n = 1$  for which, calling  $\mu_n = f_n \mathcal{L}^d, \nu_n = g_n \mathcal{L}^d$  we have (give an example for each of the two scenarios):

- i)  $W_p(\mu_n, \nu_n) \rightarrow 0$  and  $\|f_n - g_n\|_{L^p} \geq \epsilon > 0$ .
- ii)  $W_p(\mu_n, \nu_n) \geq \epsilon > 0$  and  $\|f_n - g_n\|_{L^p} \rightarrow 0$ .

**Solution:** We work in dimension  $d = 1$  for simplicity. Let us treat the two cases i) and ii) separately.

i) For every  $n \geq 1$  define

$$f_n = 2 \sum_{j=0}^{n-1} \mathbb{1}_{[\frac{2j}{2n}, \frac{2j+1}{2n})}, \quad g_n = 2 \sum_{j=0}^{n-1} \mathbb{1}_{[\frac{2j+1}{2n}, \frac{2j+2}{2n})}.$$

Then clearly  $\int_{\mathbb{R}} f_n = \int_{\mathbb{R}} g_n = 1$  and  $\|f_n - g_n\|_{L^p} = 2$ . However, if  $T : \mathbb{R} \rightarrow \mathbb{R}$  is a map sending monotonically  $[\frac{2j}{2n}, \frac{2j+1}{2n})$  to  $[\frac{2j+1}{2n}, \frac{2j+2}{2n})$  for every  $j \in \{0, n-1\}$ , then:

$$W_p(f_n \mathcal{L}^1, g_n \mathcal{L}^1)^p \leq \int_{\mathbb{R}} f_n |T(x) - x|^p dx \leq \left(\frac{1}{2n}\right)^p \xrightarrow{n \rightarrow \infty} 0.$$

ii) For every  $n \geq 1$  define

$$f_n = \frac{n+1}{2n} \mathbb{1}_{[-n-1, -n]} + \frac{n-1}{2n} \mathbb{1}_{[n, n+1]}, \quad g_n = \frac{n-1}{2n} \mathbb{1}_{[-n-1, -n]} + \frac{n+1}{2n} \mathbb{1}_{[n, n+1]}.$$

Notice that  $\int_{\mathbb{R}} f_n = \int_{\mathbb{R}} g_n = 1$  and

$$\int_{\mathbb{R}} |f_n - g_n|^p dx = \frac{2}{n^p} \xrightarrow{n \rightarrow \infty} 0.$$

Take any transport map  $T$  from  $f_n \mathcal{L}^1$  to  $g_n \mathcal{L}^1$ . Define  $Z := \{x \in [-n-1, -n] \cup [n, n+1] : |T(x) - x| \geq 2n\}$ . By definition of  $f_n$  and  $g_n$  we see immediately that  $\mathcal{L}^1(Z) \geq 2/n$ . Hence, for  $n \geq 2$ :

$$\int_{\mathbb{R}} |T(x) - x|^p f_n dx \geq \frac{n-1}{2n} (2n)^p \mathcal{L}^1(Z) \geq \frac{(2n)^{p-1} 2(n-1)}{n} \geq 1.$$

Therefore, we have  $W_p(f_n \mathcal{L}^1, g_n \mathcal{L}^1) \geq 1$ .

**Exercise 9.2** (Convergence of  $p$ -Wasserstein distance as  $p \downarrow 1$ ). Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$  be a pair of probability measures. Show that if  $\mu$  and  $\nu$  are supported on a compact set, then

$$\lim_{p \downarrow 1} W_p(\mu, \nu) = W_1(\mu, \nu).$$

Show a counterexample to the previous statement if we drop the assumption that  $\mu$  and  $\nu$  are supported on a compact set.

*Hint:* For the counterexample, set  $\mu = \delta_0$  and find a measure  $\nu$  such that  $W_p(\mu, \nu) = \infty$  if  $p > 1$  and  $W_1(\mu, \nu)$  is finite.

**Solution:** If  $\mu, \nu$  are compactly supported, then without loss of generality we can take  $\Omega$  to be compact. Observe that, on the one hand, using Hölder's inequality we have that for any  $\gamma \in \Gamma(\mu, \nu)$ ,  $q \geq p \geq 1$ ,

$$\left( \int |x - y|^p d\gamma(x, y) \right)^{\frac{1}{p}} \leq \left( \int |x - y|^q d\gamma(x, y) \right)^{\frac{1}{q}}$$

from where we deduce

$$W_p(\mu, \nu) \leq W_q(\mu, \nu).$$

On the other hand, since  $|x - y|^p \leq |x - y| \text{diam}(\Omega)^{p-1}$ , we have

$$W_p^p(\mu, \nu) \leq \text{diam}(\Omega)^{p-1} W_1(\mu, \nu).$$

By the first inequality,  $W_p(\mu, \nu)$  is bounded and monotone increasing in  $p \geq 1$ . In particular, the limit as  $p \downarrow 1$  exists, and by the second inequality it is equal to  $W_1(\mu, \nu)$ .

For the second part of the question suppose that  $\mu = \delta_0$  and  $\nu = \sum_{n=1}^{\infty} C 2^{-n} \frac{1}{n^2} \delta_{2^n}$ . We take  $C$  such that  $\sum_{n=1}^{\infty} C 2^{-n} \frac{1}{n^2} = 1$ . As a result, for every  $1 < p = 1 + \epsilon$

$$W_p(\mu, \nu) = \sum_{n=1}^{\infty} C 2^{n\epsilon} \frac{1}{n^2} = \infty$$

but

$$W_1(\mu, \nu) = \sum_{n=1}^{\infty} C \frac{1}{n^2} < \infty.$$

**Exercise 9.3** (Convergence of  $p$ -Wasserstein distance as  $p \uparrow \infty$ ). Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$  be two compactly supported probability measures. The  $\infty$ -Wasserstein distance between  $\mu$  and  $\nu$  is defined as

$$W_{\infty}(\mu, \nu) := \inf \left\{ \|x - y\|_{L^{\infty}(\mathbb{R}^d \times \mathbb{R}^d, \gamma)} : \gamma \in \Gamma(\mu, \nu) \right\}.$$

i) Prove that  $W_p(\mu, \nu) \uparrow W_{\infty}(\mu, \nu)$  as  $p \uparrow \infty$ . Deduce that  $W_{\infty}$  defines a distance on  $\mathcal{P}_{\infty}(\mathbb{R}^d) := \{\mu \in \mathcal{P}(\mathbb{R}^d) : \mu \text{ has compact support}\}$ .

ii) Give an example of  $\mu_n, \mu \in \mathcal{P}(\mathbb{R}^d)$  compactly supported in a common compact set for which

$$\begin{cases} W_p(\mu_n, \mu) \rightarrow 0 & \text{for every } p \in [1, \infty), \\ W_\infty(\mu_n, \mu) \geq \epsilon > 0 & \text{for every } n. \end{cases}$$

**Solution:**

i) As already noticed in the solution of the previous exercise,  $p$ -Wasserstein distances are monotonically nondecreasing as  $p \uparrow \infty$ . Therefore, given  $\mu, \nu \in \mathcal{P}_\infty(\mathbb{R}^d)$ , it only remains to show that  $\liminf_{j \rightarrow \infty} W_{p_j}(\mu, \nu) \geq W_\infty(\mu, \nu)$  for some sequence  $p_j \rightarrow \infty$ . For this, take optimal plans  $\gamma_j \in \Gamma(\mu, \nu)$  for the  $|x - y|^{p_j}$ -cost. By weak compactness of  $\Gamma(\mu, \nu)$ , there exist some  $\gamma \in \Gamma(\mu, \nu)$  such that, up to extracting a subsequence,  $\gamma_j \rightharpoonup \gamma$  narrowly. Call

$$\ell := \|x - y\|_{L^\infty(\mathbb{R}^d \times \mathbb{R}^d, \gamma)} = \sup\{|x - y| : (x, y) \in \text{supp } \gamma\}.$$

Notice that  $\ell \geq W_\infty(\mu, \nu)$ .

Since  $\mu$  and  $\nu$  are compactly supported,  $\ell < \infty$ , and, being  $\text{supp } \gamma$  compact, there exists  $(x_0, y_0) \in \text{supp } \gamma$  such that  $|x - y| = \ell$ .

Fix  $\epsilon > 0$  and consider the open set

$$A := \{(x, y) \in \mathbb{R}^d \times \mathbb{R}^d : |(x, y) - (x_0, y_0)| < \epsilon\}.$$

Owing to the fact that  $(x_0, y_0)$  is in the support of  $\gamma$  and the weak convergence of  $\gamma_j$  to  $\gamma$ , we get that

$$\liminf_{j \rightarrow \infty} \gamma_j(A) \geq \gamma(A) =: \delta > 0.$$

In particular,

$$\begin{aligned} \liminf_{j \rightarrow \infty} W_{p_j}(\mu, \nu) &\geq \liminf_{j \rightarrow \infty} \left( \int_A |y - x|^{p_j} d\gamma_j \right)^{1/p_j} \\ &\geq \liminf_{j \rightarrow \infty} \gamma_j(A)^{1/p_j} (\ell - \epsilon) = (\ell - \epsilon). \end{aligned}$$

The conclusion comes from the arbitrariness of  $\epsilon$ .

ii) It is enough to take two distinct points  $x, y \in \mathbb{R}^d$  and then choose  $\mu = \delta_x$  and, for every  $n \geq 1$ ,

$$\mu_n = \frac{n-1}{n} \delta_x + \frac{1}{n} \delta_y.$$

**Exercise 9.4 (✿).** For every  $p \in [1, \infty)$ , show that  $(\mathcal{P}_p(\mathbb{R}^d), W_p)$  is a Polish space (separable and complete).

*Hints:* You can solve the exercise via the following steps:

- i) For the separability, approximate each  $\mu \in \mathcal{P}_p(\mathbb{R}^d)$  with finite sums of dirac deltas in rational points and with rational coefficients.

ii) To prove completeness, take a Cauchy sequence  $\{\mu_n\}_{n \geq 1} \subset \mathcal{P}_p(\mathbb{R}^d)$  and argue as follows:

- For every  $k \geq 1$  take an optimal  $\gamma_k \in \Gamma(\mu_k, \mu_{k+1})$ . Use the disintegration Theorem to build a sequence of measures  $\pi_n \in \mathcal{P}((\mathbb{R}^d)^n)$  with the following properties:

$$\begin{cases} p_{\#}^{1, \dots, n-1} \pi_n = \pi_{n-1} & \text{for every } n \geq 2, \\ p_{\#}^{k, k+1} \pi_n = \gamma_k & \text{for every } 1 \leq k < n. \end{cases}$$

Here  $p^{i, \dots, j}$  denotes the projection on the variables from  $i$  to  $j$ .

- Use Kolmogorov's extension Theorem to find  $\pi_\infty \in \mathcal{P}((\mathbb{R}^d)^\mathbb{N})$  such that

$$p_{\#}^{1, \dots, n} \pi_\infty = \pi_n \quad \text{for every } n \geq 1.$$

- Observe that the  $L^p$ -space

$$\mathcal{X} := L^p((\mathbb{R}^d)^\mathbb{N}, \pi_\infty)$$

is complete. Assuming without loss of generality that  $\sum_n W_p(\mu_n, \mu_{n+1}) < \infty$ , prove that the coordinate functions  $p^n : (\mathbb{R}^d)^\mathbb{N} \rightarrow \mathbb{R}$  form a Cauchy sequence in  $\mathcal{X}$ , and deduce that  $p^n \rightarrow \bar{p}$  in  $\mathcal{X}$ .

- Conclude that  $\mu_n \rightarrow \bar{\mu}$  in  $(\mathcal{P}_p(\mathbb{R}^d), W_p)$ , where  $\bar{\mu} := \bar{p}_{\#} \pi_\infty$ .