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EPFL, Mathematics section, Dr. Xavier Fernandez-Real

Exercise 8.1. Assume p, v € P(R) and p be non atomic. We define
Tmon(x) = Fzgil] © F,U(x)v

where F' denotes the cumulative distribution of a probability measure and FI=1 its pseudo-inverse.
Show that the nondecreasing map 1o, : R — R constructed in class is optimal with respect to the

quadratic cost.

Solution: We first show that any monotone map 7 : R — R pushing u to v which is
Typ(A) = v(A) YA v measurable
must be equal to Ty,0n- Note that we have the following inclusion for any z € R
(—o0,z] C T7H((~00, T())))
since x is clearly in the preimage and hence any smaller number by monotonicity of T'. This gives:

Fu(z) = pl((=o00,z]) < p(T7 (=00, T(2))])) = Typ((—00, T(x))])
= v((=00, T(z))]) = F,(T(x)).

Hence F, "o Fu(xz) < T(x). Assume now by contradiction that the inequality is strict at some
fixed . This gives, by definition of the pseudo inverse, the existence of some ¢y > 0 such that for
all € € (0, ¢),

Fu(z) < F,(T(z) —¢).

However T 1((—o0,T(x))]) C (—oc, x| by monotonicity again, and reasoning as above one obtains
the opposite inequality for all € € (0, ¢), namely:

Fu(xz) > F,(T(x) —€).

This shows that F,, is constant in (T'(z) — €y, T'(x)). By monotonicity and upper semi-continuity
of the distribution function this can happen at countably many times, call those constant values

y;. One then has:
{| Fy o Fu(z) < T(2)} < (e | Fule) = wi)

we claim that since p is non-atomic the set {« | Fj,(xz) = {} is a p null-set for any [ € [0, 1], which




would allow us to conclude T' = T}0n p-a.e. We will prove the slightly stronger implication
p € P(R) atomless = Fypp = L1
The conclusion would then follow quickly from

wl{z | Fu(z) = 13) = u(EH (D) = 2Ly () = 0.

To see that the above must be true, we observe that F), is continuous, being p atomless. Indeed,
if z, T x,
F(z) = Fu(xn) = p((—o00,z]) — p((—00, zn]) = p((@n, 2]) = p(z) =0

where the last part holds since we have a nested sequence of sets and p is finite being a probability
measure. Continuity togheter with monotonicity give that {z | Fj,(z) < t} = (—o0, x4, with
F,(z¢) =t. Now let a € [0,1]:

Fugpl[0,a]) = p({z | Fu(z) < a}) = p((=00,24]) = Fu(ta) = a = L], ([0, ),

thus the pushforward of p via its distribution function is indeed the restriceted lebesgue measure as
claimed. Now that we have uniqueness of T,y it suffices to show that any optimal transport map
Topt : R — R for the quadratic cost must be monotone. This will be a consequence of c-CM. Indeed,
consider 7y := (id, T')xp(R?). This must have a c-CM support and so if (z,v), (z/,y) € Supp(y),
one has y = T'(z) and ¢y = T'(2') and

c(z,y) + (', y') < c(z,y) + el y)

from which one deduces
(T(a2") = T(x)) (2" —x) > 0.

The rest of the exercise sheet is devoted to the disintegration theorem. The next exercise shows
the intuition behind the disintegration, whereas the following ones are increasingly general statements

of the theorem. The main difficulty of the proof is contained entirely in Exercise [8.3

Exercise 8.2. Let u € .#(R?) be a finite measure on R? that is absolutely continuous with respect
to the Lebesgue measure with density p : R? — R. Let v € .#(R) be the measure with density n(z) =
Jz p(z,y)dy. For any x € R such that n(x) # 0, let y1,, be the measure with density p,(y) = %. If
n(x) = 0, then simply set u, = 0.

Show that for any g € L'(u) it holds

/RQQ(WJ)du(w,y) :/R/Rg(x,y)dux(y)du(m),



Solution: Let g € L'(u). Notice that for all x € R such that n(z) = 0, we have

/ 9. 9)dpia(y) = 0.
R

Moreover, p is a density, hence p(z,y) > 0 almost everywhere. Therefore, given zy € R, we see

that n(xg) =0 < p(xo,y) = 0 for almost all y € R. Hence
/ 9(@,y)p(z,y)dy = 0.
{n(z)=0}
We then get

B . p(z,y) \d
/R /R o y)dpie (y)d() = /R . /R o) 2y n(a)a
- / / oz, y)ple, y)dyde = / oz, y)du(z, ).
R JR R2

Exercise 8.3 (Disintegration for product of compact spaces). Let X,Y be two compact spaces and
let p € #(X xY) be a finite measure on the product X x Y. Let us denote v = (m)xp where
m : X XY — X is the projection on the first coordinate. Prove that there exists a family of
probabilities (1z)zex € P(Y) such that for any g € L!(u) it holds

/X ale)duta.y) = /X /Y o, y)dpie () d (). (1)

Do it by following the next steps:

(i) Given 1 € C°(Y), consider the map Ay : L'(X,v) — R given by the formula Ay(¢) :=
Jxwy @(@)(y)dp(z,y). Prove that the said map is linear continuous and therefore Ay can be
represented by a function in L*°(X,v). As an abuse of notation, we denote by Ay (z) € L>(X,v)
such function, so that the previous map is ¢ — [y ¢(x)Ay(x)dv(x).

(ii) Fix a countable dense subset S C C°(Y). Prove that for v-almost every z € X the map
pe : S — R given by p,(¢)) = Ay(z) is linear continuous and therefore p, € P(Y). Assume
that the said family (uy)zex satisfies that for any Borel set E C Y, the map = — p,(F) is

v-measurable (this is necessary to give a meaning to the integral in the statement).

(iii) Show that the desired statement holds when g € L'(X,v) x S. Show that this implies that
it holds also when g € L*(X,v) x C°(Y). Finally show that this implies it holds also for any
g € L'(p).

Solution:

(i) For ¢ € CU(Y), define Ay : LY(X,v) = R by Ay(¢) := [y .y ¢(@)¥(y)du(z, y). Notice that,

since Y is compact, ||1)]|c < +00.




(iii)

We first show that this is well-defined. Notice that for ¢ € L'(X,v) we have

Ay(6 |—\ [ ouants y>\ [ @ity
< /X 6@,y < 191l / 16(2)|du(z, )

XxXY

= ||¢Hoo/X [p(@)]dv(x) = |[{lloollll 1 (x,0) < +00-

Notice that linearity of A, follows directly from linearity of the integral, and boundedness
from the calculations above. So Ay is a linear bounded operator and, since the dual of
LY(X,v) is L®(X,v), we can now see Ay as an L°°(X,v) function. Observe, also, that
Ay >0 for all ¥ > 0.

Notice that CY(Y) is separable (since Y is compact). Fix then a countable dense subset
S = (n)n C CO(Y), and let x € X. Define i, : S — R by pg(¢) = Ay(x) for all ¢ € S.
Notice that for each n € N, p;(1y,) is defined for x € X \ E, for some FE,, C X with
v(E,) = 0. By taking F =
x € X \ E, where v(E) = 0.

nen B, we have that p, is well defined for any ¢ € S, and for

By linearity of the integral, A, satisfies Agy, +byp = @Ay, +0Ay, for all a,b € R, 11,92 € S,
v-a.e.. Furthermore, |u,(¢)| = |Ay(z)| < |[¢||oc < 0o for all 9 € S C CO(Y). Therefore p,
is a linear and bounded operator on S v-a.e., and extends to a linear and bounded operator
on C°(Y). This means that we can now consider (as an abuse of notation) p, as a finite
Radon measure on Y by the Riesz representation theorem. That is, the operator becomes
¢ — [dp,. We can extend the map to all z € X by choosing an arbitrary § € ¥ and
defining p1,.(10) = ¥(g) for all ¢p € C°(Y) and = € E. By assumption, then, the integrals in

the statement are well defined.

Notice, also, that p, > 0, since Ay, > 0 for 1) > 0, so j, is a finite measure. Finally, observe
thatify =1inY, Ay =1in X and p,(Y) = 1, that is, u, € P(Y).

If g € LY(X,v) x C(y), then g(x,y) can be written as g(z,y) = g1(x)g2(y), g1 € L'(X,v),
g2 € C(y).

By unraveling the definitions, and seeing u, as a functional on S,
@)= [ ola)iu)dntzy) = /Aw () =
XxY

/(/w )iz (y ) //1/1 @) dpig (y)dv(z).

This applies to all g € L'(X,v) x S. By continuous extension (S is dense in C°(Y)), we
obtain that this also applies to functions g € L'(X,v) x C°(Y). Again, by density, we have
that the previous result holds for all simple functions in the product space X x Y. Since
simple functions can monotonically approximate any non-negative measurable function, we
are done by splitting any g € L'(p) into positive and negative parts, and by the monotone

convergence theorem.




Exercise 8.4 (§). [Disintegration for product of Polish spaces] Show the statement of the previous

exercise when X and Y are Polish spaces, i.e. they are complete and separable.

Hint:  Use Prokhorov’s theorem (and Lemma 2.1.9) to find a suitable exhaustion in compact sets

that allows to apply the previous exercise.

Solution: Let us consider an exhaustion X,, X Y,, € X x Y for m € N, and let us define
pm = plx, xv,, (the restriction to X,, x Y3,). Let us define vy, := (71)4ftm, so that it is clear
that, as measures, vy, < v, < v, with m < m/. Then we have that u,, — u, and also notice that
U — V.

From Exercise we also have probability measures p]' such that is satisfied, with p,,
Vm, and p™, and for all g € L ().

Let now m < m/. Observe that, in this case, for any g € C°(X,, x Y,,),

/m/m (@ y)dps (y)dvm(@ /m/m (2, y)dusf" (y)dv ().

This implies that, as measures, we have

M?(y)ym(x) = 'u;n,(y)ym/(x) in X, X Y.

Now take any fixed m, and consider Y. Observe that, if m < m, p7'(Yy) = 1, since pl* is a
probability measure with support in Y;, C Y. On the other hand, if m > m, from the previous
equality we have

v () = piy (Ym)vm () = pi (Y )vm ()

for vm-a.e. © € Xg. Notice that, since v, T v, this implies that for vp-a.e. x € Xy, pul'(Yim) >
1 — wy(m), where wy(m) — 0 as m — oo. In particular, for v-a.e. x € X, p* is tight, and pl’
weakly converges to some measure, that we define as p' — p.

Now, from the weak convergence of v, and p7' to v and p, for v-a.e. x € X we deduce the

desired result. Indeed, on the one hand we have that for v-a.e. x € X,

fonl) = /Y o ) () > f(z) = /Y oz, 9)dpa(v)

pointwise. Notice that if g is bounded then they are also uniformly bounded, since p!* are all

probability measures. On the other hand, we have to prove

@) () — /X F@)dv ().

Xm

Observe that we can consider the measure d,, := v — vy, such that 6,,(X) — 0 as m — oco. In

particular, we have by the dominated convergence theorem that

fm(:c)dl/(l‘)—>/Xf(x)dV(:z),

Xm




and on the other hand,

. Sm(@)dom () <[ fmll oo (x,)0m (X) = 0.

Exercise 8.5 (Disintegration for fibers of a map). Let X,Y be two Polish spaces, let f: Y — X be
a Borel map and let € .#(Y) be a finite measure on Y. Let us denote v := fyu. Show that there
exists a family of probabilities (pz)zex C P(Y) such that:

(i) For v-almost every z € X the measure i, is supported on the fiber f~!(z).

(ii) For any g € L!(p) it holds

[t [ [ st

Hint:  Apply the previous exercise on the measure (f x id)xpu

Solution: Let v = (f xid)ypu € #(X xY'). Notice that v = (m1)x7y. We can then use Exercise
to find a family of probabilities (uiz)zcx C P(Y) such that for all g € L!(y),

/X/Yg(w,y)du(y)du(aC)Z/Xxyg(a:,y)d'y(x,y):/X/Yg(x?y)d'ux(y)dy(x)'

In particular, if we define the set

— U x (Y \ f @) C X x Y,

zeX

)= [arewn= [ [ @)

However, notice that v(E) = u((f x id)"!(E)) = 0, since

then

(f xid) NE)={yeY : (flu)y) e B} ={y €Y :ye Y\ [ (f(y)} =0.

/x /Y\f_l(x) dpt (y)dv () = 0,

which means that du,(Y \ f~(z)) = 0 for v-a.e. € X. That is, supp(p,) C f~!(z) for v-ae.
x € X. Let now g € L'(u1) and see it as g € L'(7), in the sense that g(x,y) = g(y) for all x € X.

Then,
/Y o(y)du(y) = /X Xyg<x,y>dv<x,y>= /X /Y o2, y)dpa(y)dv ()

/ / ), (y)du(z)

That is,




by Exercise and the fact that y, is concentrated on f~!(z).




