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EPFL, Mathematics section, Dr. Xavier Fernández-Real

Exercise 8.1. Assume µ, ν ∈ P(R) and µ be non atomic. We define

Tmon(x) := F [−1]
ν ◦ Fµ(x),

where F denotes the cumulative distribution of a probability measure and F [−1] its pseudo-inverse.

Show that the nondecreasing map Tmon : R → R constructed in class is optimal with respect to the

quadratic cost.

Solution: We first show that any monotone map T : R → R pushing µ to ν which is

T#µ(A) = ν(A) ∀A ν measurable

must be equal to Tmon. Note that we have the following inclusion for any x ∈ R

(−∞, x] ⊂ T−1((−∞, T (x))])

since x is clearly in the preimage and hence any smaller number by monotonicity of T . This gives:

Fµ(x) = µ((−∞, x]) ≤ µ(T−1((−∞, T (x))])) = T#µ((−∞, T (x))])

= ν((−∞, T (x))]) = Fν(T (x)).

Hence F
[−1]
ν ◦ Fµ(x) ≤ T (x). Assume now by contradiction that the inequality is strict at some

fixed x. This gives, by definition of the pseudo inverse, the existence of some ϵ0 > 0 such that for

all ϵ ∈ (0, ϵ0),

Fµ(x) ≤ Fν(T (x)− ϵ).

However T−1((−∞, T (x))]) ⊂ (−∞, x] by monotonicity again, and reasoning as above one obtains

the opposite inequality for all ϵ ∈ (0, ϵ0), namely:

Fµ(x) ≥ Fν(T (x)− ϵ).

This shows that Fν is constant in (T (x)− ϵ0, T (x)). By monotonicity and upper semi-continuity

of the distribution function this can happen at countably many times, call those constant values

yi. One then has:

{x | F [−1]
ν ◦ Fµ(x) < T (x)} ⊂

⋃
i

{x | Fµ(x) = yi}

we claim that since µ is non-atomic the set {x | Fµ(x) = l} is a µ null-set for any l ∈ [0, 1], which
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would allow us to conclude T = Tmon µ-a.e. We will prove the slightly stronger implication

µ ∈ P(R) atomless ⇒ Fµ#µ = L |[0,1].

The conclusion would then follow quickly from

µ({x | Fµ(x) = l}) = µ(F−1
µ (l)) = L |[0,1](l) = 0.

To see that the above must be true, we observe that Fµ is continuous, being µ atomless. Indeed,

if xn ↑ x,
F (x)− Fµ(xn) = µ((−∞, x])− µ((−∞, xn]) = µ((xn, x]) → µ(x) = 0

where the last part holds since we have a nested sequence of sets and µ is finite being a probability

measure. Continuity togheter with monotonicity give that {x | Fµ(x) ≤ t } = (−∞, xt], with

Fµ(xt) = t. Now let a ∈ [0, 1]:

Fµ#µ([0, a]) = µ({x | Fµ(x) ≤ a }) = µ((−∞, xa]) = Fµ(xa) = a = L |[0,1]([0, a]),

thus the pushforward of µ via its distribution function is indeed the restriceted lebesgue measure as

claimed. Now that we have uniqueness of Tmon it suffices to show that any optimal transport map

Topt : R → R for the quadratic cost must be monotone. This will be a consequence of c-CM. Indeed,

consider γ := (id, T )#µ(R2). This must have a c-CM support and so if (x, y), (x′, y′) ∈ Supp(γ),

one has y = T (x) and y′ = T (x′) and

c(x, y) + c(x′, y′) ≤ c(x, y′) + c(x′, y)

from which one deduces

(T (x′)− T (x))(x′ − x) ≥ 0.

The rest of the exercise sheet is devoted to the disintegration theorem. The next exercise shows

the intuition behind the disintegration, whereas the following ones are increasingly general statements

of the theorem. The main difficulty of the proof is contained entirely in Exercise 8.3.

Exercise 8.2. Let µ ∈ M (R2) be a finite measure on R2 that is absolutely continuous with respect

to the Lebesgue measure with density ρ : R2 → R. Let ν ∈ M (R) be the measure with density η(x) =∫
R ρ(x, y)dy. For any x ∈ R such that η(x) ̸= 0, let µx be the measure with density ρx(y) =

ρ(x,y)
η(x) . If

η(x) = 0, then simply set µx = 0.

Show that for any g ∈ L1(µ) it holds∫
R2

g(x, y)dµ(x, y) =

∫
R

∫
R
g(x, y)dµx(y)dν(x).
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Solution: Let g ∈ L1(µ). Notice that for all x ∈ R such that η(x) = 0, we have∫
R
g(x, y)dµx(y) = 0.

Moreover, ρ is a density, hence ρ(x, y) ≥ 0 almost everywhere. Therefore, given x0 ∈ R, we see

that η(x0) = 0 ⇐⇒ ρ(x0, y) = 0 for almost all y ∈ R. Hence∫
{η(x)=0}

g(x, y)ρ(x, y)dy = 0.

We then get∫
R

∫
R
g(x, y)dµx(y)dν(x) =

∫
R\{η(x)=0}

∫
R
g(x, y)

ρ(x, y)

η(x)
dy η(x)dx

=

∫
R

∫
R
g(x, y)ρ(x, y)dydx =

∫
R2

g(x, y)dµ(x, y).

Exercise 8.3 (Disintegration for product of compact spaces). Let X,Y be two compact spaces and

let µ ∈ M (X × Y ) be a finite measure on the product X × Y . Let us denote ν = (π1)#µ where

π1 : X × Y → X is the projection on the first coordinate. Prove that there exists a family of

probabilities (µx)x∈X ⊆ P(Y ) such that for any g ∈ L1(µ) it holds∫
X×Y

g(x, y)dµ(x, y) =

∫
X

∫
Y
g(x, y)dµx(y)dν(x). (1)

Do it by following the next steps:

(i) Given ψ ∈ C0(Y ), consider the map Aψ : L1(X, ν) → R given by the formula Aψ(ϕ) :=∫
X×Y ϕ(x)ψ(y)dµ(x, y). Prove that the said map is linear continuous and therefore Aψ can be

represented by a function in L∞(X, ν). As an abuse of notation, we denote by Aψ(x) ∈ L∞(X, ν)

such function, so that the previous map is ϕ 7→
∫
X ϕ(x)Aψ(x)dν(x).

(ii) Fix a countable dense subset S ⊆ C0(Y ). Prove that for ν-almost every x ∈ X the map

µx : S → R given by µx(ψ) = Aψ(x) is linear continuous and therefore µx ∈ P(Y ). Assume

that the said family (µx)x∈X satisfies that for any Borel set E ⊂ Y , the map x 7→ µx(E) is

ν-measurable (this is necessary to give a meaning to the integral in the statement).

(iii) Show that the desired statement holds when g ∈ L1(X, ν) × S. Show that this implies that

it holds also when g ∈ L1(X, ν) × C0(Y ). Finally show that this implies it holds also for any

g ∈ L1(µ).

Solution:

(i) For ψ ∈ C0(Y ), define Aψ : L1(X, ν) → R by Aψ(ϕ) :=
∫
X×Y ϕ(x)ψ(y)dµ(x, y). Notice that,

since Y is compact, ∥ψ∥∞ < +∞.
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We first show that this is well-defined. Notice that for ϕ ∈ L1(X, ν) we have

|Aψ(ϕ)| =
∣∣∣∣∫
X×Y

ϕ(x)ψ(y)dµ(x, y)

∣∣∣∣ ≤ ∫
X×Y

|ϕ(x)||ψ(y)|dµ(x, y)

≤
∫
X×Y

|ϕ(x)|||ψ||∞dµ(x, y) ≤ ||ψ||∞
∫
X×Y

|ϕ(x)|dµ(x, y)

= ||ψ||∞
∫
X
|ϕ(x)|dν(x) = ||ψ||∞∥ϕ∥L1(X,ν) < +∞.

Notice that linearity of Aψ follows directly from linearity of the integral, and boundedness

from the calculations above. So Aψ is a linear bounded operator and, since the dual of

L1(X, ν) is L∞(X, ν), we can now see Aψ as an L∞(X, ν) function. Observe, also, that

Aψ ≥ 0 for all ψ ≥ 0.

(ii) Notice that C0(Y ) is separable (since Y is compact). Fix then a countable dense subset

S = (ψn)n ⊂ C0(Y ), and let x ∈ X. Define µx : S → R by µx(ψ) = Aψ(x) for all ψ ∈ S.

Notice that for each n ∈ N, µx(ψn) is defined for x ∈ X \ En for some En ⊂ X with

ν(En) = 0. By taking E =
⋃
n∈NEn, we have that µx is well defined for any ψ ∈ S, and for

x ∈ X \ E, where ν(E) = 0.

By linearity of the integral, Aψ satisfies Aaψ1+bψ2 = aAψ1 + bAψ2 for all a, b ∈ R, ψ1, ψ2 ∈ S,

ν-a.e.. Furthermore, |µx(ψ)| = |Aψ(x)| ≤ ||ψ||∞ < ∞ for all ψ ∈ S ⊂ C0(Y ). Therefore µx

is a linear and bounded operator on S ν-a.e., and extends to a linear and bounded operator

on C0(Y ). This means that we can now consider (as an abuse of notation) µx as a finite

Radon measure on Y by the Riesz representation theorem. That is, the operator becomes

ψ 7→
∫
ψdµx. We can extend the map to all x ∈ X by choosing an arbitrary ỹ ∈ Y and

defining µx(ψ) = ψ(ỹ) for all ψ ∈ C0(Y ) and x ∈ E. By assumption, then, the integrals in

the statement are well defined.

Notice, also, that µx ≥ 0, since Aψ ≥ 0 for ψ ≥ 0, so µx is a finite measure. Finally, observe

that if ψ ≡ 1 in Y , Aψ ≡ 1 in X and µx(Y ) = 1, that is, µx ∈ P(Y ).

(iii) If g ∈ L1(X, ν) × C(y), then g(x, y) can be written as g(x, y) = g1(x)g2(y), g1 ∈ L1(X, ν),

g2 ∈ C(y).

By unraveling the definitions, and seeing µx as a functional on S,

Aψ(ϕ) =

∫
X×Y

ϕ(x)ψ(y)dµ(x, y) =

∫
X
Aψ(x)ϕ(x)dν(x) =

=

∫
X

(∫
Y
ψ(y)dµx(y)

)
ϕ(x)dν(x) =

∫
X

∫
Y
ψ(y)ϕ(x)dµx(y)dν(x).

This applies to all g ∈ L1(X, ν) × S. By continuous extension (S is dense in C0(Y )), we

obtain that this also applies to functions g ∈ L1(X, ν)× C0(Y ). Again, by density, we have

that the previous result holds for all simple functions in the product space X × Y . Since

simple functions can monotonically approximate any non-negative measurable function, we

are done by splitting any g ∈ L1(µ) into positive and negative parts, and by the monotone

convergence theorem.
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Exercise 8.4 (,). [Disintegration for product of Polish spaces] Show the statement of the previous

exercise when X and Y are Polish spaces, i.e. they are complete and separable.

Hint: Use Prokhorov’s theorem (and Lemma 2.1.9) to find a suitable exhaustion in compact sets

that allows to apply the previous exercise.

Solution: Let us consider an exhaustion Xm × Ym ⊂ X × Y for m ∈ N, and let us define

µm = µ1Xm×Ym (the restriction to Xm × Ym). Let us define νm := (π1)#µm, so that it is clear

that, as measures, νm ≤ νm′ ≤ ν, with m ≤ m′. Then we have that µm ⇀ µ, and also notice that

νm ⇀ ν.

From Exercise 8.3 we also have probability measures µmx such that (1) is satisfied, with µm,

νm, and µ
m
x , and for all g ∈ L1(µm).

Let now m ≤ m′. Observe that, in this case, for any g ∈ C0(Xm × Ym),∫
Xm

∫
Ym

g(x, y)dµmx (y)dνm(x) =

∫
Xm

∫
Ym

g(x, y)dµm
′

x (y)dνm′(x).

This implies that, as measures, we have

µmx (y)νm(x) = µm
′

x (y)νm′(x) in Xm × Ym.

Now take any fixed m̄, and consider Ym̄. Observe that, if m ≤ m̄, µmx (Ym̄) = 1, since µmx is a

probability measure with support in Ym ⊂ Ym̄. On the other hand, if m > m̄, from the previous

equality we have

νm̄(x) = µm̄x (Ym̄)νm̄(x) = µmx (Ym̄)νm(x)

for νm̄-a.e. x ∈ Xm̄. Notice that, since νm ↑ ν, this implies that for νm̄-a.e. x ∈ Xm̄, µ
m
x (Ym̄) ≥

1 − ωx(m̄), where ωx(m̄) → 0 as m̄ → ∞. In particular, for ν-a.e. x ∈ X, µmx is tight, and µmx

weakly converges to some measure, that we define as µmx ⇀ µx.

Now, from the weak convergence of νm and µmx to ν and µx for ν-a.e. x ∈ X we deduce the

desired result. Indeed, on the one hand we have that for ν-a.e. x ∈ X,

fm(x) :=

∫
Ym

g(x, y)dµmx (y) → f(x) :=

∫
Ym

g(x, y)dµx(y)

pointwise. Notice that if g is bounded then they are also uniformly bounded, since µmx are all

probability measures. On the other hand, we have to prove∫
Xm

fm(x)dνm(x) →
∫
X
f(x)dν(x).

Observe that we can consider the measure δm := ν − νm, such that δm(X) → 0 as m → ∞. In

particular, we have by the dominated convergence theorem that∫
Xm

fm(x)dν(x) →
∫
X
f(x)dν(x),
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and on the other hand, ∫
Xm

fm(x)dδm(x) ≤ ∥fm∥L∞(Xm)δm(X) → 0.

Exercise 8.5 (Disintegration for fibers of a map). Let X,Y be two Polish spaces, let f : Y → X be

a Borel map and let µ ∈ M (Y ) be a finite measure on Y . Let us denote ν := f#µ. Show that there

exists a family of probabilities (µx)x∈X ⊆ P(Y ) such that:

(i) For ν-almost every x ∈ X the measure µx is supported on the fiber f−1(x).

(ii) For any g ∈ L1(µ) it holds∫
Y
g(y)dµ(y) =

∫
X

∫
f−1(x)

g(y)dµx(y)dν(x).

Hint: Apply the previous exercise on the measure (f × id)#µ.

Solution: Let γ = (f × id)#µ ∈ M (X × Y ). Notice that ν = (π1)#γ. We can then use Exercise

8.4 to find a family of probabilities (µx)x∈X ⊂ P(Y ) such that for all g ∈ L1(γ),∫
X

∫
Y
g(x, y)dµ(y)dν(x) =

∫
X×Y

g(x, y)dγ(x, y) =

∫
X

∫
Y
g(x, y)dµx(y)dν(x).

In particular, if we define the set

E :=
⋃
x∈X

{x} × (Y \ f−1(x)) ⊂ X × Y,

then

γ(E) =

∫
E
dγ(x, y) =

∫
X

∫
Y \f−1(x)

dµx(y)dν(x).

However, notice that γ(E) = µ((f × id)−1(E)) = 0, since

(f × id)−1(E) = {y ∈ Y : (f(y), y) ∈ E} = {y ∈ Y : y ∈ Y \ f−1(f(y))} = ∅.

That is, ∫
X

∫
Y \f−1(x)

dµx(y)dν(x) = 0,

which means that dµx(Y \ f−1(x)) = 0 for ν-a.e. x ∈ X. That is, supp(µx) ⊂ f−1(x) for ν-a.e.

x ∈ X. Let now g ∈ L1(µ) and see it as g ∈ L1(γ), in the sense that g(x, y) = g(y) for all x ∈ X.

Then, ∫
Y
g(y)dµ(y) =

∫
X×Y

g(x, y)dγ(x, y) =

∫
X

∫
Y
g(x, y)dµx(y)dν(x)

=

∫
X

∫
f−1(x)

g(y)dµx(y)dν(x)
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by Exercise 8.4 and the fact that µx is concentrated on f−1(x).
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